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PALEOPROTEROZOIC ROCK 

 Paragneiss and Orthogneiss (Paleoproterozoic)—Much of the basement rock south of the San Andreas Fault (SAF) 
is composed of various gneissic lithologies and associated marble and quartzite located within the Liebre Mountain 
block of Powell (1993). The basement rocks of this block are separated from the Mendenhall gneiss and other basement 
rocks of the southwestern San Gabriel Mountains by the Pelona Schist and related Vincent Thrust Fault. Szatai assigned 
the gneissic rock package to the informally named “Sawtooth Gneiss”. Dibblee also lumps all of this rock into one 
unit; however, field observations reveal that much of what Dibblee mapped as quartz diorite in the mountainous areas 
northwest of Lake Hughes Road is actually quartzofeldspathic gneiss, which is complexly intruded along foliation by 
the quartz diorite to the southeast. Based on updated mapping and new U-Pb dating, we differentiate three gneissic rock 
units: Xgn1 is distinguished along the south side of the SAF for K-feldspar-poor biotite paragneiss with local marble 
pods and granitic orthogneiss because U-Pb dating indicates ages of 1.9 to 1.95 Ga, which are significantly older than 
gneisses dated elsewhere on the quad; Xgn2 is distinguished for younger gneiss with a mix of quartzofeldspathic gneiss 
and secondary biotite and hornblende gneiss that lacks known marble layers and is dated between 1.7 and 1.75 Ga. 
Xgn-p is distinguished for banded quartzofeldspathic paragneiss generally lacking biotite-rich bands but including a 
prominent band of marble layers. Xgn-p may be equivalent to Xgn1 based on the presence of marble and may form a 
regional-scale west-plunging synform, but the age of Xgn-p has not yet been verified. Map relationships between the 
three units is obscured by poor exposure near the SAF and by inaccessibility to exposures in the Fish Canyon area.

Xgn2 Quartzofeldspathic, biotite and hornblende gneiss (Paleoproterozoic)—Undifferentiated unit consisting 
of two dominant gneissic rock types; pinkish-gray to light-gray quartzofeldspathic gneiss and secondary well 
foliated medium- to dark-gray biotite gneiss and inter-layered hornblende gneiss and hornfels, and local lenses of 
amphibolite of uncertain age; gneiss subunits are not differentiated on map due to poor lateral exposure of contacts 
observed away from road cuts. The gneisses are generally fine-grained, with porphyroclasts locally ranging up to 
1 cm; foliation in biotite and hornblende gneisses defined by alternating light and dark bands and is dominantly 
planar, but locally contorted with small-scale folds; compositional banding ranges from less than 1 mm to several 
cm thick and is less distinct and more discontinuous in quartzofeldspathic packages; locally migmatitic with 
leucocratic melt bands and boudins; moderately fissile and locally schistose where biotite-rich bands are abundant; 
generally fractured overall; best exposed in road cuts, channel banks and deeply incised canyon slopes in the Fish 
Creek and Burnt Peak Canyon watersheds. Intruded by Cretaceous granite bodies and locally intruded by undated 
gray diorite or gabbro, and by thin aplite or pegmatite dikes. Biotite gneiss is likely a paragneiss, although no 
marble or distinctive quartzite units were observed. Quartzofeldspathic gneiss may be orthogneiss in part; cross-
cutting relationships with Xgn-p are not well exposed and the units may be juxtaposed in part by faulting; presence 
of hornblende suggests amphibolite grade metamorphism. New U-Pb dating produced ages of 1,748.9 +/-12.2 [35] 
Ma (MSWD = 1.9) for the biotite gneiss (see map) and 1,718.0+/-13.6 [34] Ma (MSWD = 2.6) for the hornblende 
gneiss (upper intercept age +/-internal 2SE uncertainty [total 2% uncertainty]). Analyses were conducted on 
zircons using laser ablation ICPMS analyses at the CSUN Laser Lab (2022).  

