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ABSTRACT

Summarized in this paper are the results of two recent investigations utilizing recorded
motions of buildings to develop improvements in two aspects of seismic code provisions for buildings:
(1) fundamental vibration period formulas, and (2) accidental torsion.

INTRODUCTION

The recorded motions of buildings during earthquakes are the basic data against which
methods of earthquake-resistant design and techniques for calculating earthquake response must be
judged. Perhaps the most common research use of these data has been in refining and improving
structural modelling and response analysis techniques to match the calculated responses with
measured data. Our interest has been quite different in recent years. We have utilized measured
responses to investigate issues in building design that are not amenable to traditional analytical
approaches. In particular, we have investigated two aspects of seismic code provisions for buildings:
(1) fundamental vibration period formulas, and (2) accidental torsion.

The code formulas for estimating building period must be related to the actual periods of
buildings, not to calculated values. The actual periods of interest are those "measured” from recorded
motions of buildings shaken strongly during earthquakes. We have developed a comprehensive
database of "measured" periods of buildings and proposed new formulas suitable for code application
to estimate building period.

The subject of accidental torsion is not amenable to investigations by traditional analytical
approaches because standard dynamic analyses do not predict torsion in symmetric-plan buildings.
Analysis of recorded motions of nominally-symmetric-plan buildings provides the most direct means
of developing an understanding of the torsional response of such buildings and for evaluating building
code provisions for accidental torsion. We have utilized recorded motions of seven nominally-
symmetric-plan buildings to evaluate a recent procedure for considering accidental torsion in building
design.
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Comprehensive reports on these investigations have been published (Goel and Chopra, 1997a;
De la Llera and Chopra, 1997). Summaries of relevant portions of these reports are presented in
this paper.

PART I. FUNDAMENTAL VIBRATION PERIOD FORMULAS

Code Formulas

The fundamental vibration period of a building appears in the equations specified in building
codes to calculate the design base shear and lateral forces. Because this building property can not be
computed for a structure that is yet to be designed, building codes provide empirical formulas that
depend on the building material (steel, RC, etc.), building type (frame, shear wall etc.), and overall
dimensions. These formulas should be consistent with periods of buildings "measured" from their
motions recorded during earthquakes.

The measured data that are most useful but hard to come by are from structures shaken
strongly but not deformed into the inelastic range. Such data are slow to accumulate because
relatively few structures are installed with permanent accelerographs and earthquakes causing strong
motions of these instrumented buildings are infrequent. Thus, it is very important to investigate
comprehensively the recorded motions when they do become available, as during the 1994 Northridge
earthquake. Unfortunately, this obviously important goal is not always accomplished, as indicated by
the fact that the vibration properties of only a few of the buildings whose motions were recorded
during post-1971 earthquakes have been determined.

Period Database

Supported by an NSF project, we have "measured” the natural vibration periods of twenty-one
buildings by system identification methods applied to building motions recorded during the 1994
Northridge earthquake (Goel and Chopra, 1997a). These data have been combined with similar data
from the motions of buildings recorded during the 1971 San Fernando, 1984 Morgan Hill, 1986 Mt.
Lewis and Palm Spring, 1987 Whittier, 1989 Loma Prieta, 1990 Upland, and 1991 Sierra Madre
earthquakes reported by several investigators (an exhaustive list of references is available in Goel and
Chopra, 1997a). The resulting database, which contains data for a total of 106 buildings, is described
in Goel and Chopra (1997a). It includes thirty-seven data points for twenty-seven RC moment-
resisting frame (MRF) buildings, fifty-three data points for forty-two steel MRF buildings, and twenty-
seven data points for sixteen concrete shear wall (SW) buildings. The number of data points exceeds
the number of buildings because the period of some buildings was determined from their motions
recorded during more than one earthquake, or was reported by more than one investigator for the
same earthquake.

Theoretical Formulas
With the use of Rayleigh’s method, the following relationships for fundamental period of

multistory moment-resisting frames with equal floor masses and story heights have been determined
(Goel and Chopra, 1997a: Appendix E):
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T = Cl\/H or CZH 1)

The exponent of H and the numerical values of C; and C, depends on the stiffness properties,
including their heightwise variation.

Another formula for the fundamental period has been derived by Rayleigh’s method under
the following assumptions: (1) lateral forces are distributed linearly (triangular variation of forces)

over the building height; (2) base shear is proportional to 1/T7; (3) weight of the building is
distributed uniformly over its height; and (4) deflected shape of the building, under application of the
lateral forces, is linear over its height, which implies that the inter-story drift is the same for all
stories. The result of this derivation (Goel and Chopra 1997a, Appendix D) is:

T = C;HY™ ()

If the base shear is proportional to 1/T%?, as in U.S. codes of the recent past, y = 2/3 and Egq. )
gives

T =C,H A3)
which is in the ATC3-06 report (1978) and appears in current U.S. codes.

