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Abstract 
 

Gravity imposes a lower bound on the strength needed for stable response. Collapse 
spectra are plots of this strength vs. period for constant values of a parameter that characterizes 
gravity. The paper contains formulas for collapse spectral ordinates for near fault conditions and 
shows that the collapse mechanism in buildings is not statistically dependent on whether the 
excitation is near fault or far field. Safety against instability can be predicted using the provided 
expressions and results from a pushover analysis. The near fault condition is not found to be a 
critical consideration from an instability perspective.   
 
 

Introduction 
 

Dynamic instability is a phenomenon whereby the seismic response of a structure 
changes from vibration to unbounded drift in a single direction. Since the consequence of 
dynamic instability is complete collapse, characterization of this limit state is of paramount 
importance for the formulation of performance based seismic design guidelines. The salient 
feature of the instability phenomenon is the fact that it is abrupt. Indeed, as shown by Husid 
(1967), Jennings and Husid (1968), Takizawa and Jennings (1980) and Bernal (1990) for simple 
systems, and by Bernal (1992a, 1992b, 1998) using models of multistory structures, the influence 
of gravity on inelastic seismic response is generally small except for a small range of values 
where the strength of the system is near a threshold bellow which the response grows without 
bound. The situation is exemplified in fig.1 which depicts the maximum displacement at the first 
level of a model of a ten story building for increasing levels of a scaling factor that multiplies the 
ground motion amplitudes. The figure, which compares results from first order and second order 
nonlinear dynamic analyses shows that the maximum response is little affected by P-delta except 
in a restricted region near the strength for which instability occurs.  

 
The behavior exemplified in fig.1 is typical and shows that the important issue in design 

is not assessing amplifications of the displacement response due to P-delta effects but 
establishing means to quantify the safety margin against the instability limit state. Note that the 
foregoing is not in harmony with the amplification approach that for many years has been used to 
consider P-delta effects in the analysis of buildings for wind, dead and live loads. Specifically, 
the amplification perspective is misleading because it suggests that the issue is one of “adjusting” 
the estimated response and this is not so. Plainly, since inertial loads during seismic excitation 
are not independent of structural characteristics the P-delta effect needs to be considered as a 
reduction in lateral stiffness, not as an added load. As noted, the important task from a practical 
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perspective is to characterize the instability limit in a way that is useful from the point of view of 
a designer that needs to ensure that safety against instability is adequate.  

                           
 

Fig.1 Maximum response at level#1 in a 10-story model of a steel frame 
 

It is not difficult to see that experimental investigations to determine the collapse 
threshold or realistic structures subjected to earthquakes are impracticable. Virtually all the 
research in this area, therefore, is analytical. In this regard it is worth noting that formulation of 
high fidelity models for buildings that undergo large inelastic displacements is a very difficult 
task. For example, quantifying the participation of floor systems in providing lateral stiffness as a 
function of response history and amplitude is one of many items that can be listed as difficult to 
model accurately. An indication of the degree of simplification is the fact that while collapse 
takes places “downward”, all our models for buildings predict it as large “lateral displacements”.  

 
Having accepted that analytical predictions of collapse are necessarily uncertain we must 

nonetheless move forward and make the best possible estimation given the constraints. While the 
“best” analytical prediction is in principle that obtained from a 3-D model that accounts for soil-
structure interaction, non-structural element contributions, and which models the load-
deformation relation of each structural element in as much detail as the state of knowledge 
allows, this model is generally impractical. In arriving at a practical solution one seeks, of 
course, to maximize reductions in the computational burden while adding the least possible 
uncertainty to the results. A brief summary of modeling related decisions made in this study is 
presented later in the paper and details can be found in the full report that appears in (Ref.1). 

 
Assertions made in the previous paragraphs regarding instability are qualitative and 

independent of the specific characteristics of the ground motion. It has become increasingly clear 
in the past few decades, however, that records obtained in the close vicinity of the causative fault 
differ substantially from those in the far field and this has prompted concern on the adequacy of 
using design guidelines that have been validated using far field records in checking structures 
located close to known faults. The special feature of strong motion records obtained near faults is 
the fact that they often contain large velocity pulses of relatively long periods and/or large 
permanent displacements (Sommerville 1997, Rodriguez-Marek 2000). Prior to the project 
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reported on this paper research carried out on response to near fault motions had focused on 
characterizing the effect of near fault on linear and nonlinear effects, primarily on SDOF 
oscillators (MacRea,2001 and Mavroeidis,2004). The studies from these and other references 
produced consistent results and at present some modern codes (IBC-2004, FEMA356, ATC40) 
have incorporated near fault effects as modifiers of the elastic spectral ordinates (Table.1). 

 
Table 1. Near fault modification factors for the acceleration (Na) and velocity region (Nv) of the 

elastic response spectrum – as given in the IBC-2003 Code. 
 

 
 
 
 
 
 
 
 
 
 
 
 

The question of whether or not structures located in the near fault require special 
treatment when it comes to the evaluation of the safety against instability is the basic question 
addressed in this study. For buildings in sites that are not too close to the seismic source the 
safety against this failure mode can be evaluated in terms of base-shear strength, shape of the 
controlling mechanism and the peak ground motion parameters and effective duration of the 
design motion (Bernal 1993, 1998). The research reported here shows that this framework can be 
used for near fault conditions also.  