Xgn-p Quartzofeldspathic paragneiss with marble (Paleoproterozoic)—Light-brown weathering quartz- and feldspar-
rich gneiss with small, oxidized biotite or hornblende grains, which locally encloses discontinuous bands of light-
gray to white marble ranging up to 6 m in thickness (larger marble bands distinguished on map as "m") and rare, 
thin, light-gray quartzite beds, which substantiates the paragneiss interpretation; marble is generally fine-grained 
with mm- to cm-scale banding, but is locally coarsely recrystallized and locally contains abundant pale-greenish-
yellow to dark-green olivine crystals; graphite is also commonly present; locally contains well-rounded quartz 
grains, pebbles, cobbles, and sandy layers exhibiting primary bedding (Szatai, 1961). The gneiss is moderately 
foliated, defined by mm- to cm-scale bands of varying grain size and quartz content; foliation is generally 
planar with few observed small-scale folds; weakly fissile but generally fractured and weathered, forming few 
exposures except in road cuts and channel banks. Complexly intruded by quartz diorite and foliated granodiorite 
to the southeast, resulting in zones of with pervasive seams of quartz diorite intruded along foliation and isolated 
enclaves of Xgn-p enclosed by quartz diorite. Also intruded by Late Cretaceous granite and gray hornblende 
diorite/gabbro of uncertain age. Age of paragneiss not quantified; the presence of interleaved marble suggests it 
may be genetically related to Xgn1, with exposures occurring on the limbs of a broad, faulted, northwest-plunging 
synformal fold.

Xgn1 Biotite gneiss and granitic orthogneiss (Paleoproterozoic)—Biotite gneiss with interlayered dark-gray biotite 
and light-gray felsic bands typically a few mm to a few cm thick; well-foliated and slightly fissile where biotite is 
abundant; includes discontinuous lenses and pods of white marble (m) that are highly brecciated near fault zones; 
presumed to be a paragneiss based on thin banding and interleaved marble. Locally cut by light- to medium-gray, 
weakly foliated granitic orthogneiss with minor biotite and muscovite; orthogneiss is locally overprinted by ductile 
shear fabric. The gneiss is generally fractured, and in-place exposures are sparse except in active channel banks 
and road cuts. New U-Pb dating produced ages of 1,953.6 +/-21.2 [39] Ma (MSWD = 10) for the biotite gneiss 
(see map) and 1,897.4 +/-6.9 [38] Ma (MSWD = 9.9) for the orthogneiss (upper intercept age +/-internal 2SE 
uncertainty [total 2% uncertainty]). Analyses were conducted on zircons using laser ablation ICPMS analyses at 
the CSUN Laser Lab (2022). These relative dates and map distribution support that the orthogneiss intruded the 
paragneiss 150 to 200 million earlier than previous ages reported for the Mendenhall gneiss to the south (Barth and 
others, 2001), related rocks southwest of the San Gabriel Fault near Frazier Mountain (Nourse and others, 2020), 
and younger gneisses dated elsewhere on the Burnt Peak 7.5’ Quadrangle. This older gneissic package is therefore 
distinguished on the map along the south side of the San Andreas Fault. The southern boundary is not well 
constrained but is tentatively delineated along the splay of the fault mapped through Upper Shake Campground.

DESCRIPTION OF MAP UNITS

SURFICIAL UNITS

af Artificial Fill (Holocene)—Consists of man-made deposits of earth-fill soils derived from local sources. Mapped 
primarily along road alignments and at larger man-made berms.

Ql Lake deposits (Holocene)—Mostly unconsolidated fine-grained sand, silt, and clay associated with Tweedy Lake 
and Hidden Lake; lakes filled episodically. Deposits at Tweedy Lake contain salts or other evaporites as well as 
interfingered alluvium deposited while lake levels are low. 

Qw Wash deposits (late Holocene)—Unconsolidated sand, gravel and cobbles deposited in recently active stream 
channels. Sediments are generally derived from local bedrock or reworked from nearby older Quaternary deposits. 
Sediments subject to remobilization and deposition during storm events. 

Qf Modern alluvial fan deposits (late Holocene)—Unconsolidated to weakly consolidated, poorly sorted, sand, and silt, 
gravel and cobble deposits with uncommon boulders, forming active, essentially undissected, alluvial fans. Includes 
small to large cones at the mouths of stream canyons and broad aprons of coarse debris adjacent to mountain fronts. 
Gravel clasts are derived from local up-slope sources and typically unweathered with little to no oxidation. Sediments 
subject to remobilization and deposition during storm events.

