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Abstract 

The objective of this investigation is to evaluate the FEMA-356 Nonlinear Static 
Procedure (NSP) and a recently developed Modal Pushover Analysis (MPA) procedure using 
recorded motions of buildings that were damaged during the 1994 Northridge earthquake. It is 
found the FEMA-356 NSP typically underestimates the drifts in upper stories and overestimates 
them in lower stories. The MPA procedure provides much-improved estimates of the response 
compared to the FEMA-356 NSP. In particular, the MPA procedure, unlike the FEMA-356 NSP, 
is able to capture the effects of higher modes. 

Introduction 

Estimating seismic demands at low performance levels, such as life safety and collapse 
prevention, requires explicit consideration of inelastic behavior of the structure. While nonlinear 
response history analysis (RHA) is the most rigorous procedure to compute seismic demands, 
current civil engineering practice prefers to use the nonlinear static procedure (NSP) or pushover 
analysis specified in the FEMA documents. In early version of FEMA NSP procedure (FEMA, 
1997), the seismic demands are computed by nonlinear static analysis of the structure subjected 
to monotonically increasing lateral forces with an invariant height-wise distribution until a 
predetermined target displacement is reached. Both the force distribution and target displacement 
are based on the assumption that the response is controlled by the fundamental mode and that the 
mode shape remains unchanged after the structure yields. 

Obviously, after the structure yields both assumptions are approximate, but investigations 
(Fajfar and Gaspersic, 1996; Gupta and Krawinkler, 1999; Maison and Bonowitz, 1999; Skokan 
and Hart, 2000) have led to good estimates of seismic demands. However, such satisfactory 
predictions of seismic demands are mostly restricted to low- and medium-rise structures for 
which higher mode effects are likely to be minimal and the inelastic action is distributed 
throughout the height of the structure (Krawinkler and Seneviratna, 1998). 

None of the invariant force distributions can account for a redistribution of inertia forces 
because of structural yielding and the associated changes in the vibration properties of the 
structure. To overcome this limitation, several researchers have proposed adaptive force 
distributions that attempt to follow more closely the time-variant distributions of inertia forces 
(Bracci et al., 1997; Gupta and Kunnath, 2000). The most recent version of the FEMA NSP 
(FEMA, 2000), denoted as FEMA-356 NSP, includes one adaptive distribution in the list of 
lateral load pattern from which two are selected (details are provided latter). While these 
adaptive force distributions may provide better estimates of seismic demands (Gupta and 
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Kunnath, 2000), they are conceptually complicated, computationally demanding for routine 
application in structural engineering practice, and require special purpose computer program to 
carry out the step-by-step analysis.  

Attempts have also been made to consider more than the fundamental vibration mode in 
pushover analysis. While the Multi-Mode Pushover (MMP) procedure (Paret et al., 1996; Sasaki 
et al., 1998) provided information on possible failure mechanisms due to higher modes, which 
may be missed by the standard NSP analyses, other information of interest in the design process, 
such as story drifts and plastic rotations, could not be computed by this procedure. The “sum-
difference” method (Matsumori et al., 1999; Kunnath and Gupta, 2000) provided “useful” 
information (Kunnath and Gupta, 2000) but lacks theoretical basis.  

Recently, a modal pushover analysis (MPA) procedure was developed based on structural 
dynamics theory that includes the contribution of several modes of vibration (Chopra and Goel, 
2001, 2002). This procedure was systematically evaluated (Goel and Chopra, 2002) using six 
buildings, each analyzed for 20 ground motions. The selected buildings represented two building 
heights – 9-story and 20-story – and three different seismic regions of the United States – 
Boston, Seattle, and Los Angeles. The median value of story drifts obtained from the MPA 
procedure and nonlinear response history analysis (RHA) were compared. It was found that with 
sufficient number of “modes” included, the height-wise distribution of story drifts estimated by 
MPA is generally similar to trends noted from nonlinear RHA. Furthermore, the additional error 
(or bias) in the MPA procedure applied to inelastic structures is small to modest compared to the 
bias in response spectrum analysis (RSA) applied to elastic structures – the standard analytical 
tool for the structural engineering profession – unless the building is deformed far into the 
inelastic region with significant stiffness and strength deterioration.  

It is clear from the above review of literature that previous work on development and 
evaluation of the NSP and improved procedures are based on response of analytical models 
subjected to recorded and/or simulated earthquake ground motions. Recorded motions of 
buildings, especially those deformed into the inelastic range, provide a unique opportunity to 
evaluate such procedures. Therefore, the principal objective of this investigation is to evaluate 
the FEMA-356 NSP and the MPA procedures using recorded motions of buildings that were 
deformed beyond the yield limit. 

Selected Buildings and Recorded Motions 

Recorded motions of buildings that were deformed beyond the yield limit (or damaged) 
during the earthquake are required for this investigation. For this purpose, four buildings have 
been identified (Table 1) for which the motions were recorded during the 1994 Northridge 
earthquake. Of these four buildings, three haven been extensively instrumented by California 
Strong Motion Instrumentation Program (CSMIP) and one has been nominally instrumented in 
accordance to the code requirements. The responses of first three of these fours buildings – Van 
Nuys 7-Story Hotel, Woodland Hills 13-Story, and Sherman Oaks 13-Story – are presented in 
this paper; the work is in progress on the last building. Following is a brief description of each of 
these three buildings. 
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Table 1. Selected buildings, and peak ground and structure accelerations recorded during the 
1994 Northridge earthquake. 