 
The paper is organized as follows. The first section following this introduction presents a 

summary of the existing methodology for characterizing instability, originally developed without 
regard for the frequency content of the records. The next section considers the development of 
statistical formulas for predicting collapse spectral ordinates for near fault conditions. Following 
the collapse spectra section the paper presents the results of a study on the instability of 
multistory structures. The results in this section are based on the examination of 3 structures 
varying from 6 to 20 stories in height. A summary and critical review of the findings concludes 
the paper.  
 
 

Dynamic Instability Fundamentals 
 

We adopt the definition that a structure subjected to a certain input is stable if small 
increases in the magnitude of the excitation result in small changes in the response. We begin by 
recalling that static stability can be ascertained by inspecting the eigenvalues [λ] of the effective 
tangent stiffness. In particular, since these eigenvalues represent generalized scalar stiffness 
values in the configuration of the associated eigenvectors [φ], static stability requires that all the 
terms in [λ] be positive. An equivalent more intuitive statement is that a structure is stable if the 
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change between any two equilibrium positions requires positive work from external forces. An 
obvious example of an unstable system is a ball on a slope. If one holds the ball in equilibrium 
by applying an external horizontal force and then allows it to move down the slope slowly to a 
new position the external work (not including gravity) is obviously negative. This example also 
shows that instability is associated with a specific direction, i.e., the ball roles down but not up. 
The parallel in a structural system is that the structure will deform “spontaneously” (with the 
help of gravity) in the direction of the eigenvector associated with the negative eigenvalue, not in 
other directions. 

 
Configurations that are statically unstable can occur during dynamic response without 

resulting in collapse so the attainment of negative eigenvalues is a necessary but not a sufficient 
condition for dynamic instability. A mathematical discussion of how inertia provides the 
transient stabilizing forces that allow the system to “survive” configurations that are statically 
unstable is presented in Bernal (1998). Here, instead of repeating the mathematical treatment we 
clarify the basic behavior using a simple physical analogy. Consider, as shown in fig.2, the 
situation wherein a disc (to keep the problem in 2D) rests on a line whose concavity fluctuates 
dynamically from upward to downward. The disk represents the structure; the condition with 
upward concavity the times when the structure is statically stable and downward concavity that 
when yielding is so extensive that the tangent stiffness is insufficient to provide static stability. It 
should be apparent at this point that incursions into the downward concavity do not necessarily 
imply that the disc is going to roll down the surface and fall off. Namely, the outcome will 
depend on how long an unstable condition persists. Although the analogy is not precise, since in 
the situation of fig.2 the disc tends to return to a unique equilibrium position and this is not true 
in the structure, this flaw does not invalidate the basic idea which is that statically unstable 
configurations are necessary but not sufficient for dynamic instability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig.2 Analogy used to describe the ability of a structure to dynamically survive configurations 
that are statically unstable. 
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While it may appear at first glance that sufficient inelasticity to result in statically 
unstable configurations during earthquake response is unlikely, a closer look can dispel this first 
impression. The key point is that for negative eigenvalues to be attained there is no need for 
inelasticity to be such that the structure is rendered a mechanism. The point is illustrated in fig.3 
which shows the variation of the fundamental buckling eigenvalue as a sequence of hinges 
progress up the structure. The structure in the figure is 6 stories high and the gravity load has 
been taken at a representative value, in particular, the buckling eigenvalue with no hinges is 10, 
which implies that the elastic buckling load is 10 times larger than the gravity loading condition 
considered. As the figure shows, if a wave of hinges that engages the beams of the lower 2 
stories plus the column bases exists at any point the structural configuration is, from an 
instantaneous perspective, unstable.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Buckling eigenvalue as a function of the distribution of plastic hinges 
 

 
Characterizing the Effect of Gravity in the Load Deformation Behavior 

 
The theory needed to formulate and analyze a full detailed model of a structure including 

nonlinearity and second order geometric effects is well established.  Note that we do not imply 
here that it is easy or even possible to make a model that captures all the complexities of the real 
situation but simply that once the basic assumptions are made a material and geometrically 
nonlinear representation of a system can be formulated and analyzed. A direct check of the safety 
against instability by performing nonlinear dynamic analysis of a full model of each building is, 
however, impractical for routine application and for this reason simplified procedures compatible 
with the level of complexity of typical seismic provisions are necessary. Furthermore, it is in the 
reduced parameterization of a simplified method that the key parameters that affect behavior 
become clear and show which structural modifications have significant effect on the safety 
against instability and which do not.   
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The Stability Coefficient in a SDOF System 
 
A parameter that has been widely used in simplified characterizations of second order 

gravity effects is the so called stability coefficient θ. The stability coefficient has been the 
subject of much discussion in the technical literature and is sometimes the source of confusion 
when sight is lost of the fact that there is no such thing as “the exact stability coefficient” for a 
multistory structure that responds nonlinearly, just like there is no such thing as “the ductility” at 
a given instant. The stability coefficient is non-dimensional parameter defined such that when 
multiplied by the first order elastic stiffness it gives the reduction in stiffness resulting from P-
delta.  