Qa Modern alluvium (late Holocene)—Unconsolidated to weakly consolidated, mostly undissected, sand, silt, gravel 
and cobbles and uncommon boulders deposited dominantly by fluvial processes. Deposited parallel to localized stream 
valleys and/or underlying larger river valleys; subject to remobilization and deposition during storm events. 

Qpa Ponded alluvium (Holocene)—Unconsolidated to weakly consolidated, moderately sorted and bedded sand and 
silt with minor gravel ponded upstream of drainages offset by adjacent faults, constricted by landslide movement, or 
accumulated in closed depressions. 

Qls Landslide deposits (Holocene)—Unconsolidated to moderately well-consolidated jumbled sediment or rock debris 
consisting of surficial failures, debris flows, rock avalanches, and large-scale rockslides. Recognizable by topographic 
expression, such as hummocky terrain, closed depressions, or scarps, chaotic internal structure, pervasive fracturing, 
and/or out-of-sequence rock packages. 

Qya Younger alluvium (middle Holocene to late Pleistocene)—Unconsolidated to slightly consolidated, yellowish-brown 
to dark-yellowish-brown (10YR 5/4 to 10YR 4/4 moist), interlayered, thin- to thick-bedded sand, gravel silty sand, 
and local cobble-rich layers; clasts typically reflect upstream bedrock sources and deposits. Deposits are slightly to 
moderately dissected by modern streams but could be modified by runoff from large storm events. 

Qyf Younger alluvial fan deposits (middle Holocene to late Pleistocene)—Unconsolidated to weakly consolidated, 
undissected to slightly dissected, pale-brown to light-brownish-gray to dark-yellowish-brown (10YR 6/3-2 to 10YR 
4/4 moist), silty and coarse- to very coarse-grained sand with pebbles, cobbles and uncommon boulders; poorly to 
moderately stratified. 

Qoa Older alluvium (late Pleistocene)—Dark-grayish-brown to yellowish-brown (10YR 4/2 to 10YR 5/4 moist) silty 
pebbly sand with coarse subrounded to subangular gravel and local cobbles; clasts composed of locally derived 
crystalline basement rock; slightly friable to well consolidated, moderately to poorly sorted; weakly stratified to locally 
well stratified. Surfaces are strongly dissected, leaving scattered isolated deposits. Qoa dominantly occurs in three 
areas: Along the San Andreas Fault (SAF); west of Upper Shake campground along the south side of a significant splay 
of the SAF; and in the southeastern part of the quad along Elizabeth Lake Canyon. Mapped alluvium likely reflects 
more than one period of deposition. Well consolidated silty Qoa cut by SAF splay west of Upper Shake Campground 
dated at 68.70 +/-3.89 ka (IRSL analysis in 2022 by Shannon Mahan at USGS Luminescence Lab).

Qof Older fan deposits (late Pleistocene)—Light-yellowish-brown (10YR 6/4 dry; 10YR5/4 moist) fine- to coarse-
grained sand with silt and pebbly sand with scattered clasts of gravel and cobbles; clasts subrounded to subangular 
and composed of crystalline basement rock; slightly to moderately consolidated, poorly sorted and poorly stratified. 
Surfaces are slightly to strongly dissected. 

Qols Older landslide deposits (late Pleistocene)—Weakly consolidated to well-consolidated jumbled sediment or rock 
debris consisting of ancient rock avalanches and large-scale rockslides. Distinctive geomorphic expression subdued due 
to post-failure erosion, but recognizable based on altered topographic expression, chaotic internal structure, pervasive 
fracturing, and/or out-of-sequence rock packages. 

Qoln Older alluvium (late to middle Pleistocene)—Dark-grayish-brown to brown (10YR 4/2 to 10YR 4/3 moist), 
unconsolidated, poorly sorted, cobbles to boulders with scattered pebbles; angular to subrounded clasts derived from 
both the Liebre Quartz Monzonite complex and diorite gneiss complex. (modified from Barrows and others, 1985) 

Qvoa Very old alluvium (early Pleistocene)—Yellowish-brown to brownish-yellow (10YR 5/6 to 10YR 6/6 moist), silt, 
fine- to coarse-grained sand, and gravel derived from crystalline bedrock; moderately to well-consolidated, highly 
dissected. Isolated unit located at the west end of Kings Canyon, at the junction with Spring Canyon.    