Peak accelerations (g) Buildings name CSMIP Station Number of 
Stories Ground Structure 

Van Nuys 7-Story Hotel 24386 7 0.47 0.59 
Woodland Hills 13-Story C246 12/2 0.44 0.33 
Sherman Oaks 13-Story 24322 13/2 0.46 0.65 
Los Angeles 19-Story 24643 19/4 0.32 0.65 
 
Van Nuys 7-Story Hotel 

This 7-story reinforced concrete building (Fig. 1a) was designed in 1965 and constructed 
in 1966. The vertical load carrying system consists of 8  to 10-inch (20.3 to 25 cm) concrete 
slabs supported by concrete columns and spandrel beams at the perimeter (Naeim, 1997, 2000). 
The lateral load resisting system consists of interior column-slab frames and exterior column-
spandrel beam frames. 

This building is instrumented to measure horizontal accelerations at the base, 2nd floor, 
3rd floor, 6th floor, and the roof (Figure 1b). Motions of this building have been recorded during 
several earthquakes in the past. The motions that are of interest are the ones recorded during the 
1994 Northridge earthquake. The peak horizontal accelerations were 0.47 at the base and 0.57g 
in the structure. This building was heavily damaged during the 1994 Northridge earthquake and 
subsequently closed for repair and retrofit. Several columns between the fourth and fifth floors 
failed in shear at the top just below the spandrel beam. Most damage was observed in the 
longitudinal perimeter frames, with south perimeter suffering more damage than the north 
perimeter. This building has been extensively analyzed in the past (Naeim, 1997; Islam et al., 
1998; Li and Jirsa, 1998; Goel et al., 2000; Naeim, 2000). 

Woodland Hills 13-Story Building 

The 13-story welded special moment frame building was constructed in 1975. Its lateral 
load resisting system consists of four identical steel frames along the building perimeter. The 
typical floor is square with 160-ft (48.8 m) sides (Fig. 2). At the first floor above ground, the 
plan broadens on three sides to form a plaza level while the fourth side abuts a landscape berm. 
These conditions provide a high degree of lateral restraint at this level. Basement perimeter walls 
are reinforced concrete and the foundation system consists of piles, pilecaps, and grade beams. 

Denoted as Code-Instrumented building, this structure is nominally instrumented as 
required by the local building code. Motions were recorded during the 1994 Northridge 
earthquake at three levels: basement, 6th floor, and roof (Darragh et al., 1994). The peak 
horizontal accelerations were 0.44g at the base and 0.33g in the structure. This building was 
damaged during the 1994 Northridge earthquake. The damage consisted of local fracture at the 
beam-to-column welded joints (Uang et al., 1997). 
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Sherman Oaks 13-Story Commercial Building 

This office building has 13 stories above and two floors below the ground. Designed in 
1964, its vertical load carrying system consists of 2.4 inch (6 cm) thick one-way slabs supported 
by concrete beams, girders, and columns. The lateral load system consists of moment resisting 
concrete frames in the upper stories and concrete shear walls in the basements. The foundation 
system consists of concrete piles. 

This building is instrumented to measure horizontal accelerations at the 2nd sub-basement 
level, ground level, 2nd floor, 8th floor, and roof level. The peak horizontal accelerations recorded 
during the 1994 Northridge earthquake were 0.46g at the basement and 0.65g in the structure. 
The building is reported to suffer cracks at many beam-column joints (Shakal et al., 1994).  

 
(a) 

 
(b) 

Figure 1. (a) Photograph (Naeim, 1997) and (b) sensor location for 7-Story Hotel buildings in 
Van Nuys. 
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(a) 

 
(b) 

Figure 2. (a) Schematic elevation, and (b) plan of the 13-Story building in Woodland Hills (Uang 
et al., 1997). 

 
(a) 

 
  

(b) 
Figure 3. (a) Photograph (Naeim, 1997), and (b) sensor location for 13-story building in Sherman 
Oaks. 
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Analysis Methods 

Inter-Story Drifts Derived from Recorded Motions 

Since buildings are typically instrumented at a limited number of floors, the motions of 
non-instrumented floors must be inferred from the instrumented floors for calculations of inter-
story drifts in all stories. For this purpose, cubic spline interpolation procedure developed earlier 
by others (Naeim, 1997; De la Llera and Chopra, 1998) is used. The cubic spline interpolation 
procedure is preferred over the parametric model procedure because it automatically accounts for 
nonlinearities and time variance of the building parameters. This procedure has been tested (De 
la Llera and Chopra, 1998) and found to he highly accurate in estimating the motions of non-
instrumented floors. 

The cubic spline interpolation is performed on the building deformation (relative to the 
base) instead of the floor accelerations as traditionally done. This is because splines satisfy 
conditions of continuity and differentiability of second order at the interpolation points (i.e., 
instrumented floors in this case) and hence provide smooth shapes, as it should be, for the 
displacement field of the building. 

