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DESCRIPTION OF MAP UNITS 

SURFICIAL UNITS

af Artificial fill (historic)—Anthropogenic deposits of earth materials that may be engineered or non-engineered.

t Tailings (historic)— Primarily rounded, quartz-rich gravels and cobbles that are a byproduct of the hydraulic mining 
process. Tailings mapped adjacent to underground mine adits are usually spoils piles derived from both bedrock and 
Tertiary gravels.

Qc-m Modern colluvium (historic)—Unconsolidated deposits of clay, silt, sand, gravel, cobbles and boulders that have been 
deposited at the base of cliffs created by historic hydraulic mining activities.

Qa Alluvial deposits (historic to late Holocene)—Unconsolidated and poorly sorted silt, sand, gravel, and cobble deposits 
adjacent to rivers and streams. Variable in color but often pale yellow to light reddish brown.

Qa-t Modern alluvium with hydraulic mining debris (historic)—Hydraulic mining debris deposited by alluvial 
processes within modern drainages. Composed dominantly of siliceous sand, gravel, and cobbles; gravel and 
cobbles are well rounded and derived from Tertiary gravels and Valley Springs Formation. Occurs often as terraces 
above modern stream elevations marking peak aggradation of hydraulic tailings before subsequent erosion. Where 
mapped within Malakoff Diggins, the alluvium was deposited during historic time and can be over 30 m thick 
(Peterson, 1980).

Qyls Young landslide deposits (late Holocene)—Unconsolidated and jumbled deposits of clay, silt, sand, gravel, cobbles, 
and boulders that are undissected; commonly adjacent to, and sliding towards, hydraulic mining pits during historic 
time; variable in color but often reddish brown to reddish yellow and distinct from other landslide deposits by their 
youthful geomorphic features. Head scarps and internal hummocky or bench and swale topography are apparent. 
Landslide toe deposits are commonly absent because the debris has fallen into the hydraulic mine pits.

Qcl Colluvium and landslide deposits (Holocene to Pleistocene)—Unconsolidated cobbles and gravel in a reddish-
brown clay matrix that commonly form aprons flanking the margins of Mehrten Formation outcrops; cobble and 
gravel content is variable and sometimes lacking; clasts derived primarily from the Mehrten Formation. Recognized 
by geomorphic expression of generally uniform, gentle slope gradients, and a lack of outcrops and distinct landslide 
geomorphology and boundaries. Includes a combination of thick colluvial deposits, surficial failures, or thin, older 
landslide deposits that are either too small to map individually or are questionable.

Qls Landslide deposits (Holocene to Pleistocene)—Mostly unconsolidated, jumbled, and chaotic fragments of bedrock 
material sourced from varying geologic units and forming deposits of varying thickness; commonly reddish brown 
to yellow brown. The largest landslides are usually derived from the Mehrten Formation and contain abundant 
andesite debris. Recognized by geomorphic expression and jumbled appearance of debris. Queried where existence is 
questionable.

Qdf Debris fan deposits (Holocene to Pleistocene)—Unconsolidated and poorly sorted clay, silt, sand, gravel, and 
boulders forming relatively steep, fan-shaped deposits at the mouths of small drainages and along steep hillsides where 
deposits include undifferentiated colluvium. Deposits are primarily derived from small, recurring debris slide and 
debris flow events rather than from fluvial processes.

QTls Very old landslide deposits (Pleistocene to Pliocene)—Unconsolidated and poorly sorted clay, silt, sand, gravel, 
and boulders that occur on isolated hills spatially separated from the source area. Most material is composed of debris 
derived from the Mehrten Formation but deposits occur at lower elevations than intact Mehrten Formation suggesting 
down-slope displacement.