Qvof Very old fan deposit (early Pleistocene)—Moderately consolidated, reddish-brown, medium dense, fine- to medium-
grained arkosic sand with fine to medium gravel. Gravels predominately fine- to medium, sub-rounded granitic clasts. 
Clay coatings on grains and clasts predominant. (Hernandez, 2011)         

TERTIARY SEDIMENTARY AND VOLCANIC DEPOSITS 

Thv? Hungry Valley Formation(?), undivided (Pliocene)—Tan to light-brown to light-grayish-brown sandstone, light-
yellowish-brown silty sandstone, and darker yellowish-brown conglomerate. Bedding is poorly to faintly developed 
with somewhat disrupted appearance. Local dark-grayish-brown irregular discontinuous clay lenses. Poorly to 
moderately cemented, poorly to moderately sorted, non-marine, fine- to coarse-grained arkosic sandstone and pebble to 
cobble conglomerate. Large clasts include subrounded to very well-rounded pebbles and cobbles of weathered granitic 
rocks. Rare subangular to angular granitic-rock clasts occur locally (Barrows and others, 1985). Small outcrops are 
exposed north of the SAF along the northern side of Pine Canyon Road, between the Tweedy Lake community access 
road and Bushnell Summit.  Mapped as undivided Hungry Valley Formation, “Th,” by Barrows and others (1985) and 
tentatively interpreted as a fault sliver intermediate in location relative to the type Hungry Valley Formation deposits 
west of the quadrangle in Ridge Basin (southwest of the SAF), and the inferred source area (on the northeast side of the 
SAF) displaced to the east of the quadrangle by long-term, right-lateral fault slip. 

Tu Undifferentiated Sedimentary Unit (Miocene? to Pliocene)—Undifferentiated interbedded light- to medium-gray 
silty medium-grained sandstone, pebbly sandstone and pebble conglomerate with local cobbles and small boulders 
exposed south of the San Andreas Fault along Pine Canyon Road near Bushnell Summit. Moderately hard, poorly 
sorted, and poorly to moderately well bedded. Beds are deformed into a southeast-plunging, asymmetrical synclinal 
fold. Clasts are subangular to subrounded and composed dominantly of gneiss, schist and granitoids. Unit could be 
related to the Hungry Valley Formation in Ridge Basin to the west, which would suggest possible large-scale right-
lateral separation on one or more splay faults mapped to the south.

 Neenach Volcanics Formation (Late Oligocene to early Miocene)—Series of calc-alkaline andesitic, dacitic, and 
rhyolitic flows interbedded with pyroclastic and volcaniclastic sediments, which were deposited unconformably on the 
Cretaceous quartz monzonite (Kqm). Subdivided by Matthews (1973b) into six distinct members. The volcanic flows 
vary in age from about 18 to 24 Ma (Turner, 1970; Weigand and Swisher, 1991; Sims, 1993). Previously interpreted 
as correlative with the Pinnacles Volcanic Formation to the northwest based on striking chemical, petrographic, and 
stratigraphic similarities, and used as the basis to interpret approximate 315 km of long-term, right-lateral slip on the 
San Andreas Fault (Matthews, 1973a; 1973b; 1976).

Tnpl Pumice lapilli tuff member—White to grayish-beige, and yellowish-green to grayish-green where altered, 
pumice lapilli tuff and tuff. Pumice fragments are up to 3 cm in maximum dimension, averaging 2 to 3 mm in 
diameter, and decreasing in diameter down-section. Angular fragments of flow-banded rhyolite from 1 to 3 mm in 
diameter are rare to abundant (Matthews, 1973b). Vaguely bedded with most beds less than 2 meters thick. Crystal 
fragments from granitic rocks are abundant in the lower portion (modified from Olson and Swanson, 2019). 
Locally vesicular, with vesicles up to 1 mm in diameter. Texture varies from massive to chaotic, with brecciated 
lensoidal lapilli locally altered. Brecciated zones consist of green welded tuff clasts in a pink to purple matrix 
with local micro-brecciated lapilli. Unaltered zones of Tnpl are buff colored with yellowish residue on weathered 
minerals that give a speckled look in outcrop. Small anhedral garnets up to 1 mm or less in size are disseminated in 
unaltered zones and are clustered adjacent to local quartz veins. 

