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Abstract 
 

This study focuses on the use of strong motion data recorded during earthquakes and 
aftershocks to provide a preliminary assessment of the structural integrity and possible damage 
in bridges. A system identification technique is used to determine dynamical characteristics and 
high-fidelity first-order linear models of four bridges from low level earthquake excitations. A 
finite element model (FEM) was developed and updated to simulate data from a damaging 
earthquake for one of the bridges. The difference between data recorded or simulated by FEM 
and data predicted by the linear model was used to detect damage. The use of this technique can 
provide an almost immediate, yet reliable, assessment of the structural health after a seismic 
event. 

Introduction 

It is of great interest after an extreme event such as an earthquake, to have reliable 
information regarding the integrity of a structure. In recent years, the use of vibration based 
damage detection techniques for structural health monitoring has gained significant attention by 
researchers. There is a considerable amount of studies on these techniques, where damage is 
usually determined by a change in the dynamical properties of the structure. Doebling et al. [1] 
presents a thorough review of these techniques.  

An alternative for damage detection is to identify damage by determining the degree of 
nonlinearity present in the structural response [2].   If a linear model has been previously 
identified for a healthy state of the structure, this model should be able to accurately predict the 
response to any other input data if the structure stays in the elastic range .The difference between 
the recorded data and the response predicted by the linear model can be used to give an estimate 
of the state of the structure.  

There has been a large amount of algorithms developed in the frequency and time domain 
to identify modal parameters and determine state space representations of linear dynamical 
systems. Many studies have successfully applied these techniques in the system identification of 
buildings and bridges [3],[4],[5]. Among those techniques, one that has shown great promise is 
the Eigensystem Realization Algorithm (ERA) proposed by Juang and Pappa [6], with Observer 
Kalman Filter Identification [7],[8].     

In this study the ERA/OKID is used to identify the modal parameters and linear models 
of four bridges. The input and output data used for the identification are obtained from previous 
ground motions and structural responses recorded by the California Strong Motion 
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Instrumentation Program (CSMIP). One of the bridges was selected for further study and a FEM 
model was developed for it.  

Due to assumptions made while developing a FEM and uncertainty in boundary 
conditions, geometrical and material properties of the structure, there can be significant 
differences between the dynamic behavior of the model and the real structure. To accurately 
represent the structure, the FEM model must be updated [9]. 

In model updating techniques an objective function is optimized to find a model that 
behaves similarly to the real structure [10], [11]. Here some structural parameters were varied to 
match the measured structural responses of the bridge, as well as the modal frequencies found 
using ERA/OKID. To select the optimum values for these parameters a Genetic Algorithm (GA) 
optimization approach [12] was used. 

After the updating process, hinges which defined the nonlinear behavior of the structure 
were inserted in the model at the tower-deck and tower-foundation connections as well as in the 
bent cap on each side of the column. Once the FEM was completed, appropriately scaled input 
time histories of the ground motion from a previously recorded data set were used to simulate the 
possible nonlinear response of the bridge to a future damaging earthquake. The simulated time 
histories of the response from the nonlinear model will represent a new set of data that can be 
compared with the data predicted by the linear model identified with ERA/OKID and provide an 
estimate of the location and amount of structural damage that occurs during a major earthquake. 

System Identification 

State space representation 

The dynamic behavior of a multi (n) degree-of-freedom (nDOF) linear structural system 
can be represented by a system of second order differential equations as: 

                                         Mqሷ ሺtሻ ൅ Cqሶ ሺtሻ ൅ Kqሺtሻ ൌ Bଶuሺtሻ                                       (1) 

where qሺtሻ is the structural displacement vector, M, C and K are respectively the n×n mass, 
damping and stiffness matrices; ݑሺݐሻ is the input vector and B2 is the input matrix. When the 
input is a seismic excitation, the external forcing term Bଶuሺtሻ can be replaced byെMq୥ሷ ሺtሻ, where 
q୥ሷ ሺtሻ is the ground acceleration.  

By defining 2n×1 state vector ݔሺݐሻ as a vector containing the displacement qሺtሻ and the 
velocity qሶ ሺtሻ , the system of second order differential equations (1) can be rewritten as a first 
order system of differential equations 

ሻݐሶሺݔ                                                  ൌ ሻݐሺݔ௖ܣ ൅  ሻ                                                  (2)ݐሺݑ௖ܤ