TERTIARY UNITS

Tm Mehrten Formation (early Pliocene to Miocene)—Volcanic debris flow (lahar) deposits interbedded with sandstone 
and conglomerate; debris flow deposits consist primarily of matrix-supported breccia. Weathered surfaces are reddish 
brown with fresh surfaces light gray to dark gray. Sandstone and conglomerate facies are moderately to well sorted 
and breccia facies are poorly sorted. Compositionally distinct and dominated by intermediate volcanic rock types, 
especially andesite. Andesite clasts are often angular to subrounded and can be up to 5 meters in diameter, as noted on 
top of Quaker Hill. The volcanic material is sourced from the ancestral Cascade Arc located to the east (e.g., Cousens 
and others, 2008). Within the arc, possible source rocks range from ~16 to ~3 Ma, but within the map area, the age of 
individual Mehrten strata is very poorly constrained within this range. Within the North Bloomfield Quadrangle, the 
thickness of the Mehrten Formation is variable but reaches a maximum thickness of approximately 160 meters.

Tvs Valley Springs Formation (early Miocene to Oligocene)—Tuffaceous sandstone, siltstone, conglomerate, and 
interbedded rhyolitic tuff; often flat laying or very gently dipping; light bluish gray to light greenish gray in color. The 
tuffs were erupted from calderas to the east in central Nevada. Within the Truckee 30’ x 60’ Quadrangle 40Ar/39Ar ages 
of interbedded tuffs within the Valley Springs Formation range from 24.9 to 31.7 Ma (Chris Henry, oral commun.). The 
Valley Springs Formation is distinguishable from other Cenozoic deposits based on the presence of rhyolitic ash and 
tuff clasts within the conglomerate facies. In places where the Valley Springs Formation overlies Tertiary gravels, the 
contact is not always clearly distinguishable as both units contain similar interbedded sandstone and conglomerate beds 
in terms of thickness, texture, induration, and color.  During fieldwork we noted several occurrences of petrified wood 
and leaf fossils near Scotts Flat Reservoir.    

Tg Tertiary gravels (early Oligocene to Eocene)—Quartz-rich conglomerate (“gravels”), sandstone, and siltstone 
deposits that are generally flat lying to gently west dipping. Fluvial deposits that filled paleovalleys during Eocene 
and early Oligocene time when the drainages extended far to the east, well beyond the modern crest of the Sierra 
Nevada (Cassel and Graham, 2011). The gravels contain variable but often significant amounts of placer gold, which 
were heavily mined during the 19th and 20th centuries. The gravels are well exposed in the walls of former hydraulic 
mining pits. These deposits have been the focus of several previous studies (e.g., Lindgren, 1911; Yeend, 1974; Cassel 
and others, 2022). Lindgren (1911) popularized the term “Tertiary gravels,” and divided the Tertiary gravels into two 
informal units, consisting of lower channel deposits (which he considered narrow Eocene paleovalleys) and upper 
gravel deposits (which filled in much broader and wider parts of the paleovalleys); this nomenclature has been adopted 
where the units are distinguishable. Pease (1992) mapped three separate units of the Tertiary gravels within the North 
Columbia area (lower, middle, upper); the middle gravel unit of Pease (1992) is relatively thin and represents the 
transition between the heterogeneous clast size and composition of the lower unit and the finer-grained, better sorted, 
overwhelmingly silicious clast composition of the upper unit. We grouped Pease’s middle gravel into the upper gravel 
unit on this map. Where mapped in areas without surface mining, the Tertiary gravels may be thin and restricted to 
ferricrete and silcrete paleosols overlying bedrock. At Malakoff Diggins, Cassel and Graham (2011) report several 
sets of alternating fine-grained and coarse-grained units within the pit walls, with the sandstones being resistant cliff-
forming units and the fine-grained intervals forming gentler slopes. Zones of hard, well-cemented conglomerate and 
sandstone occur as ferricrete and silcrete. These zones often occur near the basal contact with the underlying bedrock 
units but can also occur higher up in the section.  We noted the occurrence of petrified wood in this unit throughout the 
quadrangle.  

Tgu Upper unit (early Oligocene to late Eocene)—Interbedded sandstone, siltstone, and conglomerate. The 
conglomerate is generally composed of fine- to coarse-grained, well-rounded siliceous clasts (e.g., vein quartz, 
quartzite). The fresh surfaces are generally light gray in color with some layers more reddish yellow or light 
brown.