The formulas presented in Egs. (1) to (3) are of the form:

T = aH? @)
in which constants « and 8 depend on building properties, with 8 bounded between one-half and one.
This form is adopted for moment-resisting frame buildings in the present investigation and constants
« and B are determined by regression analysis of the measured period data.

To develop an appropriate theoretical formula for shear wall buildings we use Dunkerley’s
method. Based on this method the fundamental period of a cantilever, considering flexural and shear

deformations, is:
T = |Ti+T; )

in which T, and T are the fundamental periods of pure-flexural and pure-shear cantilevers,

respectively. For uniform cantilevers T, and T are given by:

2t m 2
T =___‘_H 6
F 3516 EI ©)
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In Eqgs. (6) and (7), m is the mass per unit height, E is the modulus of elasticity, G is the shear

modulus, I is the section moment of inertia, 4 is the section area, and x is the shape factor to
account for nonuniform distribution of shear stresses (= 5/6 for rectangular sections). Combining

Egs. (5) to (7) and recognizing that G = E + 2(1 + u), where the Poison’s ratio p = 0.2 for concrete,

leads to:
T-4 I m 1y ®)
KG ,Ae

A-__ 4 9)

o]

where D is the plan dimension of the cantilever in the direction under consideration. Comparing
Egs. (8) and (9) with Eq. (7) reveals that the fundamental period of a cantilever considering flexural
and shear deformations may be computed by replacing the area 4 in Eq. (7) with the equivalent shear

area A, given by Eq. (9).

with

We next considered a class of a class of symmetric-plan buildings—symmetric in the lateral
direction considered—with lateral-force resisting system comprised of a number of uncoupled (i.e.,
without coupling beams) shear walls connected through rigid floor diaphragms. Assuming that the

stiffness properties of each wall are uniform over its height, the equivalent shear area, 4,, is given
by a generalized version of Eq. (9) (details are available in Goel and Chopra 1997a, Appendix G):

X (H i 4;
4, =Y [ﬁ] S S (10)

o [H]2
1+083|
D i

where A4,, H;, and D, are the area, height, and dimension in the direction under consideration of the

ith shear wall, and NW is the number of shear walls. With A, so defined, Eq. (8) is valid for a system
of shear walls of different height.

Equation (8) was then expressed in a form convenient for buildings:
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H (11)

where C = 40y/p/xG , p is the average mass density, defined as the total building mass (= mH)
divided by the total building volume (= AgH --Ay is the building plan area), i.€., p = m /Ag; and

A, is the equivalent shear area expressed as a percentage of A, ie.,
A, =100 -5 (12)

Regression Analysis Method

Regression analysis of the measured period data leads to values of ap and B for Eq. (4)
and E‘R for Eq. (11) to represent the best fit, in the least-squared sense, to the data. However, for
code applications the formula should provide lower values of the period in order not to underestimate
the base shear, and this was obtained by defining «, and E‘L as the mean (a, and E'R) minus one
standard deviation value; «; and E‘L are the 15.9 percentile values, implying that 15.9 percent of
the measured periods would fall below the curves corresponding to «;, and E‘L (subsequently
referred to as the best-fit - 1o curve). If desired, «; and E‘L corresponding to other non-
exceedance probabilitics may be selected. Additional details of the regression analysis method and

the procedure to estimate «;, and E‘L are available elsewhere (Goel and Chopra 1997,
Appendix F). Building codes also specify an upper limit on the period calculated by rational analysis.

This limit is established in this investigation by defining «;, and E‘U as the mean (o, and E‘R) plus
one standard deviation value to give the best-fit + 1o curves.

Recommended Formulas

MREF Buildings. The formula for estimating the fundamental period of MRF buildings was
obtained by calibrating the theoretical formula of Eq. (4) by regression analysis of the measured
period data for twenty-seven RC MRF buildings (thirty-seven data points) and for forty-two steel
MRF buildings (fifty-three data points); these buildings are listed in Tables 1 and 2 of Goel and
Chopra (1997b).

Figures 1 and 2 give an impression of the scatter in the measured period data relative to the
best-fit or T curve. The measured periods of a building in two orthogonal lateral directions are
shown by circles connected by a vertical line. As expected, the data fall above and below the curve,
more or less evenly, and most of the data are above the best-fit -10 or 7, curve.