ሻݐሺݕ                                                  ൌ ሻݐሺݔ௖ܥ ൅  ሻ                                                  (3)ݐሺݑ௖ܦ

where the matrices Ac, Bc, Cc and Dc are the time invariant continuous time system matrices 
while ݑሺݐሻ, of dimension r × 1, and  ݕሺݐሻ , of dimension m × 1,  are the input and output vectors, 
respectively. Since the input and output generated by an earthquake excitation will be recorded at 
discrete time intervals, equations (2) and (3) must also be expressed in discrete time 
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ሺ݇ݔ   ൅ 1ሻ ൌ ሺ݇ሻݔܣ ൅  ሺ݇ሻ                                            (4)ݑܤ

ሺ݇ሻݕ ൌ ሺ݇ሻݔܥ ൅  ሺ݇ሻ                                               (5)ݑܦ

where x(k), y(k), and u(k) represent the state, output and input vectors, respectively, at time 
ൌ ݐ  being the sampling time.  The matrices A, B, C and D are the discrete time ݐ∆ with ,ݐ∆ ݇
versions of the continuous time matrices Ac, Bc, Cc and Dc. 

Eigensystem Realization Theory 

A realization is a set of matrices A, B, C and D that describe the behavior of the structure 
and satisfy equations (4) and (5). A system can have an infinite number of realizations that will 
predict the same output for a given input: a minimum realization will have the smallest state-
space dimensions among all the possible realizations and the modal parameters found will be the 
ones of the structure.  

The ERA algorithm is used to find the minimum realization. This algorithm uses the 
Hankel matrix, which can be written as: 

ሺ݇ܪ െ 1ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ ௞ܻ ௞ܻାଵ ௞ܻାଶ … ௞ܻାఉାଵ

௞ܻାଵ ௄ܻାଶ ௞ܻାଷ … ௞ܻାఉ

௞ܻାଶ ௞ܻାଷ ௞ܻାସ … ௞ܻାఉିଵ
ڭ ڭ ڭ ڰ ڭ

௞ܻାఈିଵ ௞ܻାఈ ௞ܻାఈ … ௞ܻାఈାఉିଵے
ۑ
ۑ
ۑ
ۑ
ې

                           (6) 

where  ௄ܻ are the Markov parameters, defined as: 

௢ܻ ൌ  (7)                                                                     ܦ

௞ܻ ൌ  for k=1,2,…                                               (8)       ܤ௞ିଵܣܥ

while α and β  are sufficiently large numbers that determine the size of the Hankel matrix.  

For lightly damped systems, the number of Markov parameters can be quite large so to 
make the computational effort quite cumbersome.  To circumvent this problem, the Observer 
Kalman Filter Identification algorithm transforms the state equations (4) and (5) into observer 
equations where the observer gain matrix is chosen to make the observer asymptotically stable.  
In this case, it is much easier to retrieve the observer’s Markov parameters and, through a 
recursive relation, to obtain the system’s Markov parameters.  Details of this methodology can be 
found in [4], [7] and [8]. 

Useful information about the system’s dynamics can be obtained by the Singular Value 
Decomposition (SVD) of H(0), that can be expressed as: 

Hሺ0ሻ ൌ UΣVT ൌ ሾU୬ U୬ଵି୬ሿ ቂS୬ 0
0 0ቃ ൤ V୬

V୬ଶି୬
൨ ൌ U୬S୬V୬                       (9) 

where the matrices U, of dimensions n1*n1, and V, of dimension n2*n2 , are orthonormal while  Σ 
is a rectangular matrix, of dimension n1*n2 , that contains the singular values of H(0).  
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By looking at the non-zero singular values contained in the matrix Sn, it is possible to identify the 
number of vibrational modes that significantly contribute to the dynamic response. If the signals 
contain very small noise level, the distinction between non zero singular values (corresponding 
to structural modes) and “almost zero” singular values (noise related modes) is quite evident, 
allowing a clear estimation of the order of the system. However, if the recorded data have a 
substantial amount of measurement noise, then the distinction between structural and noise 
modes is not clear and this requires additional manipulation (e.g. stabilization diagram and/or 
optimization). 

Using the definition of the Markov parameters, the Hankel matrix H(1) and the singular 
value decomposition of H(0), the state matrix A, the input matrix B and the output matrix C in 
equations (4) and (5) can be expressed as: 

A ൌ S୬
ିభ

మU୬
THሺ1ሻV୬S୬

ିభ
మ                                                (10) 

B ൌ S୬
ିభ

మ V୬E୰                                                         (11) 

ܥ ൌ ௠ܧ
்ܷ௡ܵ௡

భ
మ                                                       (12) 

where ܧ௠
் ൌ ሾܫ௠   0௠   …   0௠ሿ , E୰ ൌ ሾܫ௥   0௥   …   0௥ሿ, with Ii and 0i being an identity matrix 

and a null matrix, respectively, of order i. 