 
To clarify consider a rigid column supported at the base by a pin plus a nonlinear 

rotational spring. The column is assumed massless and weight is assumed concentrated at the tip 
as depicted in fig.4a. The load deformation relationship including the effect of the weight acting 
on the deformations can be easily computed and used to obtain the second order response. It is 
not difficult to see that the second order load deformation curve is obtained (in the simple 
situation of fig.4) by subtracting a constant slope from the first order curve. If we normalize the 
reduction in slope by the initial elastic slope one gets θ.  In a MDOF system there is no unique 
load deformation curve and, even after one decides what function of the load to plot vs. what 
deformation the difference between the first order and second order curves is not, in general, a 
constant reduction in slope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 a) Rigid Column with rotational base spring b) First and second order load deformation 
curves. 
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The Stability Coefficient in a MDOF System 
 

In a SDOF the value of θ is equal to the inverse of the elastic buckling eigenvalue. The 
buckling definition offers a tempting extension of the stability coefficient to the MDOF case but 
there is a need to be careful because the real question is not whether the definition is easily 
computed but whether the value is a good indicator of how gravity affects the potential for 
dynamic instability in buildings. To be explicit, if one tentatively accepts that there is a way to 
arrive at a SDOF model whose collapse occurs at the same ground motion intensity that produces 
instability in the real building, the question is whether a θ based on the elastic buckling 
eigenvalue is a good indicator of the difference between the first order and the second order load 
deformation of this SDOF system.  

 
The answer, in general, is that the buckling based θ is not a good indicator and the reason 

has to do with the fact that in a MDOF system the reduction in slope of the load deformation due 
to P-delta depends on the predominant shape of the structure during the response and this shape, 
at large amplitudes can differ notably from the elastic buckling shape. Since in a first 
approximation the elastic buckling mode of a building is a straight line one concludes that the 
elastic buckling based θ should be reasonable when the governing mechanism is a global tilt.  

 
Retaking the basic idea that θ is a way to specify how to pass from the first to the second 

order load deformation curve one has 
 

Slope of 2nd order load deformation = Slope of 1st order - θ (Slope of first order at the origin) 
 
from where one gets 
 

    
originatorderst1

slopeordernd2slopeorderst1 −
=θ            (1) 

 
 
MDOF to SDOF Reduction 
 

The motivation for obtaining a reduction of the building to a SDOF system resides in the 
fact that instability can be characterized in terms of a few parameters in the SDOF case. In other 
words, if one can estimate when instability is imminent in a SDOF and has a procedure to reduce 
a multistory building to a SDOF then safety against instability in the building can be estimated 
without the need to perform nonlinear time history analysis of the full model. Reduction of a set 
of dynamic equilibrium equations to a single equation introduces approximation by necessity. 
The simplest approach to affect the reduction is by assuming a shape and solving for the 
amplitude. In this regard it should be noted that even in the simplest case of a linear system and a 
constant shape the solution is still not unique since there are various alternatives that arise from 
how the inevitable error is treated. To illustrate consider the equations of motion for earthquake 
input for a linear system which, neglecting damping can be written as 
 
                gxrMKuuM &&&& −=+               (2) 
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To reduce the system to a SDOF we take 

 
            Yu φ≈              (3) 
 
where φ is an assumed shape and Y is the amplitude. Substituting eq.3 into (2) gives 
 
             ε+−=φ+φ gxrMYKYM &&&&            (4) 
 
where ε is a residual term that is needed because eq.3 is an approximation and eq.4 has been 
written as an equality. Since the left hand side of eq.4 has one unknown one can decide to satisfy 
the equality at a given DOF or, more generally, one can make any weighted sum of the terms in ε 
equal to zero and solve for the corresponding Y. Namely, with the weights listed in the vector ϕ 
one pre-multiplies by ϕT and taking ϕTε = 0 gets the SDOF equation 
 
        g

TTT xrMYKYM &&&& ϕ−=φϕ+φϕ            (5) 
 

Note that eq.5 depends not only on the assumed shape φ but also on the weights ϕ. The 
selection of ϕ = φ is, of course, common but is not forced by any compelling reason. Anyway, 
the point we set out to make is that even in the simplest case of linear behavior there are choices 
on how one arrives at the SDOF equation. In a study of instability the situation is much more 
complex because the assumption of a single dominant shape is not sufficiently general. 
Specifically, the shape of the structure when the response is not yet near collapse is governed by 
a shape that can usually be taken as the first mode but as the structure approaches failure the 
shape of the controlling mechanism dominates and this shape can vary notably from that of the 
first mode. A possibility that comes to mind is to perform a reduction using more than one shape 
but this is not a viable option since the characterization that is truly tractable is based on a SDOF 
model. The other possibility, initially examined by Pique (1976) and developed in detail for 
instability analysis by Bernal (1993) is to generalize the constraint in eq.3 as 
 
       YYfu ≈             (6) 
 
In other words, we assume a shape that is amplitude dependent. In Bernal (1993, 1998) and in 
the research reported here the amplitude dependent shape is taken as the sequence of deformed 
patterns that result from a pushover analysis using a mass proportional lateral load distribution. 
Description of the details of the SDOF reduction for the amplitude dependent shape is 
unnecessary for the present objectives and is thus skipped for brevity; the interested reader can 
find the details in the original references. 
 
 
SDOF Reduction 
 

1. Perform a first order pushover analysis with a load distribution that is proportional to the 
story weights (uniform in the case or regular buildings). From this analysis extract the 
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maximum base shear that the structure can withstand, Vu, and the parameters that define 
the shape of the final mechanism (see fig.5). 