Tgl Lower unit (Eocene?)—Predominantly conglomerate with interbedded sandstone. Clasts are coarser than the 
upper unit, often boulder sized. Clast composition is predominantly siliceous, like the upper unit, but is noticeably 
more heterogeneous with additional metamorphic and plutonic clast types. The color is reddish yellow. This unit is 
most easily observed at the South Yuba River Campground (which Lindgren (1911) refers to as Grizzly Hill).

Twg Weathered granitic rocks (Oligocene to Eocene?)—Distinct weathered zone developed on the Yuba Rivers Pluton 
(unit described below) at least 10 m thick but likely much thicker, which is well exposed just west of the quadrangle 
around the Nevada County Madelyn Helling Library. The granitic parent rock has been weathered almost entirely to a 
clayey sand consistency. The weathered color is a distinctive pale yellow-brown to pale yellow-red.

INTRUSIVE ROCK UNITS

Jyr Yuba Rivers Pluton (Jurassic)—Coarse-grained granodiorite, tonalite, and quartz diorite that intrudes the Clipper 
Gap Formation and Lake Combie Complex. Day and Bickford (2004) provide a U-Pb age of 157 +/- 1 Ma. This unit is 
variably weathered in the quadrangle and can occur as hard, fresh corestones in a matrix of decomposed rock. In areas 
underlain by the Yuba Rivers pluton, the topography is gentle with rolling hills. Outcrops are often large and rounded. 
In the eastern margin of the pluton, Bobbitt (1982) mapped mafic intrusive rocks separately as pyroxenite-gabbro.

Jyrm Pyroxenite-gabbro (Jurassic)—Mafic facies of the Yuba River Pluton that consists of hornblende-clinopyroxene 
tonalite, metatonalite, and clinopyroxene-hornblende gabbro/diorite, with xenoliths of quartz gabbro/diorite and rocks 
from the Clipper Gap Formation. Fine grained to very coarse grained and typically massive. Hacker (1984) reports 
some outcrops have centimeter- to millimeter-thick layers of mafic crystals, or a weak magmatic foliation defined by 
oriented plagioclase laths. Weathers to form reddish-brown soils. Considered slightly older than the main Yuba Rivers 
pluton unit as field relationships indicate the main pluton body intruded into this mafic border; however, there are no 
radiometric dates for this unit.

Jsc Spring Creek pluton (Jurassic)—Biotite-hornblende quartz gabbro/diorite mapped in detail both on the surface and 
in the subsurface beneath the Tertiary gravels by Pease (1992). Informally named and described by Hacker (1984) 
as massive and medium grained.  We submitted a sample for zircon U-Pb dating and received a preliminary age of 
173.4 +/- 3.5 Ma (age +/- 2% total uncertainty); analysis conducted on zircons at UCSB Laser Ablation Laboratory (J. 
Schwartz, written commun., 2024). Pease (1992) maps the western contact of the pluton to be a fault within the Clipper 
Gap Formation.

Jch Central House pluton (Jurassic)—Mapped and named by Hacker (1984) as the Central House tonalite. 
Orthopyroxene-clinopyroxene-hornblende tonalite with poor outcrops, often extensively altered to a green color 
(Hacker, 1984).

MZg Undifferentiated granitic rocks (Mesozoic)—Several small bodies of granitic rock previously reported by Hacker 
(1984) or observed during this mapping. Bodies occur in small areas where the contact relationship with the 
surrounding rocks is unclear and it is undetermined if these outcrops are small intrusive stocks or detrital megablocks 
within Clipper Gap Formation.