Once the time variation of deformations of all floors have been developed using the cubic 
spline interpolation procedure, inter-story drifts at each time instant is computed from 

 1( ) ( ) ( )j j jt u t u tδ −= −  (1) 

in which ( )j tδ  is the inter-story drift in the jth story, and ( )ju t  and 1( )ju t−  are the deformations 
at the jth and j-1th floor levels at time t. Once the time histories of the inter-story drifts have been 
developed, peak values in the jth story, joδ , is be computed as the absolute maximum value over 
time. These values, denoted as “derived” inter-story drifts, would be used to evaluate the FEMA-
356 NSP and MPA procedures. 

Modal Decomposition of Recorded Motions 

The contributions of various natural modes of vibration of the building to the total 
displacement can be extracted from the recorded (or interpolated) motions by using the standard 
modal analysis method (Chopra, 2001); the procedure would lead to exact modal contributions 
for buildings that remain elastic but approximate for inelastic buildings. This procedure has been 
used in our previous research (Chopra and Goel, 2001, 2002) to investigate the contributions of 
higher modes in inelastic buildings. 

The contribution of the nth mode to total deformation at floor level j and time instant t is 
given by: 

 ( )( )
T

n
jn jnT

n n

t
u t φ=

mu
m

φ
φ φ

 (2) 
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in which nφ  is the nth mode shape of the elastic building, m is the mass matrix, u(t) is the vector 
of displacements at all floor levels at time t, and jnφ  is the nth mode shape component at the jth 

floor level. Once the contribution of the nth mode to the floor displacements have been computed, 
its contribution to inter-story drift, ( )jn tδ , can be computed using Eq. (1). 

FEMA-356 NSP 

The nonlinear static procedure (NSP) specified in the FEMA-356 (FEMA, 2000) 
document may be used for any structure and any rehabilitation objective except for structures 
with significant higher mode effects. To determine if higher mode effects are present, two linear 
response spectrum analyses must be performed: (1) using sufficient modes to capture 90% of the 
total mass, and (2) using only the fundamental mode. If shear in any story from the first analysis 
exceeds 130% of the corresponding shear from the second analysis, the higher mode effects are 
deemed significant. In case the higher mode effects are present, the NSP analysis needs to be 
supplemented by the Linear Dynamic Procedure (LDP); acceptance criteria for the LDP are 
relaxed but remain unchanged for the NSP. 

The FEMA-356 NSP requires development of a pushover curve, which is defined as the 
relationship between the base shear and lateral displacement of a control node, ranging between 
zero and 150% of the target displacement. The control node is located at the center of mass at the 
roof of a building. For buildings with a penthouse, the floor of the penthouse (not its roof) is 
regarded as the level of the control node. Gravity loads are applied prior to the lateral load 
analysis required to develop the pushover curve.  

The pushover curve is developed for at least two vertical distributions of lateral loads. 
The first pattern is selected from one of the following: (1) Equivalent lateral force (ELF) 
distribution: k

jjj hms =*  (the floor number =j 1,2,…N) where *
js  is the lateral force and jm  the 

mass at jth floor, hj  is the height of the jth floor above the base, and the exponent 1=k  for 
fundament period 5.01 ≤T  sec, 2=k  for 5.21 ≥T  sec; and varies linearly in between; (2) 

Fundamental mode distribution: *
1j j js m φ=  where 1jφ  is the fundamental mode shape 

component at the jth floor; and (3) SRSS distribution: s*is defined by the lateral forces back-
calculated from the story shears determined by linear response spectrum analysis of the structure 
including sufficient number of modes to capture 90% of the total mass. The second pattern is 
selected from either “Uniform” distribution: jj ms =*  in which jm  is the mass and *

js  is the 
lateral force at jth floor; or Adapted distribution that changes as the structure is displaced. This 
distribution should be modified from the original distribution by considering properties of the 
yielded structure. 

The target displacement is computed from 

 
2

0 1 2 3 22
e

t a
TC C C C S gδ
π

=  (3)  
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where eT  = Effective fundamental period of the building in the direction under consideration, aS  
= Response spectrum acceleration at the effective fundamental vibration period and damping 
ratio of the building under consideration and g is the acceleration due to gravity, 0C  = 
Modification factor that relates the elastic response of an SDF system to the elastic displacement 
of the MDF building at the control node, 1C = Modification factor that relates the maximum 
inelastic and elastic displacement of the SDF system, 2C = Modification factor to represent the 
effects of pinched hysteretic shape, stiffness degradation, and strength deterioration, and 3C  = 
Modification factor to represent increased displacement due to P-delta effects. 

The deformation/force demands in each structural element is computed at the target 
displacement and compared against acceptability criteria set forth in the FEMA-356 document. 
These criteria depend on the material (e.g., concrete, steel), type of member (e.g., beam, column, 
panel zones, connections etc.), importance of the member (e.g., primary, secondary) and the 
structural performance levels (e.g., immediate occupancy, life safety, collapse prevention). 

The FEMA-356 NSP procedure contains several approximations. These include those in 
estimating the target displacement from Eq. 3, and using the pushover curve to estimate the 
member demands imposed by the earthquake. In this investigation, the focus is primarily on the 
second source of approximation; the first approximation is a focus of numerous other 
investigations. For this purpose, the following analysis method is employed.  