 
2. Calculate two stability coefficients. One that governs when the dominant shape is not far 

from the first mode, θ0, and the other which accounts for the shape of the mechanism θm. 
The formulas are: 

 

     
h

g
2
0

0 ω
τ

=θ               (7) 

 
                 0m θΩ=θ              (8) 
with 

         

N3
1)

h
G67.0

h
E1(N21(

h
G

)
h
G5.0

h
E1(N21

+−−+

−−+
=Ω            (9) 

 
where ω0 = fundamental frequency of the elastic structure in the direction considered, h, G and E 
are defined in fig.5, N = number of stories, g = acceleration of gravity and τ = ratio of total 
vertical load to the inertial weight used to compute the fundamental frequency (typically around 
1.1 since it is reasonable to assume a reduced live load during the extreme event).  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5 Parameters that define the critical mechanism 

 
The SDOF to investigate instability has a unit mass and a damping equal to the damping 

of the fundamental mode, the envelope of its first order load deformation curve is assumed 
elasto-plastic with a yield level given by the shear Vu and the elastic stiffness is selected such 
that the elastic period is 

 

          
Q

TT 1
e =            (10) 

 
where T1 is the period of the fundamental mode in the structure (in the direction of analysis) and  

 

h

E

G
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       0m1Q θ−θ+=           (11) 
The second order curve is obtained from the first order one by using the effective stability 
coefficient 
 
 

           
Q

m
e

θ
=θ            (12) 

 
The first and second order load deformation relations (per unit mass) are illustrated in fig.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 First and second order curves of SDOF reduction for instability analysis 
 
 

A check against instability can be carried out by subjecting the SDOF reduction 
described previously to a set of appropriate ground motion time histories. The need to have 
explicit ground motions and to perform non-linear dynamic analyses, however, detracts from 
practicality. A much more practical approach consists in characterizing the collapse level 
response in terms of the relevant parameters of the SDOF reduction and the critical parameters of 
the ground motion using the concept of collapse spectra (Bernal 1993, 1998).  
 
 
 

Collapse Spectra 
 

Collapse spectra are plots vs. period (based on the initial elastic stiffness) of the 
minimum yield strength (per unit mass) of a SDOF for which the response is stable. These 
spectra can be viewed as the limit to which inelastic spectra converge when the ductility is 
arbitrarily large and second order effects are considered. Collapse spectra are conveniently 
plotted for a specific record for a constant stability coefficient. To aid clarity, the collapse 
spectrum for a record obtained during the Parkfield event of 2004 is depicted in Fig.7 for two 
values of the stability coefficient. Collapse spectra are little affected by damping so it is 
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customary to use 5% of critical damping based on the initial first order elastic characteristics of 
the SDOF system.  
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Fig.7 Collapse spectra for Parkfield 9/28/04 Vineyard Canyon 3 west station projected to the 

fault normal direction 
 

 
Procedures to estimate elastic and inelastic spectra in terms of peak ground motion 

parameters and ductility (in the inelastic case) have long been available (Newmark and Hall 
1982, Ridell 1979). Statistical formulas for collapse spectra were developed for systems with 
elasto-plastic and degrading stiffness hysteresis by Bernal (1993) using a set of far field records. 
At the mean level the formula for the elasto-plastic hysteresis is 
 
 
                            (13) 
 
 
where PGV and PGD stand for peak ground velocity and peak ground displacement, T is the 
period in sec. and t0.9 is the effective duration of the ground motion, defined as the time over 
which the cumulative integral of the squared acceleration goes from 5% to 95% of its total value 
at the end of the record. The estimation of the minimum base shear strength for which the 
response is stable is taken as 
 
            Vc = SacM           (14) 
 
where Sac is the collapse spectral ordinate for the fundamental period and effective stability 
coefficient and M is the total inertial mass of the building. 
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Collapse Spectra for Near Fault Motions 
 

The SDOF reduction and the concept of collapse spectra are general but extension to the 
near fault condition requires determining 1) if the formulas for Sac developed for the far field 
hold for near fault motions and 2) if the uniform load distribution is adequate for predicting the 
collapse mechanisms that controls when the motions are impulsive. 

 
In this research the first question was initially examined by carrying out an extensive 

statistical study using a collection of 43 records obtained during the M=6 Parkfield earthquake of 
09/28/04. In the study the motions were first projected in the fault normal and fault parallel 
directions and the analysis was carried for each set separately. It was found that eqs14 and 15 
predicted the collection of collapse spectra well so, on the basis of these data it did not appear 
that special considerations were needed for defining Sac for near fault conditions. In this regard it 
is worth noting that while there was some difference in results between the fault parallel and the 
fault normal directions the differences were not sufficiently large to warrant special treatment.  

 
Nevertheless, since the Parkfield event of 2004 is relatively low magnitude (M=6) and 

directivity effects in near fault motions are more prevalent in large magnitude events it was 
judged prudent to look at a second ensemble of near fault records before arriving at conclusions. 
To do this a number of records that displayed significant near fault effects were identified and 
the ones chosen for analysis are listed in Table 2. The motions in Table 2 were also projected in 
the fault normal and fault parallel orientations and the analysis was carried out independently in 
each direction. In contrast with the Parkfield data the analysis in this case did suggest that special 
expressions for predicting Sac for near fault conditions may be useful.  
 