METAMORPHIC UNITS

Jlc Lake Combie Complex (Jurassic)—Metavolcanic and metasedimentary rocks that were previously studied by 
Tuminas (1983) and Day and others (1985). The color is generally yellow-brown to red-brown when weathered and 
grayish green to light gray when fresh. Lindgren (1900) previously mapped this as part of the Calaveras Formation. 
Generally considered Jurassic in age but may in part be as old as Triassic (Rack and others, 2024) based on U-Pb dates 
south of the quadrangle. Near Dear Creek Reservoir and Banner Mountain, the rocks are siliceous and cherty with 
interbedded sandstone and mafic volcanic rocks. Lindgren (1896, 1900) mapped the siliceous rocks separately in the 
southern part of the quadrangle near Banner Mountain, which we map as an informal siliceous member:

Jlcs Siliceous member—Siliceous, well-cemented, light blue-gray to yellow-brown sandstone and conglomerate. 
Thickly bedded with relict bedding apparent. Conglomerate clasts are subrounded to subangular and composed 
primarily of chert and other highly siliceous rock types typically smaller than 2-cm in diameter. Originally mapped 
by Lindgren (1896, 1900) as a cherty unit within the Calaveras Formation.

Jpg Phyllite-Greenschist Belt (Jurassic)—Strongly deformed phyllitic metasedimentary and schistose metavolcanic 
rocks that occur east of the Gillis Hill fault. Mapped and described by Hacker (1984) within the North Bloomfield 
Quadrangle as part of the Cape Horn Formation and later termed the “High-Strain Phyllite-Greenschist Belt” by 
Schweickert (2015). These rocks often have well developed slaty cleavage that helps differentiate them from other 
Mesozoic units in the quadrangle. Schweickert (2015) interprets these rocks as Jurassic in age based on correlation to 
similar rocks to the south. Hacker (1984) and Peterson (1980) mapped several rock types within this unit, including 
serpentinite and chert.

sp Serpentinite—Primarily blue-gray serpentinite with less altered ultramafic rocks. Often pervasively sheared and 
foliated. Weathers to a yellowish-brown color.

ch Chert—Massive, yellowish- to bluish-gray chert that is generally hard and lacks bedding. Forms large, rounded 
outcrops.

JTRcg Clipper Gap Formation (Jurassic to Triassic)—Mélange unit incorporating multiple, mostly sedimentary, rock 
types occurring west of the Gillis Hill fault. Includes abundant chert and siliceous argillite that commonly exhibits 
a distinctive light-yellowish-gray color. Also contains sandstone, siltstone, conglomerate, pillow lava, and blocks of 
limestone, serpentinite, and granitic rocks. This unit has been referred to as the Oregon City formation (Hacker, 1984) 
and as part of the Fiddle Creek Complex (Edelman and others, 1989). Schweickert (2015) refers to this unit simply 
as “mélange.” The rocks are moderately foliated and weakly metamorphosed; primary sedimentary features are often 
preserved. Clark and Huber report crinoid fossils in the area of Edwards Crossing. Hacker (1984,1993) reports that 
these rocks vary from being relatively undeformed, where bedding is preserved and lithologies are slightly intermixed, 
to strongly deformed where bedding is no longer discernible and exotic rock types are juxtaposed. The western mapped 
extent of this unit (within approximately 2 to 3 km of the Yuba Rivers pluton) exhibits contact metamorphism caused 
by intrusion of pluton; this western zone appears more recrystallized and indurated than the rest of the unit. Along 
the South Yuba River from Edwards Crossing to the west edge of the quadrangle, the unit is cut by many non-foliated 
granitic dikes. These dikes are oriented subparallel to the general foliation of the Clipper Gap Formation and are up 
to 3 m in diameter. The Clipper Gap Formation has been reported as Late Triassic to Early Jurassic in age based on 
radiolarian chert fossils and an 40Ar/39Ar hornblende date of 174.3 +/- 1.9 Ma from a volcanic clast in a lahar deposit 
(Hacker, 1993). Locations of marble (blue circles) and serpentinite (black diamonds) blocks within the mélange are 
mapped based on Hacker (1984), Clark and Huber (1975), and new field observations.

JTRcgv Metavolcanic unit (Jurassic to Triassic)—Pease (1992) mapped a separate metavolcanic member of the Clipper 
Gap Formation in the northwest section of the quadrangle. Pease (1992) describes this unit as greenish- to bluish-
gray, slightly metamorphosed andesite and basalt that generally have an aphanitic groundmass surrounding very 
fine-grained plagioclase phenocrysts. These rocks are massive, dense, hard, and weather into subangular blocks.
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