Tnrp Rhyolite member, perlite unit—Varying colors of black- to brown-black, grayish-white to dusky greenish-gray, 
and tan to brown (where weathered) flow-banded perlite with alternating bands of clear and cloudy glass from 
1 mm to 1.5 cm thick. Perlite is non-porphyritic with vitreous to waxy to resinous luster and inclusions of red, 
devitrified rhyolite (Matthews, 1976). Outcrops are jagged and visible in aerial imagery. Weathering occurs along 
foliation, jointing, and along quartz veins. Fractures conchoidally with sharp thin edges. Gradational lower contact 
with map unit Tnrf. Unit is cut by many white to smoky quartz veins that display a range of translucent, semi-
transparent to opaque properties. Characteristic outcrops for this map unit are exposed near the southwest corner of 
the quadrangle, off Pine Canyon Road.   

Tnrf Rhyolite member, flow-banded unit—White- to pale yellowish-orange (weathered) and pale-red, yellowish-gray, 
and grayish-purple (fresh) aphanitic flow-banded rhyolite; banding is continuous over a distance of several meters 
and defined by color variations, planar to locally undulatory or warped banding ranging from <1 mm to >1 cm 
in thickness. Outcrops can appear massive at a distance where bands are thin and pale. Bands of subrounded- to 
subangular-microbrecciated aphanitic rhyolite with fine-grained reddish-purple matrix are common. Soils on Tnrf 
slopes have abundant granule to pebble sized angular clasts and “popcorn” soil texture is common where outcrops 
are intensely weathered. Local alteration observed in outcrops along Sacombre Road. 

Tnrv Rhyolite member, vitric lapilli-tuff unit—Black to gray to bluish-gray pumiceous tuff containing completely 
devitrified round-bubble pumice fragments floating in a matrix of fine ash. Clasts of glassy and devitrified rhyolite 
and perlitic fractures characterized as glassy zones (Matthews, 1976). Abundant chaotic quartz veins 1 mm to 6 cm 
thick cut unit. Local scoria texture with vesicles up to 1 cm in diameter. One unnamed mine adit is located within 
this unit northeast of Pine Canyon Road, but the ore rock may have been in the underlying granodiorite.

KTu Sedimentary rock of upper Fish Canyon—Sedimentary rock is preserved in several isolated exposures within a 
northwest-trending fault block in upper Fish Canyon, north of Lions Camp. Dibblee (2002) mapped a short section 
of this rock across Burnt Peak Canyon as sandstone and conglomerate of the San Francsiquito Formation divided by 
a fault but lying in depositional contact with basement rocks to the northeast and southwest. Szatai (1961) mapped a 
narrow but much longer sliver of sedimentary rock extending from the northwest side of Burnt Peak Canyon almost 
to Fish Canyon but assigned this section to the Ridge Route Formation. The subject rocks are remote from any road 
access, but review of imagery, particularly of April 2017 Google Earth imagery, suggests that the sedimentary rock 
occurs as several exposures isolated by complex faulting and folding. Owing to uncertainty in correlation with named 
formations, the unit is mapped as undifferentiated Cretaceous/Tertiary sedimentary rock of upper Fish Canyon.

TERTIARY SEDIMENTARY AND VOLCANIC DEPOSITS (CONTINUED)