The best-fit ~ 1o and best-fit + 1o curves for steel buildings are presented in Fig. 3. The
fundamental vibration period of steel MRF buildings should be estimated from
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T, = 0.028H°% (13)

The T, curve is suitable for limiting the period of a building calculated by any rational analysis.

Thus, the period from rational analysis should not be allowed to exceed 1.6 T, ; the factor 1.6 is
determined as the ratio 0.045+0.028, rounded off to one digit after the decimal point.

In the best-fit - 1o and best-fit + 1o curves for RC buildings presented in Fig. 4, observe that
the coefficient 0.016 in T, is slightly larger than the 0.015 value in Fig. 2a to recognize that the
period of an RC building lengthens at motions large enough to cause cracking of concrete;
a; = 0.016 was obtained from regression analysis of period data for buildings that experienced peak

ground acceleration to > 0.15g. Thus, the fundamental vibration period of RC MRF buildings
should be estimated from

T, = 0.016H°% (14)

and the building period calculated by any rational analysis should not be allowed to exceed 1.4T, ;
the factor 1.4 is determined as the ratio 0.023 +0.016.

RC Shear Wall Buildings

The formula for estimating the fundamental period of concrete SW buildings was obtained
by calibrating the theoretical formula of Eq. (11) by regression analysis of the measured period data
for nine concrete SW buildings (17 data points) listed in Table 2 of Goel and Chopra (1998). For

each building A . Was calculated from Eqs. (10) and (12) using dimensions from structural plans
(Goel and Chopra 1997a, Appendix H); for shear walls with dimensions varying over height, 4; and D,

were taken as the values at the base. Regression analysis gives E’R = 0.0023 and EJ’L = 0.0018.

Using these values for C in Eq. (11) give T, and T, , the best-fit and best-fit - 1o values of the
period, respectively.

These period values are plotted against H + ‘/Z . in Fig. 5, together with the measured
periods shown in circles; the measured periods of a building in the two orthogonal directions are not

joined by a vertical line because the ratio H + ‘//—1 . is different if the shear wall areas are not the

same in the two directions. As expected, the measured period data falls above and below (more or
less evenly) the best-fit curve.

The best-fit - 1o and best-fit + 1o curves are presented in Fig. 6 wherein E’L = 0.0019 is

slightly larger than the 0.0018 value in Fig. 5 for reasons mentioned earlier in the context of the RC
MREF buildings. Thus, the fundamental vibration period of RC shear wall buildings should be
estimated from
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T, =00019_L_H (15)

Ae

and the building period calculated by any rational analysis should not be allowed to exceed 1.4T s

the factor 1.4 is determined as the ratio 0.0026+0.0019 rounded off to one digit after the decimal
point.

ACCIDENTAL TORSION

Code Estimates of Accidental Torsion

Building codes require consideration of accidental torsion in one of two ways: (1) apply the
equivalent static lateral forces at eccentricity e, from the center of stiffness (CS), which includes the

accidental eccentricity e, = +Bb; and (2) perform dynamic analyses with the center of mass (CM)
of each floor shifted a distance equal to the accidental eccentricity e, = £B8b from its nominal

position, where b is the plan dimension of the building perpendicular to the direction of ground
motion. For each structural element the algebraic sign in e, that leads to the larger design force is

to be used. Implementation of these code provisions requires two three-dimensional (3-D) static or
dynamic analyses of the building for each lateral direction. The two types--static and dynamic--of
analyses predict significantly different increases in design forces resulting from accidental eccentricity;
the code-static analyses are not consistent with the analytical results (De la Llera and Chopra, 1994d).

Analytical Estimates of Accidental Torsion

Determined in earlier investigations (De la Llera and Chopra, 1994b,e) is the increase in
response due to the following sources of accidental torsion: (1) rotational motion of the building
foundation, (2) uncertainty in the stiffness of structural elements in both principal directions of
analysis, (3) uncertainty in the location of the CM, and (4) uncertainty in stiffness and mass
distributions in stories of a building other than the story analyzed.

Shown in Fig. 7 are the mean and mean-plus-one standard deviation of #,,, the normalized

edge (x = b/2) displacement, considering all sources of accidental torsion plotted against () = w,/ Q,

the ratio between the natural vibration frequencies of the uncoupled torsional and lateral motions
of the building (De la Llera and Chopra, 1995a). The normalized response in Fig. 7 and subsequent
figures refers to the ratio of responses computed on two bases: considering accidental torsion and

neglecting accidental torsion. The mean value of the increase in response, #,, -1, is usually less
than 3%. Furthermore, with the exception of systems with T, )< 0.5 sec. and Q< 1, this mean

increase in response is insensitive to (2. The mean-plus-one standard deviation value of the response
increase reaches a peak value of 45% for systems with Q = 0.85 or Q = 1.1; it decreases steadily
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for values of () larger and smaller than these two values; and it varies rapidly between its peaks at
1 « 085 and 1.1 to a minimum at Q « 1.