Model Updating 

Another approach to create a dynamic model of a structural system is to directly 
determine the mass, damping and stiffness matrices, as they appear in equation (1).  This can be 
accomplished by using the FEM. However, no matter how accurate the initial FEM model, there 
are always inaccuracies between the dynamic behavior of such a model and the real structure, 
inaccuracies that can be reduced through model updating. The purpose of model updating is to 
adjust the parameters of the FEM (e.g. Young’s modulus, ultimate strength, boundary conditions, 
etc.) in a way such that it behaves as close to the real structure as possible. Usually, updating 
techniques vary the structural parameters of the model so as to minimize an objective function 
that compares measured and numerical responses (e.g. measured and computed natural 
frequencies, recorded and predicted time histories of the structural response, etc.). Different 
techniques have been proposed for this purpose; in this project, a form of Genetic algorithms has 
been used. 

Generic Algorithm 

Genetic algorithms have been broadly used as a tool to find an exact or approximate 
solution for search or optimization problems. Essentially, it is a programming technique that 
mimics the biological process of natural evolution and survival of the fittest to solve an 
optimization problem [13].  

The Genetic Algorithm was first introduced by John Holland [14], who proposed that 
each potential solution to a problem can be seen as a set of genes. Usually, a gene is represented 
by binary bits and the possible solution by a binary string is called chromosome. The evolution 
process starts from a randomly-generated population of chromosomes. At each cycle, a new set 
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of chromosomes is generated by recombination and mutation of a previous generation. The 
purpose of this evolutionary algorithm is to eventually find the fittest chromosome that will lead 
to the best solution for the problem at hand. All genetic algorithms follow these basic steps: 

A set of parameters from the problem are selected to be encoded into a binary string. 
Once the parameters have been selected, an initial population of chromosomes is randomly 
generated. A fitness function is selected and evaluated for each member of the population to 
determine the quality of each solution.   

The selection of a chromosome for reproduction is based on its fitness; there are different 
schemes to select the parent chromosomes, like the roulette-wheel selection and tournament 
selection among others. In the roulette wheel, the probability to be selected is proportional to the 
fitness of each chromosome while, in the tournament selection, subgroups of chromosomes are 
selected and members of each subgroup compete against each other. The latter selection 
contributes toward the preservation of diversity on the population and it is used here. 

Once the parent chromosomes have been selected, the reproduction process is simulated 
by applying a crossover operator and a mutation operator. The crossover operator tries to 
simulate the recombination that occurs to chromosomes during reproduction. A position in the 
binary string is randomly selected and mutually exchanges parts of the string before and after 
this point to create two offsprings or child chromosomes. The mutation operator is applied in 
order to improve the fitness and avoid loss of diversity in the population. It involves a random 
alteration of the genes and it has a small probability of occurrence. 

The evolutionary process is repeated until a termination criterion is satisfied. The 
following termination criteria are commonly used: 1) a maximum number of generations is 
completed [15],[16], 2) a global minimum within an specified tolerance was found [17], or 3) a 
maximum number of consecutive generations without improvement was reached [18]. In the 
problem studied here, the applied termination criterion was the maximum number of generations. 
The steps described above are illustrated in Fig. 1. 

 
Fig. 1. Genetic Algorithm flowchart 

These techniques can also be combined with others such as elitism, which guarantees 
survival of the fittest chromosome into the next generation; and niching, which allows the 
possibility of exploring different local optima by creating and evolving smaller subgroups within 
the population. Another recent technique is the micro-GA [19], [20], which prevents loss of 
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diversity by restarting the population as soon as it degenerates below some threshold. There is 
also the sawtooth-GA technique proposed by Koumousis, and Katsaras [21], which proved to be 
most helpful for the particular problem considered here. This method uses a variable population 
size of mean value n, and amplitude D, and a periodic partial re-initialization of the population of 
a period T, in the form of a saw-tooth function as shown in Fig. 2. 

 
Fig. 2. Population variation scheme of saw-tooth GA. 

Analysis of results 

When a structure is subjected to a severe seismic event, it will deform into the inelastic 
range, exhibiting a nonlinear hysteretic behavior. Since the amount of damage experienced by 
the structure will increase as the inelastic behavior increases, damage can be determined by 
estimating the degree of nonlinearity present in the response of the bridge. 

The linear state-space model identified by ERA/OKID is able to accurately predict the 
response of the structure at different sensor locations to any ground motion that produces a 
linear-elastic behavior on the bridge. However, if nonlinear behavior occurs, the model will no 
longer be able to predict the structural response. The difference between the predicted response 
and the measured response will be used to determine whether the structure has suffered damage 
or not. This difference will be quantified by the Root Mean Square (RMS) error 

   RMSerror ൌ ට∑ ሺAୡୡౣ౛౗౩౫౨౛ౚିAୡୡ౦౨౛ౚ౟ౙ౪౛ౚሻమ౤
భ

∑ ሺAୡୡౣ౛౗౩౫౨౛ౚሻమ౤
భ

                                        (13) 

where n is the number of time steps in each acceleration time history. 