 San Francisquito Formation (Late Cretaceous to early Paleocene)—The San Francisquito Formation consists of 
almost 4,000 m of sediments deposited primarily in a deep-sea submarine fan system. Initially described and named by 
Dibblee (1967), this formation was studied in more detail by Kooser (1980, 1982), including the exposures surrounding 
lower Fish Canyon in the southwest corner of the Burnt Peak quad. In the Late Cretaceous, the western Cordilleran 
margin was the site of a several 1,000-km-long subduction zone where the Farallon plate was subducted beneath the 
western edge of the North American plate. The San Francisquito Formation was deposited in a local basin formed 
by rapid subsidence of the igneous and metamorphic basement as the forearc basin expanded and developed. Marine 
transgression into this basin began in the late Maastrichtian Stage with the oldest sediments found just to the southeast 
on Warm Springs Mountain (Kooser, 1982). Sedimentation in the central Transverse Ranges continued relatively 
uninterrupted from the Late Cretaceous into the Paleocene. The oldest sediments were deposited in shallow water 
(KTsfcs); as subsidence continued, sediments accumulated at the base of the continental slope (Tsfm) and in an adjacent 
submarine fan valley (Tsfc). Basal conglomerate clasts (KTsfcs) are dominantly composed of local granite and gneiss 
and poorly rounded suggesting a local crystalline basement source terrain, whereas overlying deep water conglomerates 
are well rounded and polished and contain abundant volcanic clasts, suggesting a more distal source with active silicic 
volcanism (Kooser, 1982; Olson and Valencia, 2021).

Tsfc San Francisquito Formation, conglomerate—Dark-gray to brown cobbly to bouldery conglomerate with 
scattered thick-bedded sandstone and rare mudstone, well-cemented. Conglomerates are commonly disorganized, 
clast-supported, beds up to 5 m thick. Clasts are typically polished, subrounded to well-rounded; clast types 
include: quartz diorite, quartz monzonite, biotite-chlorite gneiss, quartzite, trachyandesite, porphyritic dacite and 
rhyodacite, devitrified crystal and lithic tuff, and sandstone intraclasts (Kooser, 1980; 1982). Sandstone beds are 
commonly medium-grained, lithic to arkosic, massive to parallel-laminated, and range in thickness from 10 to 50 
cm. Equivalent to unit “KTsb” of Kooser (1980; 1982), which she infers was deposited in a deep-sea canyon near 
the apex of a submarine fan (Olson and Valencia, 2021). Kooser (1982) indicates the Tsfc is time transgressive 
from Late Cretaceous to early Paleocene time, and in the Fish Creek area was not deposited until the early 
Paleocene; Tsfc interfingers with the mudstone member (Tsfm), such that the Tsfc overlies the Tsfm in the Burnt 
Peak Quadrangle.

Tsfm San Francisquito Formation, mudstone—Very dark-gray to dark-olive-brown silty mudstone, massive to 
thinly laminated, fissile, finely disseminated carbonaceous debris, fossiliferous pebbly mudstone intervals and 
thin sandstone interbeds are common (Kooser, 1982). Fossils include Macrocallista furlong, Tornatellaea pinguis, 
and Turritella pachecoensis suggesting an early Paleocene age (Kooser, 1980). Interfingers laterally with Tsfc 
conglomerate, such that it underlies Tsfc in the Burnt Peak Quadrangle. Isolated rounded boulders of gneiss, 
granitoids, and volcanics up to 3 m in diameter occur within the mudstone associated with convoluted laminae and 
large slump folds. Equivalent to unit “KTsc” of Kooser (1980; 1982), which she infers was deposited at the base of 
the continental slope (Olson and Valencia, 2021)

KTsfcs San Francisquito Formation, conglomerate and sandstone—A mixture of numerous shallow-water marine and 
perhaps some nonmarine facies. At maximum the unit is less than 100 m thick and in places pinches out entirely. 
Lithofacies include breccia, interstratified conglomerate and arenite, coal stringers, sandy-grainstone, biotite-
wacke, and sandy-packstone to limy-arkosic wacke. Breccia facies is a laterally discontinuous accumulation of 
unsorted, angular cobbles, boulders, and coarse arkosic sand. The interstratified conglomerate and arenite facies 
consists of lenses of sandy, gritty conglomerate and poorly to moderately sorted, conglomeratic arenite. Clasts 
are composed of poorly rounded to angular granitic and gneissic cobbles and boulders. Marine shell material 
is common above the basal few meters. Shelly fauna consists largely of fragments of robust bivalves but also 
includes large turrid gastropods. Unconformably overlies the gneissic and plutonic basement in the southwest 
corner of the Burnt Peak quadrangle. Equivalent to “KTsa” unit of Kooser (1980; 1982) and considered to possibly 
include deposition in the Burnt Peak area during Late Cretaceous time.