The target displacement is selected to be equal to that of the roof level recorded during 
the earthquake, as opposed to calculating it according to the FEMA-356 document (Eq. 3). The 
structure is pushed to this target displacement using the FEMA-356 lateral load patterns and 
inter-story drifts are computed. These computed inter-story drifts are then compared with the 
“derived” inter-story drifts, i.e., those computed directly from the recorded motions using the 
procedure described in the preceding section. Such an analysis enables evaluation of the 
adequacy of various lateral load patterns in the FEMA-356 NSP, in particular, if the FEMA-356 
NSP is able to capture the higher mode effects, which are likely to be present in the selected 
buildings. 

MPA Procedure 

Recently a MPA procedure has been developed to account for the higher mode effects 
and analytically tested for SAC buildings and ground motions (Chopra and Goel, 2001, 2002). 
This procedure has been found to be highly accurate unless the building is deformed far into the 
region of stiffness and strength deterioration (Goel and Chopra, 2002). Following is a brief 
summary of this procedure. 

1. Compute the natural frequencies, ωn  and modes, nφ , for linearly elastic vibration of the 
building.  

2. For the nth-mode, develop the base shear-roof displacement, rnbn uV − , pushover curve for 

force distribution, nn ms φ=* , where m is the mass matrix of the structure. Gravity loads, 
including those present on the interior (gravity) frames, are applied before the first-“mode” 
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pushover analysis. The resulting P-delta effects may lead to negative post-yielding stiffness 
in the pushover curve. The gravity loads are not included in the higher-“mode” pushover 
curves. 

3. Idealize the pushover curve as a bilinear curve. If the pushover curve exhibits negative post-
yielding stiffness, the second stiffness (or post-yield stiffness) of the bilinear curve would be 
negative. 

4. Convert the idealized bn rnV u−  pushover curve to the force-displacement, nnsn DLF −/ , 
relation for the nth -“mode” inelastic SDF system by utilizing 

*  and  sny n bny n ny rny n rnF L V M D u φ= = Γ  in which Mn
* is the effective modal mass, φrn  is 

the value of φn  at the roof, and n
T
n

T
nn mm φφφ /1=Γ . 

5. Compute the peak deformation Dn  of the nth-“mode” inelastic single-degree-of-freedom 
(SDF) system defined by the force-deformation relation developed in Step 4 and damping 

ratio ζ n. The elastic vibration period of the system is ( )1/ 2
2n n ny snyT L D Fπ= . For an SDF 

system with known Tn , ζ n and a selected earthquake excitation, Dn  can be computed by 
either by nonlinear RHA of the SDF system or from inelastic design spectrum. 

6. Calculate peak roof displacement urn  associated with the nth-“mode” inelastic SDF system 
from nrnnrn Du φΓ= . 

7. From the pushover database (Step 2), extract values of desired responses rn : floor 
displacements, story drifts, plastic hinge rotations, etc. 

8. Repeat Steps 3-7 for as many modes as required for sufficient accuracy. Typically, the first 
two or three “modes” will suffice. 

9. Determine the total response (demand) by combining the peak “modal” responses using the 

SRSS rule: 
2/1

2










≈ ∑

n
nrr .  

Steps 3 to 6 of the MPA procedure described above are used to compute the peak roof 
displacement associated with the nth-“mode” inelastic SDF system. However, these steps are not 
necessary for analysis of a building for which recorded motions are available. The contribution 
of the nth-“mode” to the total roof displacement, rnu , can be computed from modal 
decomposition of recorded motion using Eq. (2). 

In the MPA procedure, total floor displacements and story drifts can be computed within 
sufficient degree of accuracy by combining the values obtained from “modal” pushover analysis 
(Step 9). However, this procedure may not lead to accurate estimates of localized demands such 
as plastic rotations and member forces. For this purpose, improved procedure are being 
developed.  
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Analytical Models 

The computer program DRAIN-2DX (Prakash et al., 1993) was used for analysis of the 
selected buildings. For this purpose, analytical models were developed and calibrated as follows. 
First, the fundamental mode period from eigen analysis of the analytical model was compared 
with the “elastic” period obtained from system-identification analysis of the record segment 
during which the structure is expected to remain elastic. Such analysis involves plotting the ratio 
of the absolute values of Fast Fourier Transform of the displacement at the roof and base and 
identifying the peak corresponding to the fundamental mode. The system identification analysis 
is also performed using the entire record leading to “apparent” fundamental mode period. Value 
of the “apparent” period significantly longer than the “elastic” period is indicative of inelastic 
action in the building during the ground motions. The periods from eigen analysis, and the 
“elastic” and the “apparent” periods identified from the recorded motions are presented in Table 
2. 

Second, the time history of the displacement response is computed from the analytical 
model using the acceleration recorded at the base as the input motion. The computed motions are 
then compared with the recorded motions to verify that the response from the analytical model 
correlates reasonably with the recorded motions. 

 Table 2. Vibration periods of fundamental mode from eigen analysis and system identification. 