Experimental results 

In this paper four bridges instrumented by CSMIP are studied. . The bridges studied here 
are a) Rio Dell – Hwy 101/Painter Street Overpass, b) Sylmar – I5/14 Interchange Bridge, c) San 
Bernardino – I10/215 Interchange and d) El Centro – Hwy 8/Meloland Road Overpass. Initially 
the modal parameters of each bridge were identified using ERA/OKID. After this identification, 
the Meloland Road Overpass was selected for further study.  

System identification 

The Rio Dell overpass is a two span bridge with a length of 265 feet. It is a monolithic, 
cast in place, prestressed concrete, box girder bridge with end diaphragm abutments and a two 
column bent.  Both end diaphragm abutments and two-column bent are skewed at 39 degrees and 
supported on piles. It was instrumented in 1977 with 17 strong motion accelerometers along one 
side of the deck and at the base of one of the piers and 3 accelerometers at the free field. In the 
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identification process 7 accelerometers along the deck were used as output data and 6 
accelerometers at the embankments as input data (Fig. 3a). 

 The Sylmar interchange bridge is a curved concrete box girder with a length of 1582 feet 
and a deck width of 51 feet. It has 9 spans supported in single column bents and one expansion 
joint. The columns are orthogonal, supported by circular CIDH concrete piles. It was constructed 
and instrumented in 1995. Thirty nine strong motion accelerometers were installed along the 
deck, abutments and base of the columns, and 3 more at the free field site. For the modal 
parameter identification 9 channels were used as inputs and 21channels as outputs (Fig. 3b). 

The San Bernardino connector is a curved multi-span concrete box girder with a length of 
2540 ft. It has five separation joints that divide the bridge into six segments of different lengths. 
The superstructure is supported by single column concrete bents; the columns are octagonal in 
shape and have variable height. The Bridge was constructed in 1973 and it was retrofitted in 
1991. In the retrofitting, steel jackets were added to the columns, the foundation were enlarged 
and cables tying adjacent slabs at the expansion joints were replaced. In 1992 the bridge was 
instrumented with 37 strong motion accelerometers located along the deck, at the base of the 
columns and at the free field. Here 12 sensors located at the abutments and base of the columns 
were used as input data and 22 sensors along the deck of the bridge were used as output data for 
the modal parameter identification (Fig. 3c). 

 
Fig. 3. Plan views and sensor locations of bridges 
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 In the modal parameter identification of the first 3 bridges, two ground motions were 
used for each bridge and are listed in Table 1. The modal frequencies and damping identified for 
Rio Dell Overpass, Sylmar Interchange and San Bernardino Interchange are listed in Tables 2, 3 
and 4 respectively. Similar frequencies were obtained for each bridge for both sets of ground 
motions: however, larger differences appear in the identified damping ratios. This is expected 
since the identification of the damping factors is much more difficult than the identification of 
the frequency and it is strongly dependent on the order of the identification model. 

Table 2. Dynamic parameters identified for                         
Table1. Earthquakes used for system identification.     Rio Dell Overpass                                 

Bridge Earthquake 
Horizontal 

Apk(g) 
 

Mode
Trinidad EQ Rio Dell EQ 

Ground Struct.  ω (Hz) ξ (%) ω (Hz) ξ (%) 

Rio Dell Trinidad 0.147 0.330  1 3.39 2.67 3.36 2.20 
Rio Dell N/A 0.593  2 4.33 9.53 4.14 20.29

Sylmar April 11/1999 0.011 0.096  3 4.85 2.82 4.91 6.42 
Jan 14/2001 0.084 0.064  4 - - 5.09 4.21 

San 
Bernardino 

Yucaipa 0.135 0.244  5 6.08 1.94 - - 
Chino hills 0.110 0.165  6 7.30 3.17 7.19 10.12

 
Table 3.Dynamic parameters identified for                  Table 4. Dynamic parameters identified for                 
Sylmar Interchange.                                                      San Bernardino Interchange.                                                

Mode April 11 / 1999 Jan 14 / 2001  Mode Yucaipa Chino Hills 
ω (Hz) ξ (%) ω (Hz) ξ (%)  ω (Hz) ξ (%) ω (Hz) ξ (%) 