Table 2. Near fault records used in the study to complement the Parkfield data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chanel 1 Chanel 2
1 Kobe, Japan 16-Jun-95 6.9 TAZ 0.4 45 0 90 140
2 Nahanni-Canada 23-Dec-85 6.8 SITE2 5.2 160 240 330 5
3 Tabas-Iran 16-Sep-78 7.11 TAB 1.2 330 344 74 256
4 Imperial Valley,CA 15-Oct-79 6.5 E04 6 143 140 230 274
5 Imperial Valley,CA 15-Oct-79 6.5 E05 2.7 143 140 230 274
6 Imperial Valley,CA 15-Oct-79 6.5 E06 0.3 143 140 230 274
7 Imperial Valley,CA 15-Oct-79 6.5 E07 1.8 143 140 230 94
8 Imperial Valley,CA 15-Oct-79 6.5 EMO 1.2 143 270 0 324
9 Supersition Hills,CA 24-Nov-87 6.4 PTS 0.7 130 225 315 355

10 Loma Prieta CA 17-Oct-89 6.9 LGP 3 130 0 90 220
11 Loma Prieta CA 17-Oct-89 6.9 STG 8.3 130 0 90 40
12 Erzincan, Turkey 13-Mar-92 6.63 ERZ 2 125 0 90 214
13 Landers, CA 28-Jun-92 7.2 LUC 1.1 335 0 75 233
14 Northridge, CA 17-Jan-94 6.7 JFA 5.2 120 292 22 280
15 Northridge, CA 17-Jan-94 6.7 RRS 6 120 228 318 344
16 Northridge, CA 17-Jan-94 6.7 SCG 5.1 120 52 142 160
17 Northridge, CA 17-Jan-94 6.7 SCH 5 120 288 18 291
18 Northridge, CA 17-Jan-94 6.7 NWS 5.3 120 316 46 76
19 Chi Chi, Taiwan 20-Sep-99 7.6 TUC052 0.8 60 0 90 90
20 Chi Chi, Taiwan 20-Sep-99 7.6 TUC068 0.2 60 0 90 90
21 Chi Chi, Taiwan 20-Sep-99 7.6 TUC075 0.6 60 0 90 270
22 Chi Chi, Taiwan 20-Sep-99 7.6 TUC129 1.5 60 90 0 0

Mw Station Strike 
Angle

Distance 
(km)

Rotation 
Angle

Angle 
Number Location Date
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The statistical analysis used to arrive at the expressions for collapse spectra is 

summarized next. 
 

1. Data on collapse spectra was generated from simulations.  
 

For each of the records in Table 2, Sac was computed by running nonlinear second order dynamic 
analysis with different strength levels until the minimum strength to prevent instability was 
identified. This was done for θ = {0.05, 0.1, 0.15, 0.2} for systems varying in period from 0.2 to 
6.0 seconds.  
 

2. The collapse spectra were normalized to γ⋅ 9.0tGMP  where GMP was PGA, PGV or PGD 
and γ is a constant taken as 0, 0.1, 0.2 etc up to 1.0.  

 
A total of 33 plots of coefficient of variation (COV) vs. period for the generated collapse 

spectra were obtained. For each ground motion parameter there is an exponent of the effective 
duration that minimizes the COV in the region where the parameter is most effective in reducing 
the spread. A plot of COV for the 3 optimal combinations γ⋅ 9.0tGMP is depicted in fig.8 for the 
fault normal and the fault parallel directions for 0 ≤T≤3 sec. Note the level of the COV, between 
0.3 and 0.4 when the appropriate normalization is selected, is typical of statistical work for the 
definition of spectra (Newmark and Hall 1982). Results for T> 3 sec. can be found in Ref.1.  
                             
 
                 
 
 
 
 
 
 
 
 
 
 
 
      (a)                  (b)  
 
                        Fig. 8- COV of normalized collapse spectra to different peak ground parameter 

a) fault normal component  b) fault parallel component 
 

3. The expression given in eq.15 was postulated and the free parameters {α, β, γ, λ} 
selected to minimize the spread between the predictions and the data. 
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The units of Sac are the same as the units in PGA or those in PGV divided by sec. or in PGD 
divided by sec2. The optimum values for the free parameters are listed in Table 3.  
 

Table 3. Optimal values of the free parameters in eq.15 
 

Fault Normal Fault Parallel GMP 
α β γ λ α β γ λ 

PGA 1.53 0.7 0.2 0.57 1.97 0.7 0.2 0.42 
PGV 12.05 0.8 0.2 1.51 10.04 0.8 0.2 1.17 
PGD 42.66 0.9 0.2 1.94 61.91 0.85 0.2 2.21 

 
 

Although the coefficients in Table 3 were obtained by minimization over a fixed 
frequency band, in practice it is best to use the eq.15 without imposing fixed transitions because 
this avoids discontinuities. In particular, at any period one simply takes Sac as the smallest value 
obtained from any of the 3 possible normalizations. A quick appreciation of the accuracy of 
eq.15 when compared to the simulated data can be developed from fig.9, which shows 
predictions and simulations at the mean level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9. Comparison of actual Sac from numerical analysis with Sac from eq.15 and the 
coefficients in Table 3 (mean level results, in g’s). 