Period (sec) Building 
Eigen “Elastic” “Apparent” 

Van Nuys 7-Story Hotel 1.50 1.59 2.05 
Woodland Hills 13-Story 3.05 N/A 3.90 
Sherman Oaks 13-Story 2.47 2.28 2.93 
 

Van Nuys 7-Story Hotel Building 

The DRAIN-2DX model used in earlier investigations (Browning et al., 2000; Goel et al., 
2000) was modified to develop a model for the south frame of this building; this frame is of 
interest in this study because it sustained significant damage during the 1994 Northridge 
earthquake. The frame is modeled using beam-columns elements with center-line dimensions. 
Initial stiffness was equal to 0.5 and 0.7 times the gross cross-sectional stiffness for beams and 
columns, respectively. The beams were modeled without P-M interaction while P-M interaction 
relationship for reinforced-concrete sections was used for the columns. The moment yield 
strengths were computed using conventional procedures (Browning et al., 2000). The mass equal 
to one-third of the total building mass was assigned to this frame, and Rayleigh damping of 10% 
was used for the first and third mode of vibration. 

Figure 4a shows the first three vibration modes and periods obtained from elastic eigen-
value analysis of the model. The fundamental period of 1.5 sec (Fig. 4a) correlated reasonable 
well with the “elastic” period of 1.59 sec (Table 2) identified from recorded motions. The 
“apparent” period of 2.05 sec (Table 2) is much longer than the “elastic” period or the period 
from eigen analysis, indicating significant inelastic response during the ground motion; the 



SMIP03 Seminar Proceedings 

 137

damage reported to this building during the 1994 Northridge earthquake (Naeim, 1997; Islam et 
al., 1998; Li and Jirsa, 1998; Browning et al., 2000) clearly supports this observation. 

The displacement response history of the analytical model was calculated using the east-
west component of the motion recorded at the base during the 1994 Northridge earthquake. The 
comparison of displacements from the response history analysis with the recorded motions in the 
east-west direction at the center of the building, shown in Fig. 4b, indicates a reasonable match 
between the two. This implies that the simple model used in this study is adequate in 
representing the recorded motions. It may be possible to further improve the accuracy of the 
model by using more appropriate force-deformation relationships (Li and Jirsa, 1998; Browning 
et al., 2000). 

It must be noted that the model used in this investigation, as well as those used by others 
(Li and Jirsa, 1998; Browning et al., 2000), are two-dimensional in nature. There is strong 
evidence from recorded motions that this building exhibited significant torsional motions during 
the 1994 Northridge and other earthquakes. Therefore, only a three-dimensional model would be 
able to capture the true behavior of this building.  
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Figure 4. (a) Elastic modes and periods of analytical model; (b) Comparison of displacements 
computed from analytical model (dashed line) with recorded displacement (solid line) of Van 
Nuys 7-Story Hotel building. 

Woodland Hills 13-Story Building 

The DRAIN-2DX model developed earlier (Uang et al., 1997) was adopted for analysis 
of this building. The moment frame in the north-south direction is modeled because it 
experienced significant damage, in the form of connection failures, during the 1994 Northridge 
earthquake (Uang et al., 1997). The two-dimensional model consisted of beams and columns 
modeled by DRAIN-2DX Element 2, 100% rigid-end offsets, 2% strain hardening for the beams, 
steel section P-M interaction curve for columns, panel zones modeled as semi-rigid with 
DRAIN-2DX Element, and Rayleigh damping of 5% for the first and third modes. The expected 
yield stress for steel members equal to 47.3 ksi is used, which is about 30% higher than the 
nominal value of 36 ksi. Further details of the model are available elsewhere (Uang et al., 1997). 
The two-dimensional model for this building is reasonable as the building plan is quite 
symmetric.  
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The displacement response of above described model computed to the north-south 
component of the motions recorded at the base matched reasonably well with the recorded 
motions in this direction (Uang et al., 1997). However, when this model is pushed during the 
pushover analysis (presented later in this paper) to the peak roof displacement recorded during 
the 1994 Northridge earthquake, none of its elements yield. This behavior of the model is 
contrary to the physical observation during the post-earthquake inspection, which revealed 
numerous beam-column connection failures. Therefore, the model was modified by reducing the 
strengths of beams and panel zone elements by 25% compared to the original model. This brings 
the expected yield stress close to the nominal yield stress of 36 ksi.  Furthermore, the Rayleigh 
damping was increased from 5% to 7% in the first and third modes. 
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Figure 5. (a) Elastic modes and periods of analytical model; (b) Comparison of displacements 
computed from analytical model (dashed line) with recorded displacement (solid line) of 
Woodland Hills 13-Story building.  

The fundamental period of this building from the eigen analysis is 3.05 sec (Fig. 5a). The 
system identification could not identify the true “elastic” period for this building because long-
enough initial time segment of the recorded motions during which the building behaved 
elastically could not be selected. The “apparent” period of 3.9 sec (Table 2) is much longer than 
the period from eigen analysis, indicating inelastic response during the ground motion; the 
damage reported to this building during the 1994 Northridge earthquake (Uang et al., 1997) 
clearly supports this observation. 

The displacement response history of the analytical model was calculated using the north-
south component of the motion recorded at the base during the 1994 Northridge earthquake. The 
comparison of displacements from the response history analysis with the recorded motions in the 
north-south direction at the center of the building, shown in Fig. 5b, indicates a reasonable match 
between the two. This implies that the simple model used in this study is adequate in 
representing the recorded motions. It may be possible to further improve the accuracy of the 
model by using more appropriate connection behavior. 