1 - - 0.75 1.94  1 0.88 1.18 0.92 3.24 
2 1.04 1.85 1.01 1.14  2 0.90 7.32 1.04 10.5 
3 1.31 0.43 1.29 1.68  3 1.03 1.49 - - 
4 1.69 1.15 1.71 0.8  4 1.23 0.39 1.33 7.17 
5 2.21 0.44 2.12 1.77  5 2.81 3.28 2.71 2.39 
6 - - 2.43 0.74  6 3.11 6.73 3.01 4.62 
7 3.19 2.83 2.98 1.49  7 4.64 3.53 4.66 0.92 
8 3.69 0.65 3.65 0.29  8 - - 4.97 2.25 
9 4.53 0.64 4.43 0.72  9 - - 5.20 4.26 
10 4.87 1.09 4.90 0.46  10 6.68 1.76 6.47 1.33 
11 6.60 0.39 6.53 0.76  11 - - 7.22 1.26 
12 8.09 0.22 7.99 0.39  12 8.93 0.58 9.17 0.83 
13 10.8 0.55 10.45 9.09       

 

The Meloland Road Overpass (MRO) is a reinforced concrete box girder bridge. It 
consists of two 104 feet spans, constructed monolithically with the abutments and a central 
circular pier of  5 feet of diameter and 21 feet of height. The pier and the abutments are 
supported on timber piles. The MRO was constructed in 1971; in 1979 the bridge was 
instrumented with 26 strong motion accelerometers along the superstructure, base of the pier, 
embankments and free field. In 1991 the instrumentation was upgraded to 32 sensors (Fig. 4). 
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Fig. 4. Elevation and plan views of MRO along with sensor locations 

For the system identification of this bridge using ERA/OKID, 14 input acceleration 
records and 8 output acceleration records were used. The sensors used for the inputs are located 
at the abutments and at the base of the pier in the three orthogonal directions, while the output 
sensors are located along the deck of the bridge in the transverse and vertical directions, as 
shown in Fig. 4. The identification was performed for five ground motions listed in Table 5; all 
of them were of small magnitude so that a linear behavior was expected.  

Table5. Earthquakes used in system identification of MRO 

Earthquake Horizontal Apk (g) Distance (Km) 
Ground Structure Epicenter 

Cerro Prieto Feb 8 2008 0.020 0.058 41.9 
Cerro Prieto Event 1 Feb 11 2008 0.012 0.035 45 
Cerro Prieto Event 2 Feb 11 2008 0.014 0.042 37 

Calexico Nov 20 2008 0.017 0.027 50.4 
Calexico Dec 27 2008 0.006 0.02 24.5 

 

The identified frequencies and damping ratios are presented in Table 6: for the first three 
ground motions, six frequencies were identified while, for the remaining two, it was possible to 
identify only five. The values of the identified frequencies and damping ratios are quite 
consistent among the five sets: of particular interest is the damping ratio relative to the second 
frequency that shows consistently high values ranging from 17.40% to 22.79%. 

Looking at the time histories of the structural acceleration, extremely good agreement 
was found between the response predicted by the identified models and the actual recorded 
response, as can be inferred from the RMS errors for all the channels and ground motions (Table 
7). Fig. 5 shows the actual and predicted responses of the bridge at channels 5 and 18 for Cerro 
Prieto Feb 8 2008.  
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Table 6. Dynamic parameters identified for MRO 

Mode 
Cerro Prieto 
Feb 8 2008 

Cerro Prieto 
Event 1 

Feb 11 2008 

Cerro Prieto 
Event 2 

Feb 11 2008 

Calexico 
Nov 20 2008 

Calexico 
Dec 27 2008 

ω (Hz) ξ (%) ω (Hz) ξ (%) ω (Hz) ξ (%) ω (Hz) ξ (%) ω (Hz) ξ (%) 
1 3.37 1.12 3.42 1.41 3.43 1.32 3.38 1.49 3.38 1.67 
2 4.45 21.4 4.31 21.27 4.47 18.70 3.98 22.79 3.97 17.40 
3 4.86 3.6 4.92 2.31 4.90 2.43 4.82 2.79 4.81 3.45 
4 7.14 7.4 7.32 5.67 7.29 6.33 7.21 5.18 7.23 6.93 
5 10.20 5.8 10.23 4.6 10.15 5.65 9.68 5.49 9.78 6.76 
6 14.69 6.15 14.69 9.04 14.79 5.59 - - - - 
 
Table 7. RMS errors of measured data and predicted data by identified models of MRO 