 
 
Instability Limit Reduction Factor (Rc) and the Instability Severity Index (ISI) 
 

Before moving on to multistory buildings it is useful to pose the question: is the near fault 
condition critical regarding instability? The key to answering this in a meaningful way is to look 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5
Theta=0.05

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
Theta=0.1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Theta=0.15

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Theta=0.2

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5
Theta=0.05

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
Theta=0.1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Theta=0.15

0 0.5 1 1.5 2 2.5 3
0

0.5

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5
Theta=0.05

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8
Theta=0.1

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1
Theta=0.15

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Theta=0.2

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation

SN-Analysis
SN-Equation
SP-Analysis
SP-Equation



SMIP06 Seminar Proceedings 
 

 55

at it from a perspective that is entirely dependent on frequency content and duration. An index 
that satisfies the previous requirement is the ratio of the minimum strength needed to ensure that 
the response is elastic to the strength bellow which instability takes place. Note that this ratio is 
the limit that instability imposes on the classical reduction factor R which codes have long used 
to estimate the strength level that needs to be provided in design as a fraction of the elastic 
response level. We have, therefore 
 

      
ac

ae
c S

SR =           (16) 

 
The interest lays in determining whether Rc is typically larger or smaller in the near fault 

than in the far field, where a large value means that instability does not pose a strong limit. For 
this purpose one can define an Instability Severity Index (ISI) as the inverse of the ratio of the Rc 
value associated with the near fault condition divided by some Rc for the far field that serves as a 
reference, specifically 
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Substituting the expressions for Rc in terms of Sac and Sae one finds that ISI can also be written as 
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In eq.18 the first ratio is always less than or equal to one because the near field effect either 
increases the elastic spectral ordinate or leaves it unaffected. One gathers then, that for ISI to be 
greater than unity (i.e., for the near fault condition to be “more severe” in the sense that we’re 
here characterizing it, the increase in the minimum strength to prevent collapse has to be larger 
than the reduction of the first term. Plainly, if the near fault condition requires x% increase in 
elastic strength and y% increase in the minimum strength for stability then we say that the near 
fault condition is severe (i.e., ISI >1) if y > x.    
 

Fig.10 plots ISI where Sac is obtained from eqs.13 and 15 for the far field and near fault 
condition respectively and Sae is computed using the well known Newmark-Hall elastic response 
Spectrum construction approach with the near fault effect considered using the factors in 
Table.1. While fig.10 corresponds to a specific set of parameters, the qualitative behavior 
displayed holds for a wide range, namely: ISI is typically less than unity for short periods and for 
rather long periods but can exceed one in some intermediate range. Although the results show 
clear differences in the fault normal and fault parallel directions we refrain from making 
observations on this regard because the information in Table 1 is not direction specific. The fact 
that ISI is less than unity for long periods is consistent with what one anticipates from a 
qualitative reasoning since long period structures necessarily fail by crawling and the near fault 
motion is less capable of forcing this mechanism given the small number of significant pulses. In 
the short period range the reason is less intuitively evident but mathematically it derives from the 



SMIP06 Seminar Proceedings 
 

 56

fact that the increase in the elastic spectral ordinate is larger than the increase in the strength to 
prevent collapse.  

 

 
Fig.10 Instability Severity Index vs period (PGV/PGA=0.124 sec, PGD/PGV=0.48 sec θ = 0.1, 

t0.9 = 10 sec, Na=1.2, Nv = 1.6 (from Table 1)) 
 
 
 

Examination of Multistory Structures 
 

In this part of the research 3 multistory structures were considered and results computed 
for a large ensemble of records from the Parkfield event and for 9 motions taken from the set that 
appears in Table 2. The study can be subdivided into two large sections: 1) computation of ISI 
indices and 2) investigation of the accuracy that can be attained in predicting instability using the 
SDOF reduction approach described previously and the collapse spectral ordinate expression 
presented as eq.15 (with the coefficients in Table 3). 

 
Mathematical Modeling 
 

As noted earlier in the paper, the formulation of an accurate model for a 3-D structure to 
investigate the response up to collapse from instability is difficult. In this study a significant 
simplification resulted because all the structures considered are regular in plan so little is lost by 
using a 2D model to represent the structure. An issue that was of some concern is whether a 
lumped plasticity model would introduce significant error in the estimation of the collapse 
threshold when compared to results obtained with a distributed plasticity. The idea is that since 
the loss of tangent stiffness is much more gradual in the distributed plasticity model the plastic 
hinge simplification could prove unduly conservative. The matter was investigated by preparing 
two models for a 20 story structure, one where plasticity in the elements was modeled with 
plastic hinges and the other using fiber elements. The results showed that, at least for the type of 
sections used in the buildings (standard W shapes) the difference in the collapse intensity was 
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e)

d) 

a) b) c)

nominal so, for computational convenience, all models were formulated using the plastic hinge 
simplification. Gravity loads not acting on lateral load resisting frames were added into the 
models by means of an auxiliary unstable linkage that added to the geometric stiffness 
computation. All the buildings considered resist lateral forces through steel moment frames so 
the hysteretic behavior at the critical sections was assumed elasto-plastic. Moment axial force 
interaction was considered in the yield criterion for columns and the effect of the initial stress 
existing at the onset of the earthquake (due to the gravity loading) was modeled. Damping was 
taken to be Rayleigh type with 2% assigned to the first and second frequencies of the elastic 
model. As is standard, the masses were lumped at the floor levels. The boundary condition at the 
base, in all cases, was assumed fixed. Table 4 gives all the relevant information needed for 
subsequent discussion in the buildings. Sketches of the floor plans and elevations are given in 
Fig.11. 
 

