The accuracy of the inundation line shown on these maps is subject to limitations in local county personnel. The location of the enhanced resolution (75- to 90-meters) that better defines the location of the maximum inundation line (U.S. Geological Survey, 1993; Intermap, 2003; NOAA, 2004). The inundation line was determined by using digital imagery and terrain data on a GIS platform with consideration given to historic inundation information (Lander, et al., 1993).

Sources that were considered include great subduction zone events that are known to occur around the Pacific Ocean “Ring of Fire.” Sources that have occurred historically (1960 Chile and 1964 Alaska earthquakes) and others which are currently understood to be potential tsunami sources that could affect the West Coast. Table 1 presents a list of tsunami sources that were considered.

Local tsunami sources that were considered include offshore reverse-thrust faults, restraining bends on strike-slip fault zones and large submarine landslides (Table 1). Local tsunami sources that were considered include offshore reverse-thrust faults, restraining bends on strike-slip fault zones and large submarine landslides.

The state of California has been on the receiving end of some of the world’s largest tsunamis. As a result, tsunami forecasting and hazard mitigation are critically important. This map is based on tsunami research and hazard studies funded by the National Tsunami Hazard Mitigation Program.

For a detailed explanation of the map, please refer to the following websites:

- State of California ~ County of Napa
- University of Southern California – Tsunami Research Center:
 - http://nctr.pmel.noaa.gov/time/background/models.html
- State of California Geological Survey Tsunami Information:
- California Geological Survey
- California Emergency Management Agency
- Synthetic Aperture Radar (IfSAR) Digital Elevation Models from GeoSAR platform (EarthData):
 - Record Documentation No. 29, NOAA, NESDIS, NGDC, 242 p.
- Intermap NEXTmap document on 5-meter resolution data, 112 p.
- Intermap Technologies, Inc., 2003, Intermap product handbook and quick start guide:

For additional information, please refer to the following websites:

- State of California ~ County of Napa
- University of Southern California – Tsunami Research Center:
 - http://nctr.pmel.noaa.gov/time/background/models.html
- State of California Geological Survey Tsunami Information:

Please refer to the following websites for additional information on the construction and use of the inundation line.

- State of California ~ County of Napa
- University of Southern California – Tsunami Research Center:
 - http://nctr.pmel.noaa.gov/time/background/models.html
- State of California Geological Survey Tsunami Information:

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

BOUNDARIES

The map boundaries may reflect updated digital orthophotographic and topographic data that may or may not represent updated political boundaries or legal ownership boundaries. Boundaries may reflect updated digital orthophotographic and topographic data that may or may not represent updated political boundaries or legal ownership boundaries.

COPYRIGHTS

Neither the State of California nor USC shall be liable under any circumstances for any damages, including, but not limited to, loss of data, loss of profit or any other unanticipated damages resulting from the use of this map.

COPYRIGHT HOLDER

State of California ~ County of Napa

The digitized data on this map were compiled and prepared by the following consultants with respect to any claim by any user or any third party on account of or arising from the map was derived. Neither the State of California nor USC shall be liable under any circumstances for any damages, including, but not limited to, loss of data, loss of profit or any other unanticipated damages resulting from the use of this map.

THE map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

DISCLAIMER

Please refer to the following websites for additional information on the construction and use of the inundation line.

- State of California ~ County of Napa
- University of Southern California – Tsunami Research Center:
 - http://nctr.pmel.noaa.gov/time/background/models.html
- State of California Geological Survey Tsunami Information:

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.

The map was derived using a series of nested grids. Near-shore grids with a 3 arc-second (75- to 90-meters) resolution or higher, were adjusted to “Mean High Water” sea-level conditions, and inundation could be greater in a major tsunami event.