MESOZOIC INTRUSIVE ROCKS 

 Granite, Granodiorite, Quartz Diorite and Quartz Monzonite (Cretaceous)—Mesozoic intrusive rocks in the Burnt 
Peak Quadrangle are separated into two groups by the San Andreas Fault (SAF). Granodiorite, quartz monzonite and 
granite mapped north of the fault are thought to be related to the Sierra Nevada Batholith and are generally older than 
the intrusive rocks south of the SAF (Nourse and others, 2020). Intrusive rocks south of the fault consist dominantly 
of granodiorite, quartz diorite and granite, which are part of the Liebre Block of pre-SAF rocks as defined by Powell 
(1993) in the central Transverse Ranges.

Kgr Granite (Late Cretaceous)—Dominantly very-light-gray to white, fine- to medium-grained, equigranular, massive to 
weakly foliated granite exposed south of the SAF; locally ranges to medium- to coarse-grained and inequigranular in 
northeastern exposures along Maxwell Road; contains minor (<5%) fine-grained biotite. Mapped localities vary from 
small fine-grained pods and bodies complexly intruded into gneissic rock to the south, and larger bodies closer to the 
SAF to the north. Exposures occur in sparse small natural outcrops, road cuts, channel banks and deeply incised canyon 
slopes. New U-Pb dating of the granite at two localities (see map) produced Late Cretaceous ages of 76.3 +/-1.0 [1.5] 
Ma (MSWD = 6.0) and 73.1 +/-0.5 [1.5] Ma (MSWD = 4.8) (age +/-internal 2SE uncertainty; [total 2% uncertainty]). 
Analyses were conducted on zircons using laser ablation ICPMS analyses at the CSUN Laser Lab (2022).  

Kqd Quartz diorite (Late Cretaceous)—Speckled, white and dark-gray to black, fine- to medium-grained, subequigranular 
biotite- and hornblende-bearing quartz diorite; biotite and hornblende commonly occur as small clots that are locally 
aligned to form a weak to moderate foliation; plagioclase is dominantly andesine in composition. Unit occurs south 
of the SAF primarily along Lake Hughes Road and along the southern portion of the quadrangle, where it complexly 
intrudes Xgn-p gneiss forming interlayered contacts and common xenoliths of gneiss and older intrusive rock; foliation 
in the quartz diorite is generally parallel to foliation in the Xgn-p gneiss and may be related to intrusion and melting 
along the older foliation; Szatai (1961) suggested that the quartz diorite formed by in place granitization of the gneiss. 
Unit is typically weathered and moderately coherent where exposed; commonly forms sandy grus at the surface. This 
quartz diorite was informally named the Warm Spring diorite by Szatai (1961) and correlated by Dibblee (2002) with 
the Wilson diorite of Miller (1934) in the southwestern San Gabriel Mountains; unpublished U-Pb dating of tonalitic 
rock of the Wilson diorite (LA-SF-ICPMS on zircons) indicates ages of 67 Ma and 73 Ma (Josh Schwartz, CSUN Laser 
Lab, pers. commun., 2022). New U-Pb dating of a sample collected along Lake Hughes Road (see map) produced an 
age of 76.6 +/-0.4 [1.5] Ma (MSWD = 2.9) (age +/-internal 2SE uncertainty [total 2% uncertainty]). Analyses were 
conducted on zircons using laser ablation ICPMS analyses at the CSUN Laser Lab (2022). 

Kgd-qd Granodiorite and Quartz Diorite (Late Cretaceous)— Speckled light-gray to black, medium-grained, 
subequigranular hornblende biotite granodiorite, quartz diorite, and local tonalite exposed south of the SAF on the east 
side of Liebre Mountain (Ross, 1972); massive to weakly foliated as defined by small aligned clusters of medium-
grained hornblende and biotite; may be a genetically related to the  Liebre Granodiorite  originally defined by Crowell 
(1952) in the Lebec quadrangle; quartz diorite facies could also be related to the quartz diorite mapped along Lake 
Hughes Road. Preliminary U-Pb dating of granodiorite on the Liebre Mountain Quadrangle to the west have produced 
ages between 80 and 84 Ma. Analyses were conducted on zircons using laser ablation ICPMS analyses at the CSUN 
Laser Lab (2022). 