Table 4. Parameters of the buildings needed in the investigation of instability 
 

Mechanism Parameters 
Building h (ft) 

Vu (kips) E G(ft)  

Period 
(sec) 

Effective 
Stability 

Coefficient 
θe  

6-story 82.5 902.7 0 17.5 1.58 0.119 
9-story 122 2270.3 0 57 2.04 0.070 

20-story 246 596.9 0 90 2.71 0.083 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Floor plans and elevations of the buildings used in the multistory study 
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ISI Indices 
 
The ISI index given by eq.18 can be computed for a particular near fault motion (instead of 
statistically) if one chooses a far field record to use as a reference. For the multistory structures 
we selected 10 far field records as references and computed the ISI for 23 records from Parkfield 
and for 9 of the records in Table 2. The results for the case of the motions from Table 2 are 
summarized in Table 5. The results show that the mean value of ISI is not far from unity, which 
is what one anticipates based on the results obtained in the SDOF analysis.  
 

Table 5a. ISI indices for 6-story building  
 

Far Field Earthquakes 
6-Story 
Building F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

N11 1.15 0.78 0.71 0.80 0.86 0.80 1.44 0.87 1.15 1.64 
N2 0.91 0.62 0.56 0.63 0.68 0.63 1.14 0.69 0.91 1.30 
N3 1.50 1.03 0.93 1.04 1.12 1.04 1.88 1.13 1.51 2.15 
N4 1.69 1.16 1.05 1.17 1.27 1.18 2.12 1.28 1.70 2.42 
N9 0.66 0.45 0.41 0.46 0.50 0.46 0.83 0.50 0.67 0.95 
N10 0.86 0.59 0.53 0.60 0.65 0.60 1.08 0.65 0.87 1.23 
N12 1.36 0.93 0.84 0.94 1.02 0.95 1.70 1.03 1.37 1.95 
N14 1.39 0.95 0.87 0.97 1.05 0.97 1.75 1.05 1.40 2.00 
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N19 1.03 0.71 0.64 0.72 0.77 0.72 1.29 0.78 1.04 1.48 
 Mean 1.17 0.80 0.73 0.81 0.88 0.82 1.47 0.89 1.18 1.68 
COV 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 

        1. Refers to the # in Table 2. 
 

Table 5b. ISI indices for 9-story building 
 

Far Field Earthquakes 
9-Story 
Building F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

N1 0.60 0.29 0.16 0.44 0.35 0.27 0.43 0.35 0.36 0.37 
N2 1.35 0.66 0.36 0.99 0.78 0.62 0.97 0.78 0.81 0.84 
N3 1.59 0.78 0.43 1.17 0.92 0.73 1.14 0.92 0.95 0.99 
N4 2.33 1.15 0.62 1.72 1.35 1.07 1.67 1.35 1.40 1.46 
N9 0.62 0.31 0.17 0.46 0.36 0.29 0.45 0.36 0.37 0.39 
N10 1.71 0.84 0.46 1.26 0.99 0.78 1.22 0.99 1.02 1.07 
N12 0.88 0.43 0.24 0.65 0.51 0.41 0.63 0.51 0.53 0.55 
N14 1.68 0.83 0.45 1.24 0.97 0.77 1.20 0.97 1.00 1.05 
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N19 1.14 0.56 0.31 0.84 0.66 0.53 0.82 0.66 0.69 0.72 
 Mean 1.32 0.65 0.35 0.98 0.77 0.61 0.95 0.77 0.79 0.83 
COV 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 
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Table 5c. ISI indices for 20-story building 

Far Field Earthquakes 
20-Story 
Building F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

N1 1.11 0.44 0.62 0.56 0.86 0.37 0.80 0.87 0.75 0.74 
N2 1.86 0.75 1.04 0.95 1.44 0.63 1.34 1.46 1.25 1.25 
N3 3.67 1.47 2.06 1.87 2.85 1.24 2.64 2.88 2.48 2.46 
N4 2.94 1.18 1.65 1.50 2.28 0.99 2.11 2.31 1.98 1.97 
N9 1.13 0.45 0.63 0.57 0.87 0.38 0.81 0.88 0.76 0.76 
N10 1.61 0.65 0.90 0.82 1.25 0.54 1.16 1.26 1.09 1.08 
N12 1.25 0.50 0.70 0.64 0.97 0.42 0.90 0.98 0.84 0.84 
N14 1.36 0.55 0.76 0.69 1.05 0.46 0.98 1.07 0.92 0.91 
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N19 1.77 0.71 0.99 0.90 1.37 0.60 1.27 1.39 1.19 1.19 
 Mean 1.86 0.74 1.04 0.94 1.44 0.63 1.33 1.46 1.25 1.24 
COV 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 

 
Table 5d. Far field records used in the study 

F1 El centro (1940) NS 
F2 Imperial Valey  1979/09/15 
F3 Loma Prieta 1989/10/18  
F4 Kern County 1952/07/21 
F5 Big Bear  1992/06/28 08:05 
F6 Landers  1992/06/28 04:58 
F7 Northridge 1994/01/17 12:31 
F8 Petrolia  1992/05/25 11:06 PDT 
F9 Victoria , Mexico 06/09/80 03:28 Fa
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ie

ld
  E
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th
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ak