Sherman Oaks 13-Story Commercial Building 

The DRAIN-2DX model was developed for the exterior frame in the east-west direction 
for this building. The model was developed based on the structural plans and additional 
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information available in an earlier study (John A. Martin & Associates, 1973). The frame is 
modeled using beam-columns elements with center-line dimensions. Initial stiffness was equal to 
0.5 and 0.7 times the gross cross-sectional stiffness for beams and columns respectively. Rigid 
end offsets equal to 50% of the joint dimensions were assumed. The beams were modeled 
without P-M interaction while P-M interaction relationship for reinforced-concrete sections was 
used for the columns. The moment yield strengths were computed using moment-curvature 
analysis. The nominal strength of beams were increased by 25% for a better match with the 
recorded motions. The mass equal to one-third of the total building mass was assigned to this 
frame, and Rayleigh damping of 10% was assigned to the first and third mode of vibration. 
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Figure 6. (a) Elastic modes and periods of analytical model; (b) Comparison of displacements 
computed from analytical model (dashed line) with recorded displacement (solid line) of Sherman 
Oaks 13-Story Commercial building.  

Figure 6a shows the first three vibration modes and periods obtained from elastic eigen-
value analysis of the model. The fundamental period of 2.47 sec (Fig. 6a) is slightly longer than 
the “elastic” period of 2.28 sec (Table 2) identified from recorded motions. The “apparent” 
period of 2.93 sec (Table 2) is much longer than the “elastic” period or the period from eigen 
analysis, indicating some inelastic response during the ground motion; the post earthquake 
investigation indicates minor cracking at the beam columns joints after the 1994 Northridge 
earthquake (Naeim, 1997).  

The displacement response history of the analytical model was calculated using the east-
west component of the motion recorded at the base during the 1994 Northridge earthquake. The 
comparison of displacements from the response history analysis with the recorded motions in the 
east-west direction at the center of the building, shown in Fig. 6b, indicates a reasonable match 
between the two. This implies that the simple model used in this study is reasonable in 
representing the recorded motions. As mentioned previously for the Van Nuys building, it may 
be possible to further improve the accuracy of the model by using more appropriate force-
deformation relationships. 

Evaluation of Nonlinear Static Procedures 

The FEMA-356 NSP and MPA procedures are evaluated in this section using recorded 
motions of selected buildings. Presented for each selected buildings are the pushover curves for 
the four FEMA-356 distributions for the FEMA NSP analysis and the first three “modes” for the 
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MPA analysis. Shown on each pushover curve are the peak roof displacement – total value for 
the FEMA-356 curves and the modal component for the “modal” pushover curves – during the 
1994 Northridge earthquake; and locations of first yielding of beam, columns, or connection. 
Subsequently, story drifts from the four FEMA analyses and MPA procedure are compared with 
the “derived” values from the recorded motions. It is useful to emphasis again that two-
dimensional models have been used in this investigation. Therefore, the motions of the frame 
were taken as equal to those recorded at the center for the selected buildings.  

Van Nuys 7-Story Hotel Building 

The pushover curves for the longitudinal frame on the south face of the Van Nuys 7-
Story Hotel building are presented in Fig. 7. These results lead to the following observations. 
The characteristic – elastic stiffness, and yield strength and displacement – of the pushover curve 
depend on the lateral force distribution (Fig. 7a). The “Uniform” distribution generally leads to 
pushover curve with higher elastic stiffness, higher yield strength, and lower yield displacement 
compared to all other distributions. The ELF distribution, on the other hand, leads to pushover 
curve with lower elastic stiffness, lower yield strength, and higher yield displacement. The 
“Mode” 1 and SRSS distribution give pushover curves that are essentially identical and are 
bounded by the pushover curves due to “Uniform” and ELF distributions. 

The first beam yields at much lower force level compared to the first column (Fig. 7a). 
This building was deformed well into the inelastic range during the 1994 Northridge earthquake, 
as apparent from the peak roof displacement being much larger than the yield displacement. This 
is consistent with the post-earthquake observations that indicated cracking in several beams and 
fracture in columns just below the 5th floor (Li and Jirsa, 1998). 

The “modal” pushover curves (Fig. 7b) indicate the significant yielding in the first 
“mode”. The building is deformed nearly to the elastic limit of the pushover curve in the second 
and third modes. However, yielding has been initiated in some beams and columns, indicating 
that modes higher than the fundamental mode also contributed to the inelastic behavior of this 
building. 
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Figure 7. Pushover curves for Van Nuys 7-Story Hotel for (a) four FEMA-356 distributions; and 
(b) modal distributions corresponding to first three modes in the MPA procedure.  
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The results presented for story drift (Fig. 8a) indicate that among the four FEMA-356 
distributions, the “Uniform” distribution always leads to the largest drifts in the lower stories and 
smallest drifts in upper stories. Comparing the drift demands from the FEMA-356 distributions 
with those from recorded motions demonstrates the serious limitations of the FEMA-356 NSP: 
the FEMA-356 force distributions lead to gross underestimation of story drifts in the upper 
stories and gross overestimation in the lower stories (Fig. 8a).  