Design Procedure

Compared in Fig. 7 is 4,, predicted by code-dynamic analysis with e, = £0.05b and the
analytical result. The code increase in edge displacements is much larger than the mean value of the
analytical estimate, but is about one-half of the mean-plus-one standard deviation value. The code
value corresponds to an exceedance probability of about 30%.

The discrepancy in the design forces due to accidental torsion, as predicted by code-specified
static and dynamic analysis procedures, can be overcome by defining a unique design envelope for
the edge displacements:

A 0<QO=<1
A-1
{4-Z2__ (-1 1<Q=<Q (16)
By = Qc—l( ) ¢
1 0> Q.
where Q =18 and
A =1+0.0475(b/r)? 17)

where r = radius of gyration of the floor diaphragm about the center of mass.

Equation (17) is a good approximation to the maximum value of 4,, overall Q (Fig. 8a)
determined by code-specified dynamic analysis (Fig. 8b). Furthermore, Eqgs. (16) and (17) have been
intentionally calibrated to produce values that are conservative, especially for the range
0.9 = Q < 1.1. There are three reasons for this. First, the estimation of Q is obviously subject to
error; therefore, taking advantage of the sharp dip in the analytical response curve near Q=1 is
not appropriate for design. Second, this conservatism proves to be useful in preventing resisting
planes in the interior of the building plan to be underdesigned by the procedure developed. Third,

the "recorded" increase in response for a system with ) = 1 can be larger than predicted by code-
specified dynamic analysis for accidental torsion (De la Llera and Chopra, 1995).

In order to overcome the limitations of the present code procedures, the design envelope of
Egs. (16) and (17) forms the basis for a design procedure to include accidental torsion in the seismic
design of buildings. This procedure is "exact" for single-story systems and for multistory buildings
belonging to the special class defined in Hejal and Chopra, (1989); it is also a good approximation
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for other multistory systems. It has several important advantages over the current seismic code
procedures. First, it avoids the two additional 3-D static or dynamic analyses of the building in each
lateral direction. Second, it includes the effects of all sources of accidental torsion whereas codes
include only those that can be represented by a constant accidental eccentricity. Third, it gives a
unique value for the increase in a design force due to accidental torsion, whereas current codes give
very different results depending on whether the analysis is static or dynamic. Fourth, the procedure
defines explicitly the expected increase in design forces due to accidental torsion, in contrast to the
use of accidental eccentricity in codes implying an indirect increase in member forces. Fifth, the
increase in design forces specified by the new procedure has a well-established probability of
exceedance.

"Measured" Accidental Torsion

In this section a procedure is described to determine the torsion in nominally symmetric
buildings from their motions recorded during earthquakes; three channels of horizontal acceleration
are necessary at each instrumented floor of a building. First, the motions of uninstrumented floors
are inferred from the motions of instrumented floors by a cubic spline interpolation procedure
(Figure 9) without modelling or structural analysis of the building. In this procedure interpolation
is performed on floor displacements (relative to the base) instead of the common choice of floor
accelerations. Cubic spline functions satisfy conditions of continuity and differentiability of second-
order at the interpolation points (i.e., instrumented floors) and, hence, provide smooth shapes for the
heightwise distribution of displacements.

Next, floor accelerations are computed from the inferred or "measured" displacements at
uninstrumented floors. The total displacement-time function for such a floor is obtained by adding
the ground displacements to the floor displacement relative to the base determined by the cubic
spline interpolation procedure. Floor velocity-time and acceleration-time functions are computed by
time differentiation of the displacement-time function. Since differentiation emphasizes the high
frequency components, these velocity and acceleration traces are low-pass filtered. The filter
parameters are chosen so that the resulting accelerations match closely the recorded acceleration at
an instrumented floor. A ninth-order Butterworth low-pass filter was selected with the cut-off
frequency chosen to ensure a close match. Furthermore, the predicted velocity- and acceleration-time
functions are filtered in both forward and reverse directions to eliminate any phase distortion
(MATLAB, 1994).