es
 

F10 Whittier Narrows 1987/10/01 14:42 
Instability Predictions 
 

The critical item from a practical perspective is whether one can estimate the collapse 
threshold intensity with adequate accuracy using a procedure that lends itself to practical 
implementation. As noted at the outset, the framework introduced by Bernal (1993, 1998) is 
based on reducing the multistory structure to a SDOF system that has a certain effective stability 
coefficient and strength and whose first order period is closely connected to that of the first mode 
of the building in the direction of analysis. The basic idea is that the safety margin against 
instability can be characterized as the ratio of the base shear strength of the mechanism to the 
base shear strength for which instability is imminent. The safety against instability computed in 
this manner can be also be interpreted as a scaling factor that if applied to the ground motion 
definition renders the safety margin equal to one. The adequacy of the SDOF reduction can be 
checked, therefore, by comparing the scaling factor that is needed to induce instability with the 
scaling factor predicted using the SDOF reduction. There are two ways to perform the 
comparison: one is by computing the collapse spectral ordinate for a given record from its 
definition, i.e., by performing nonlinear second order analysis and the other is by using the 
estimate that can be obtained from the peak ground motion parameters and the statistical 
expression given by eq.15. In the report presented in Ref.1 results are given for both options and 



SMIP06 Seminar Proceedings 
 

 60

for all the Parkfield records but here we limit the presentation to the case of the motions taken 
from Table 2 and to the estimate of Sac obtained from eq.15. The results are summarized in Table 
6. 

Table 6a. Summary of instability scaling factor predictions for 6-story building 
Fault Normal Fault Parallel 6-Story 

Building Actual Prediction Ratio Actual Prediction Ratio 
N1 1.50 2.19 0.68 3 1.92 1.56 
N2 8.00 4.87 1.64 5 1.92 2.61 
N3 1.20 1.05 1.14 1.2 1.46 0.82 
N4 1.50 1.77 0.85 2.7 3.37 0.80 
N9 1.40 1.45 0.96 2.5 3.09 0.81 
N10 1.30 1.36 0.95 1.7 2.13 0.80 
N12 1.90 1.58 1.21 2.2 2.88 0.76 
N14 1.05 1.26 0.83 1.3 1.53 0.85 

N
ea

r F
ie

ld
   

 E
ar

th
qu

ak
es

  

N19 1.03 0.79 1.30 0.9 0.99 0.91 

   Mean 1.06  Mean 1.10 

   COV 0.28  COV 0.56 
 

Table 6b. Summary of instability scaling factor predictions for 9-story building 
Fault Normal Fault Parallel 9-Story 

Building Actual Prediction Ratio Actual Prediction Ratio 
N1 8.50 4.38 1.94 6.1 4.36 1.40 
N2 16.20 9.73 1.67 14 4.35 3.22 
N3 1.70 2.11 0.81 4 3.31 1.21 
N4 2.25 3.53 0.64 7.5 7.64 0.98 
N9 4.20 2.91 1.45 12 7.02 1.71 
N10 2.20 2.73 0.81 7.5 4.83 1.55 
N12 4.50 3.15 1.43 4.25 6.53 0.65 
N14 1.75 2.51 0.70 3.5 3.47 1.01 
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N19 2.00 1.58 1.27 1.4 2.24 0.63 

   Mean 1.19  Mean 1.37 

   COV 0.39  COV 0.57 
 

Table 6c. Summary of instability scaling factor predictions for 20-story building 
Fault Normal Fault Parallel 20-Story 

Building Actual Prediction Ratio Actual Prediction Ratio 
N1 7.00 3.98 1.76 5.25 4.37 1.20 
N2 14.10 8.83 1.60 11.5 4.36 2.64 
N3 1.40 1.91 0.73 3.5 3.32 1.05 
N4 1.75 3.21 0.55 5.25 7.66 0.69 
N9 3.75 2.64 1.42 7.5 7.04 1.07 
N10 1.90 2.48 0.77 5.5 4.84 1.14 
N12 4.75 2.86 1.66 4.5 6.54 0.69 
N14 2.20 2.28 0.96 3.3 3.48 0.95 
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N19 1.50 1.43 1.05 1.3 2.24 0.58 

   Mean 1.17  Mean 1.11 

   COV 0.39  COV 0.55 
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As can be seen from the results, the predictions of the SDOF approach with the statistical 
expressions are conservative in the mean and provide sufficient accuracy to be useful for 
practical design. 
 

Conclusions 
 

In multistory structures subjected to strong earthquake plasticity travels along the height 
of the structure in a wave like fashion. Analyses show that the distribution of plastic hinges 
during the response can be sufficiently extensive for the effective second order stiffness to 
develop negative eigenvalues opening up the potential for instability. An important aspect about 
instability during earthquake response is the fact that its conceptualization through pseudo-static 
reasoning is misleading. As the paper repeatedly notes, the correct framework is not one of 
amplifications but of ensuring that the strength provided is sufficiently larger than that bellow 
which instability can be anticipated.  

 
An indicator of how the P-delta effect interacts with the type of record is the ratio of the 

minimum strength needed for elastic response to the minimum strength needed to prevent 
instability, Rc. On the premise that design is carried out for a certain fraction of the demand 
computed for elastic response one concludes that the relevance of P-delta increases as Rc 
decreases. Results show that for large fundamental periods Rc is generally larger for near fault 
conditions than in the far field, indicating that being at close distances from the fault is not a 
critical situation for tall flexible structures from an instability perspective (provided that the 
elastic demand is adequately estimated). The situation can be reversed in the intermediate period 
range (say from 1.5 to 3 seconds) for some conditions but the reductions in Rc are typically 
modest and not a source for major concern. The previous observations apply both in the fault 
normal and fault parallel orientations although the fault normal direction is consistently the one 
where the effect being described is more pronounced. 
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