Among the four FEMA-356 distributions, the “Uniform” force distribution leads to the 
worst estimates of story drifts. For example, this distribution leads to underestimation of the drift 
at 7th story more a factor of more than 13: the story drifts from recorded motions and FEMA-356 
“Uniform” distributions are 4.11 cm and 0.32 cm, respectively. On the other hand, the drift in the 
first story is overestimated by a factor of about 1.5: the story drifts from recorded motions and 
FEMA-356 “Uniform” distributions are 4.80 cm and 7.23 cm, respectively. Therefore, this 
distribution seems unnecessary in the FEMA-356 NSP, an observation which is consistent with 
that based on an earlier analytical study (Goel and Chopra, 2002). 

The presented results for story drifts also demonstrate another serious limitation of the 
FEMA-356 NSP. The higher mode effects for this building were deemed not to be significant 
based on the FEMA-356 criterion. Therefore, it may be expected that the FEMA-356 would lead 
to reasonable estimates of drifts in upper stories. Yet the drifts are significantly underestimated 
(Fig. 8a). It is well known that the larger drifts in upper stories tend to occur due to higher 
modes. Therefore, the FEMA-356 criterion for significant higher mode effects should be re-
examined. 

The MPA procedure for this building provides much better estimates of story drifts 
throughout the building height. In particular, the match between the story drifts from MPA and 
recorded motions is excellent in upper stories indicating that the MPA procedure is able to 
capture the higher mode effects for this building. 
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Figure 8. Comparison of (a) displacements and (b) story drifts from recorded motions, MPA 
procedure, and four FEMA-356 NSP analyses for Van Nuys 7-Story Hotel.  

While the estimates of story drifts from the MPA procedure are much better compared to 
the FEMA NSP, minor differences exist, such as drift in the sixth story (Fig. 8a). In order to 
understand the source of this discrepancy, peak displacement and drifts in each mode of the 
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MPA procedure are compared with those obtained from modal decomposition of recorded 
motions (Fig. 8b). This comparison shows that the match between the two is reasonably good. 
Therefore, the prime source of discrepancy appears to be from modal combination procedure. 
The modal combination rule was found to be deficient in an earlier study (Goel and Chopra, 
2002) even for elastic buildings. Furthermore, the SRSS combination rule is likely to be 
inaccurate for individual ground motion as it was developed to work well with smooth design 
spectrum. The research is currently underway by others to develop improved modal combination 
rules. With improved modal combination rules, the accuracy of the MPA procedure may be 
expected to further improve. 

Woodland Hills 13-Story Building 

The pushover curves for the longitudinal frame on in the north-south direction of the 
Woodland Hills 13-Story building are presented in Fig. 9. These results lead to the following 
observations. The characteristic – elastic stiffness, yield strength and displacement, and post-
yield strength decay – of the pushover curve depend on the lateral force distribution (Fig. 9a). 
The “Uniform” distribution generally leads to pushover curve with higher elastic stiffness, higher 
yield strength, lower yield displacement, and more rapid decay in post-yield strength compared 
to all other distributions. The ELF distribution, on the other hand, leads to pushover curve with 
lower elastic stiffness, lower yield strength, and higher yield displacement. The “Mode” 1 and 
SRSS distribution give pushover curves that are essentially identical up to the elastic limit. 
Thereafter, the strength is higher for the SRSS distribution compared to the “Mode” 1 
distribution. The first yielding occurs in the connection followed soon after by the first yielding 
of the beam (Fig. 9a). The columns yielding occurs at much higher deformation level and is soon 
followed by rapid decay in the strength. This building is deformed only slightly beyond the 
elastic limit during the 1994 Northridge earthquake. The “modal” pushover curves (Fig. 9b) also 
indicate the slight yielding in the first “mode”. The building remains elastic in all higher modes. 
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Figure 9. Pushover curves of Woodland Hills 13-Story building for: (a) four FEMA-356 
distributions; and (b) modal distributions corresponding to first three modes in the MPA 
procedure.  

The results presented for story drift (Fig. 10a) indicate that the FEMA-356 distributions 
provide reasonable estimates at lower stories. However, the FEMA-356 force distributions lead 
to gross underestimation of story drifts in the upper stories (Fig. 10a). As noted earlier, among 
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the four FEMA-356 distributions, the “Uniform” force distribution leads to the worst estimates 
of story drifts. For example, this distribution leads to underestimation of the drift at 12th story 
more a factor of about 3: the story drifts from recorded motions and FEMA-356 “Uniform” 
distributions are 3.01 cm and 1.02 cm, respectively. 

It must be noted that higher mode effects are likely to be significant for this building. 
Therefore, the higher drifts noted in upper stories from the recorded motions are due to higher 
modes. Clearly, FEMA-356 distributions are unable to adequately represent the drifts in upper 
stories due to higher modes. 
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Figure 10. Comparison of (a) displacements and (b) story drifts from recorded motions, MPA 
procedure, and four FEMA-356 NSP analyses for Woodland Hills 13-Story building.  

The MPA procedure for this building in general provides excellent estimates of the story 
drifts (Fig. 10a), except for the 13th story, indicating that the MPA procedure is able to capture 
the effects of higher modes. The comparison of drifts from MPA and those from modal 
decomposition of recorded motions for each mode (Fig. 10b) shows an excellent match between 
the two. Therefore, the slight discrepancy between the results from MPA and recorded motions 
are due to the modal combination procedure, which are likely to be inaccurate for individual 
ground motions. With improved modal combination rules, the accuracy of the MPA procedure 
may be expected to further improve. 