Presented in Fig. 10 is an example of the low-pass filtering procedure and the results obtained
by the interpolation procedure applied to the motions of a seven-story R/C-frame building recorded
during the 1994 Northridge earthquake. The predicted motions of the building at the locations of
the instruments on the sixth floor are compared with the actual recorded motions; the latter are not
used in the interpolation process and hence provide a benchmark for evaluating the accuracy of the
procedure. The predicted displacement-time and acceleration-time functions are seen to be accurate.

At the end of this interpolation and filtering procedure, the displacement-, velocity-, and
acceleration-time functions are known for all floors; these will be referred to as the "recorded”
motions. The "recorded" motions at the center of mass in the x-, y-, and 6-directions are then
calculated assuming a rigid floor diaphragm.
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This procedure was implemented for the nominally-symmetric buildings listed in Table 1. The
influence of accidental torsion on response of selected buildings is shown in Fig. 11 by superimposing
the time variation of the deformation (displacement relative to the base) at the edge of the roof plan
due to building translation only (dashed line) and due to building rotation and translation
simultaneously (solid line). The difference between these two functions is due to accidental torsion
induced in these nominally-symmetric buildings. The normalized edge displacement, defined as the
peak (maximum absolute) value of the displacement including torsion divided by the corresponding
value excluding torsion is computed for each building considered. This is the "measured" value of
normalized edge displacement considering accidental torsion.

Table 1. Nominally Symmetric Buildings Considered

Buildings CSMIP PGA  Material  (b/r), (o), Q, Q,
A: Richmond 58506 0.11g Steel 3.12 1.49 1.36 1.52
B: Pomona 23511 0.13g RC 2.22 2.67 1.42 1.34
C: San Jose 57562 0.20g Steel 3.22 1.28 1.00 1.03
D: Sylmar 24514 0.67g Steel 3.06 3.04 0.75 0.82
E: Burbank 24370 0.30g Steel 245 2.45 1.72 1.72
F: Burbank 24385 0.29¢g RC 1.11 3.28 1.14 1.10
G: Warehouse 24463 0.26g RC 2.13 2.74 1.54 1.40

Evaluation of Design Procedure

The normalized edge displacement is plotted as a function of Q in Fig. 12. The "measured”

values are plotted for each building at its ) value in Table 1. For buildings D, E, F and G the
vertical bar gives the range of values for the different floors and the star denotes the mean value.
For buildings A, B and C the open circles denote the value for the roof only from an earlier
investigation (De la Llera and Chopra, 1994a). Superimposed on these data are the design curves

(Egs. 16 and 17) for b/r =1, 2, and 3.

Figure 12 shows that the increase in response due to accidental torsion of buildings withQ)
close to one varies from essentially zero for building F to about 40% for building C. The implied

sensitivity of this increase to small changes in () is consistent with theoretical predictions (mean-plus-

one standard deviation curve in Fig. 7). Itis for this reason that the dip in the theoretical curve at() = 1
has been ignored in the design envelopes (Fig. 8). Obviously, Fig. 12 must be interpreted carefully

since for each value of (), the displacement increase due to accidental torsion is a random variable,
and the data points are just a very few outcomes of this random variable.

Figure 12 also indicates that the measured accidental torsion is smaller for buildings with
larger (), i.e., torsionally-stiff buildings. The design curves are consistent with this trend and neglect
accidental torsion for buildings with () >1.8.
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CONCLUDING COMMENTS

Earthquake-resistant design must be based upon recorded motions of buildings during
earthquakes. In this paper we have utilized these records to develop improvements in two aspects
of seismic code provisions for buildings—fundamental vibration period formulas and accidental
torsion—that are not amenable to traditional analytical approaches. We hope that these proposals
would receive the attention of code-writing committees.
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Steel MRF Buildings
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Figure 1. Regression analysis of measured period data for steel MRF buildings.
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Figure 2: Regression analysis of measured period data for RC MRF buildings.
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Steel MRF Buildings
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Concrete SW Buildings
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Figure 5: Regression analysis of measured period data for shear wall buildings.
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Figure 8: Design envelopes for normalized edge displacement #,, : (a) variation of 4 as
function of b/r; and (b) design envelopes for b/r =2.5, 3, and 3.5.
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Figure 9: Heightwise interpolation of recorded floor motions of buildings.
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Figure 11: Accidental torsion effects in roof displacements of buildings D, E, F, and G.
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Figure 10: Example of heightwise interpolation of floor motions; recorded motions are
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shown by a solid curve and predicted motions by a dashed curve.
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1.6
Design Envelopes
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Figure 12: Comparison of design envelopes with “measured” increase in edge
displacements of seven buildings due to accidental torsion.
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