Sensor 
number 

RMS error 

Cerro Prieto 
Feb 8 2008 

Cerro Prieto 
Event 1 

Feb 11 2008 

Cerro Prieto 
Event 2 

Feb 11 2008 

Calexico 
Nov 20 2008 

Calexico 
Dec 27 2008 

5 0.0328 0.0505 0.0565 0.0793 0.0583 
7 0.0258 0.0378 0.0446 0.0628 0.0480 
9 0.0330 0.0515 0.0559 0.0849 0.0586 
16 0.0804 0.0990 0.0954 0.0939 0.1311 
17 0.0718 0.0734 0.0936 0.1137 0.0920 
18 0.0832 0.1081 0.1158 0.1044 0.1210 
20 0.0806 0.0991 0.0940 0.0861 0.1274 
21 0.0736 0.0809 0.1107 0.1267 0.0937 

 

 
Fig. 5.Recorded and predicted acceleration data for channels 5 and 18 during Cerro Prieto 

Feb 8 2008 earthquake. 

Each identified linear model should be able to reasonably predict the structural response 
for the other ground motions studied here, since they are of a small intensity and no large 
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damaging event occurred between these smaller events.  The model identified for the 
input/output data from Calexico Dec 27 2008 was used to predict the structural response 
obtained with the input data from Cerro Prieto Feb 8 2008. Good agreement was found between 
the predicted and simulated data; plots for channels five and eight are shown in Fig. 6. The errors 
found are within acceptable limits.  

 
Fig. 6.Recorded and predicted acceleration data for channels 5 and 18 using data from 

Cerro Prieto Feb 8 2008 earthquake and linear model predicted with Calexico dec 27 2008. 

Model updating 

An initial finite element model of MRO was developed using SAP2000. The box girder 
and abutments were modeled with 3776 shells elements and the central pier and bent cap with 24 
frame elements. The concrete was assumed to have a unit weight of 0.145 kip/ft3, a Poisson’s 
ratio of 0.2 and a compressive strength of 3250 psi. As input, the displacement time histories 
from Cerro Prieto Feb 8, 2008, obtained also from the CSMIP website, were applied at the 
abutments and bottom of central pier.  

To be able to accurately identify a reliable model of this bridge structure, the genetic 
algorithm was used to update the initial SAP2000 model. The objective was to match the 
frequencies found with ERA/OKID, as well as the measured acceleration time histories along the 
deck of the bridge with the frequencies and time histories from the FEM model. The fitness 
function was defined as the sum of the normalized errors of each identified (from ERA/OKID) 
and simulated (from SAP) frequency plus the sum of the normalized errors between the recorded 
acceleration time histories and those simulated by SAP.    

At each generation of the GA, linear FEM analyses were performed in order to evaluate 
the fitness function for the new sets of parameters (one per each chromosome). Because of the 
small magnitude of the earthquake used, a linear analysis was considered appropriate for the 
model updating, keeping the computational costs low. 

The parameters of the model selected to be updated were the elastic modulus of the 
concrete and the damping ratio parameters. The damping model used here was the Rayleigh 
damping, which assumes that the damping matrix is proportional to the mass and to the stiffness 
matrices through two coefficients. The choice of these 3 parameters to be updated was dictated 
by the fact that there are a lot of uncertainties about their magnitude and that they strongly 
influence the overall dynamic behavior. A range of possible values was selected for each 
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parameter. The elastic modulus of the concrete could vary between 460000 ksf and 560000 ksf, 
the mass coefficient between 0 and 2, and the stiffness coefficient between 0 and 0.01. 

 

 
Fig. 7.Fitness function evolution and parameter evolution using genetic algorithm 

Evolution of the fitness function and of the three parameters is presented in Fig.7. It was 
found that the optimized model will have an elastic modulus of 514,645.67 kip/ft2 and the mass 
and stiffness coefficients will be 0.9134 and 0.0022 respectively. 

 In the Seismic Design Criteria [22] Caltrans suggests the elastic modulus can be 
approximated by 

௖ܧ ൌ 57000ඥ1.3 כ ௖݂
′       (in psi)                                  (14) 

which, for an assumed ௖݂
′ ൌ 3250 psi, corresponds to a magnitude 533,520 ksf. This value is 

relatively close to the optimal value found in the updating process, e.g. a difference of only 3.5% 
between them. 