Sherman Oaks 13-Story Commercial Building 

The pushover curves for the longitudinal frame on in the east-west direction of the 
Sherman Oaks 13-Story building are presented in Fig. 11. As noted previously, the characteristic 
– elastic stiffness, yield strength and displacement, and post-yield strength decay – of the 
pushover curve depend on the lateral force distribution (Fig. 11a). The “Uniform” distribution 
generally leads to pushover curve with higher elastic stiffness, higher yield strength, lower yield 
displacement, and more rapid decay in post-yield strength compared to all other distributions. 
The ELF distribution, on the other hand, leads to pushover curve with lower elastic stiffness, 
lower yield strength, and higher yield displacement. The “Mode” 1 and SRSS distribution give 
pushover curves that are essentially identical and bounded by the “Uniform” and ELF curves. 
The first yielding occurs in the beam followed soon after by the first yielding of the column (Fig. 
11a). This building is deformed significantly beyond the elastic limit during the 1994 Northridge 
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earthquake. The “modal” pushover curves (Fig. 11b) also indicate significant yielding in the first 
“mode”. The building remains elastic in all higher modes. However, the yield strength appears to 
be much lower in higher mores compared to the first mode. 
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Figure 11. Pushover curves of Sherman Oaks 13-Story Commercial building for: (a) four FEMA-
356 distributions; and (b) modal distributions corresponding to first three modes in the MPA 
procedure.  

The results presented for story drift (Fig. 12a) indicate that among the four FEMA-356 
distributions, the “Uniform” distribution always leads to the largest drifts in the lower stories and 
smallest drifts in upper stories. Comparing the drift demands from the FEMA-356 distributions 
with those from recorded motions shows that the FEMA-356 force distributions lead to gross 
underestimation of story drifts in the upper stories and gross overestimation in the lower stories 
(Fig. 12a). Among the four FEMA-356 distributions, the “Uniform” force distribution leads to 
the worst estimates of story drifts. For example, this distribution leads to underestimation of the 
drift at 13th story more a factor of more than 6: the story drifts from recorded motions and 
FEMA-356 “Uniform” distributions are 1.51 cm and 0.24 cm, respectively. On the other hand, 
the drift in the first story is overestimated by a factor of more than 1.5: the story drifts from 
recorded motions and FEMA-356 “Uniform” distributions are 8.05 cm and 13.60 cm, 
respectively. As noted for other buildings, this distribution seems unnecessary in the FEMA-356 
NSP. 

It must be noted that higher mode effects are significant for this building, as apparent 
from higher drifts noted in upper stories from the recorded motions (Fig. 12a). Comparison of 
drifts from recorded motions and the FEMA-356 distributions show that the FEMA-356 
distributions are unable to adequately capture the effects of higher modes. 

The MPA procedure for this building in general provides excellent estimates of the story 
drifts (Fig. 12a), except for the 1st story, indicating that the MPA procedure is clearly able to 
capture the effects of higher modes; the MPA overestimates the drifts in the first story. The 
comparison of drifts from MPA and those from modal decomposition of recorded motions for 
each mode (Fig. 12b) shows an excellent match between the two. Therefore, the slight 
discrepancy between the results from MPA and recorded motions are due to the modal 
combination procedure, which are likely to be inaccurate for individual ground motions. With 
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improved modal combination rules, the accuracy of the MPA procedure may be expected to 
further improve. 
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Figure 12. Comparison of (a) displacements and (b) story drifts from recorded motions, MPA 
procedure, and four FEMA-356 NSP analyses for Sherman Oaks 13-Story Commercial building.  

Conclusions 

This research investigation on evaluation of the FEMA-356 NSP and MPA procedure 
using recorded motions of buildings that were damaged during the 1994 Northridge earthquake 
has led to the following conclusions. 

1. The FEMA-356 NSP leads to significant underestimation of drifts in upper stories of the 
selected buildings. The underestimation ranges by a factor of 13 for the Van Nuys building to 
3 for the Sherman Oaks building. 

2. The FEMA-356 NSP is unable to account for higher mode effects, which typical contribute 
significantly to the drifts in upper stories. 

3. The FEMA-356 NSP leads to significant overestimation – by a factor of 1.5 – of drift in 
lower stories for Van Nuys and Sherman Oaks buildings. 

4. Among the four FEMA-356 distributions, the “Uniform” force distribution leads to the most 
excessive underestimation in upper stories and overestimation in the lower stories. Therefore, 
this distribution seems unnecessary in the FEMA-356 NSP. 

5. The FEMA-356 NSP is expected to provide reasonable estimate of the response if the higher 
mode effects are deemed not to be significant based on the FEMA-356 criterion. Although 
the FEMA-356 criterion is satisfied for the Van Nuys building, the drifts in upper stories are 
significantly underestimated indicating the need to re-examine the FEMA-356 criterion for 
evaluating significant higher mode effects. 

6. The MPA procedure provides much better estimates of drifts compared to the FEMA-356 
NSP, and is able to account for the higher mode effects. 

7. The response for each mode in the MPA procedure matched closely with the modal response 
obtained from decomposition of the recorded motions, indicating the observed discrepancy 
between the response from MPA and recorded response is due to limitations in the 
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combination procedure. With development of the improved combination procedures, 
accuracy of the MPA procedure is likely to improve. 
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