Kqm Quartz monzonite (Late Cretaceous)—Black and light-gray to white speckled, medium-grained to locally coarse-
grained, massive to very weakly foliated quartz monzonite. Weathers to grus, forming rounded hills with rare natural 
exposures. Unit mapped extensively along the north side of the SAF eastward from the La Liebre Ranch Quadrangle 
and west of Pine Canyon Road. New U-Pb dating of quartz monzonite on the La Liebre Ranch Quadrangle to the 
northwest produced a preliminary early Late Cretaceous age of about 92 Ma. Analyses were conducted on zircons using 
laser ablation ICPMS analyses at the CSUN Laser Lab (2019). 

Kgd1 Granodiorite and Granite (Late Cretaceous)—Dominantly composed of medium- to coarse-grained, biotite 
granodiorite and granite exposed north of the SAF; previously mapped as quartz monzonite by Dibblee (1967; 2002). 
Granodiorite composition grades to granite as orthoclase content increases from eastern edge of the quadrangle 
(from Lake Hughes area) towards Pine Canyon Road to the west. Increase in orthoclase content is gradual, and pink 
color varies in saturation and transparency across the unit. Crystals of orthoclase and plagioclase range up to 1 cm in 
maximum dimension. Biotite crystals are disseminated to concentrated as medium to coarse crystal books; commonly 
aligned along weakly to moderate primary foliation. Isolated zones with mafic inclusions ranging from 4 to 10 cm. 
Inclusions are oriented suparallel to parallel with the mineral foliation; cut by few leucocratic aplite and pegmatite 
dikes. Local large intensely weathered mafic diorite enclaves cut by pegmatite dikes and quartz veins are exposed 
along the Los Angeles County Aqueduct in the southeast portion of the quadrangle. Several small mines and prospects 
have pursued gold from the granodiorite within the Burnt Peak Quadrangle. In the Neenach School Quadrangle to the 
north, gold mines and prospects have been associated with metasedimentary xenoliths within the granodiorite (Valencia 
and others, 2022). A zone of heavily sheared and pulverized rock up to about 40 m wide is exposed in road cuts for 
Pine Canyon Road along the north side of the SAF, across from Shake Canyon and east of Bushnell Summit.  New 
U-Pb dating of the granodiorite produced an early Late Cretaceous age of 94.7 +/-0.5 [1.9] Ma (age +/-internal 2SE 
uncertainty; [total 2% uncertainty]); MSWD = 5.1. Analyses were conducted on zircons using laser ablation ICPMS 
analyses at the CSUN Laser Lab (2022).  

Kgd2 Granodiorite (Cretaceous?)—Light- to medium-gray, foliated granodiorite speckled with black hornblende and 
biotite grains exposed northwest of Lake Hughes Canyon near Prospect Canyon. Medium-grained to porphyritic with 
locally common pink K-feldspar phenocrysts up to 2.5 cm in maximum dimension; weak to moderately strong foliation 
defined by aligned biotite grains and preferred orientation of phenocrysts. Appears to be intruded by quartz diorite 
(Kqd); age uncertain but tentatively assumed to be Cretaceous.

hd Horbnlende diorite and gabbro (Mesozoic?)—Medium-gray, fine- to medium-grained hornblende diorite and local 
medium- to coarse-grained dark-gray to dark greenish-gray gabbro with white plagioclase phenocrysts. Generally 
weathered and poorly exposed except in road cuts; forms local small pods and lenses. Age uncertain but may represent 
more than one phase of intrusion.
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AUTHORSHIP DOCUMENTATION AND PRODUCT LIMITATIONS 

PUBLICATION TITLE: Preliminary Geologic Map of the Burnt Peak 7.5’ Quadrangle, 
Los Angeles County, California 
Preliminary Geologic Map 22-06 

LIMITATIONS: This map is considered preliminary, and the California Department of 
Conservation makes no warranties as to the suitability of this product for any given purpose. 
This map should not be considered as an authoritative or comprehensive source for landslide 
and seismic hazard data. For landslide data, please visit the California Geological Survey 
Landslides web page at: https://www.conservation.ca.gov/cgs/landslides.  For seismic hazards 
data and Zones of Required Investigation, please visit the California Geological Survey Seismic 
Hazards Program web page at: https://www.conservation.ca.gov/cgs/sh/program.  
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