To test the accuracy of the updated FEM in reproducing the dynamic behavior of the real 
bridge, Fig. 8 compares the measured response from the Cerro Prieto Feb 8 2008 earthquake and 
the simulated one obtained by the updated FEM. Plots for channels 5 and 17 comparing 
acceleration time history, power spectral density of the acceleration and displacement time 
history are displayed. From plots, we can see that a good level of agreement was reached with 
the updating process.  
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a)  

b)   

c)  
Fig. 8.Comparison of measured response and simulated response by updated SAP model 

for channels 5 and 7. a) acceleration time history, b)Power spectral density of acceleration, 
c)displacement time history 

Table 8.Frequencies found with OKID and frequencies from FEM after calibration of the model 

Mode Mode description 
Frequencies (Hz) 

Identified with 
OKID 

Calculated with 
FEM 

1 Vertical anti-symmetric mode.  3.37 – 3.43 3.59 
2 Transverse mode. 3.98 – 4.47 4.48 
3 Vertical symmetric mode. 4.82 – 4.92 5.2 
4 First torsional mode. 7.08 – 7.32 7.28 

6 Second torsional mode of the whole length of 
the bridge.  9.68 – 10.2 10.4 

10 Third torsional mode of the whole length of the 
bridge.  14.69 – 14.79 14.2 
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Table 9. RMS errors of measured data and data simulated by the FEM 
Sensor number Acceleration RMS error Displacement RMS error 

5 0.1576 0.0725 
7 0.1416 0.0657 
9 0.1633 0.0627 
17 0.2252 0.1581 
21 0.2345 0.1432 
16 0.5218 0.3836 
18 0.5584 0.4375 
20 0.6462 0.4815 

 
Table 8 shows the frequencies identified with OKID and the ones calculated with the 

updated FEM and Table 9 presents the RMS error between the measured data and the simulated 
ones by SAP for displacement and acceleration. From Table 8, it appears that the frequencies of 
the updated FEM model are within the range of values identified by ERA/OKID, with the 
exception of the one for mode 3 (slightly higher in FEM model) and the one of mode 10 (slightly 
lower). In looking at the RMS errors, (Table 9) it can be seen that the updating process was able 
to simulate the behavior of the first five channels, but it was not able to simulate channels 16, 18 
and 20. This larger error on these few channels might be caused by the use of Rayleigh damping 
in the SAP model. If we compare Rayleigh damping with the values of damping identified by 
ERA/OKID (Fig. 9.), which is able to accurately predict those channels, we noticed that 
Rayleigh damping cannot model the damping of the structure for all the modes.  

 
Fig. 9.Comparison damping ratios found using Rayleigh damping and identified by ERA/OKID 

Since the acceleration time histories from channels 16, 18 and 20 were not simulated 
correctly, their data will not be used for the damage assessment. 

Nonlinear analysis of the bridge using the updated finite element model 

 In order to perform a nonlinear analysis, fiber hinges were defined in the model at 
locations of potential damage as the column-deck and column-foundation connections as well as 
in the bent cap on each side of the column (Fig. 10). To define the fiber hinges the section of the 
columns and bent cap had to be divided into a discrete number of fibers. To select the number of 
fibers for the section, there has to be a balance between accuracy and computational cost: in this 
study, the column section and bent cap section were divided into four hundred fibers. Cross-
sections and fiber distribution of the column and bent cap are shown in Fig. 11.   
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Fig. 10.FEM and fiber hinge locations 

 
 

 
Fig. 11.Section of column and bent cap, and distribution of fibers 

The fiber hinge defines its hysteretic behavior through the non-linear material models of 
the individual fibers [23], [24]; each fiber has a location, a tributary area and a stress-strain 
curve. For the concrete fibers, the Takeda model [25] was chosen; this model is suitable for 
concrete and other brittle materials. For the steel fibers, the multi-linear kinematic plastic model 
[26] was used; such a model is based on the kinematic hardening behavior, commonly observed 
in metals. Schematic plots of the models are shown in Fig. 12.  

 
Fig. 12. Hysteretic models. a)Multi-linear kinematic, b)Takeda. 

 Having decided on the hysteretic behavior of the elements in the FEM, the ground motion 
time histories from one of the recorded earthquakes available from CSMIP was amplified by 
different factors and used as input on the FEM model so to induce various levels of nonlinearity 
on the bridge. These sets of data could simulate ground motions from a damaging earthquake. In 
Fig. 13 Moment-Rotation diagrams of the hinges at top and bottom of the column are presented 
for three amplification factors. In case a) the data from Cerro Prieto Feb 8 earthquake has not 
been amplified, and it is clear that the bridge behaves linearly. In the other two cases shown in 
Fig. 13, the displacement time histories from Cerro Prieto have been amplified by factors of fifty 
and one hundred. This amplified displacement time histories correspond to peak ground 
acceleration of 1.0 g and 2.0 g. For an amplification of fifty, the hinge at the bottom of the 
column presents nonlinear behavior, while the hinge at the top of the column is only starting to 
go into the inelastic range.  For an amplification of one hundred, both the hinges at top and 
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bottom of the column clearly show a nonlinear behavior and will both be areas of potential 
damage. The hinges at the bent cap behave linearly for the first two cases, and start developing 
some non-linearity in the case where the data is amplified by one hundred. 

 

 
Fig. 13.Moment-Rotation diagrams of hinges at top and bottom of the column  for Cerro Prieto 

Feb 8 Earthquake. a) Without amplification, b) Amplified by 50, c) Amplified by 100. 
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Table 10. RMS errors of data predicted by ERA/OKID (linear model identified with real data) 
and data simulated by the FEM 

Channel Acceleration RMS error 
Original Amplified by 50 Amplified by 100 

5 0.1467 0.3139 0.4198 
7 0.1343 0.3514 0.4763 
9 0.1510 0.3175 0.4217 
17 0.2284 0.3944 0.4600 
21 0.2363 0.4042 0.4700 

 

The linear model previously identified with ERA/OKID from the measured accelerations 
was used to predict the structural response for the different magnitudes of the earthquake. RMS 
errors of the predicted structural response and the simulated by the FEM are presented in Table 
10. It can be seen that the errors increase as the nonlinearity in the structure or level of damage 
increases. 

To show the bases of the damage detection technique used here and assure that the 
difference in the errors are due to damage in the bridge, a new linear model was determined with 
ERA/OKID using the data simulated with the FEM model for the case of no amplification of the 
ground motion. This model was then used to predict the bridge response for the different 
magnitudes of the earthquake. In Table 11, RMS errors of the data predicted with the linear 
model obtained with ERA/OKID and the data simulated by the FEM are tabulated. The table 
shows that, for the original earthquake, the RMS error is quite similar to the one obtained by 
looking at the real recorded data, an indication that ERA/OKID performs equally well with 
simulated as well as recorded data.  In addition, it shows that the updated FEM model of the 
bridge provides an accurate representation of the linear behavior of the bridge. The same 
behavior observed using the linear model identified with ERA/OKID from the measured 
accelerations occurs here. The errors between the predicted response from the linear model 
identified with simulated data and the response from the nonlinear model increase as the 
nonlinearity in the bridge increase. 

Table 11. RMS errors of data predicted by ERA/OKID (linear model identified with data 
simulated by FEM) and data simulated by the FEM 

Channel Acceleration RMS error 
Original Amplified by 50 Amplified by 100 

5 0.0429 0.2267 0.3474 
7 0.0121 0.2755 0.4136 
9 0.0409 0.2255 0.3449 
17 0.0982 0.2808 0.3391 
21 0.1035 0.2945 0.3593 

 

Looking at the time histories of the bridge’s deck acceleration, the predicted response is 
almost identical to the actual response as long as the response remains linear as shown in Fig. 
14a, but, as soon as the input is amplified and the response changes from linear to nonlinear, the 
linear model is no longer capable of predicting the structural response as shown in Fig.14b. 
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a)  

b)  
Fig. 14.Comparison of predicted response and simulated response by updated SAP model for 

channels 5 and 7. a) Acceleration time history, b) Power spectral density of acceleration 

Conclusions 

This paper presents a vibration-based damage detection technique. The difference 
between the actual measurement of the structural response and the predicted one by a linear state 
space model is used to detect damage. The basis of this technique is that a linear model 
developed using the ERA/OKID system identification technique will correctly predict a linear 
structural response but, if inelastic behavior (e.g. induced by damage) has occurred, the predicted 
response will deviate from the actual response.   

Initially the ERA/OKID algorithm was applied using time histories of ground shaking 
and structural response of previous earthquakes. This algorithm, in addition to the high-fidelity 
linear first-order model later used to detect the presence on damage, provided dynamic 
characteristics of the structure (e.g. natural frequencies and damping ratios) that were used to 
update a FEM model of the bridge.  

Although most modal updating processes only try to match modal parameters as 
frequencies and modal assurance criteria, here a more challenging updating process was 
performed trying to match the measured acceleration time histories at sensor locations, in 
addition to matching the frequencies of the structure. The numerical results from the updated 
model showed good agreement with the measured structural response as well as with the modal 
parameters identified.  The model updating process used here shows potential for such a 
procedure to provide validated structural models of important structures.  
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 The finite element model, updated following a GA, was used to simulate structural 
response for different levels of input excitation.  Consequently, this resulted in increasing levels 
of structural damage. It was observed that the identified linear model could accurately predict the 
data if nonlinear behavior is not present, but, as the inelastic behavior grows, the error between 
the predicted and simulated data also grows.  

The procedure used here to identify damage, can be implemented to give an almost 
immediate damage assessment after a seismic event. If a high- fidelity linear state-space model 
has been previously identified, when a new ground motion occurs, the data could be processed in 
near-real time and an estimate of the state of the bridge can be given. This is a rapid tool that can 
put up a green or red flag in a matter of few minutes after an earthquake. 
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