
SMIP23 Seminar Proceedings 

23 

 

INHERENT DAMPING DURING NONLINEAR SEISMIC RESPONSE 

Dionisio Bernal 

Civil and Environmental Engineering Department, Center for Digital Signal Processing, 
Northeastern University, Boston MA 02115 

 

Abstract 

An approach to interrogate measured response on the behavior of inherent damping 
during nonlinear excursions is presented. The scheme computes a signal that approximates the 
base shear (to within a scalar) and decides on the inherent damping during nonlinear excursions 
on the premise that the derivative of this signal, with respect to time, is small within these 
segments. Preliminary results suggest that the inherent damping model should include a 
reduction in effectiveness when hysteretic dissipation is activated.  

 

Introduction 

A long-standing open question in evaluating the response of buildings to strong 
earthquakes is whether the model used to capture energy dissipation not associated with damage 
should be modified, or remain unchanged, when hysteretic behavior is activated [1-6]. This 
question has been difficult to resolve because the inherent damping model is a surrogate for the 
aggregate of a number of unspecified mechanisms, calibrated to match decay rates observed for 
small vibrations, but for which there is no mechanistic support. We note in passing that use of 
mass and stiffness matrices to specify the classical damping model (wherein damped and 
undamped eigenvectors coincide, as is the case in the Rayleigh model or in the more general 
Caughey series [7,8]) is justified by the simplicity that it brings but is not mechanistically 
supported.    

Lack of a mechanistic model for inherent damping indicates that (apart from consistency 
from an energy perspective) the only way to decide on the merit of any postulated model is from 
seismic response observations. On the question of coupling between hysteresis and pseudo-
viscosity the main obstacle to a data-supported resolution comes from the fact that the stiffness 
restoring forces cannot be directly measured and cannot be estimated with sufficient accuracy 
from a model to allow computation of the damping forces from equilibrium. We attempt to make 
some headway by shifting the focus from dynamic equilibrium to the rate of change of the terms 
in the equilibrium equations and by simplifying the spatial distribution of the damping forces (to 
be described). The information infused to arrive at a workable scheme is the contention that the 
rate of change of a scalar measure of the unknown stiffness contribution, not always, but in many 
cases, is small enough to be discarded. We designate the interrogation scheme that results from 
the previous ideas as the “Inherent Damping Nonlinear Behavior” (IDNB) extractor. This paper 
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presents the theoretical support of IDNB, reports on the current progress in its validation and 
limitations and includes some initial results from application to data recorded during strong 
shaking in buildings from the CSMIP database.  

 

The Basic Ideas 

Let 𝐼𝐼(𝑡𝑡),𝐷𝐷(𝑡𝑡),𝑅𝑅(𝑡𝑡)represent the vectors of inertia, damping and restoring forces during a 
generally nonlinear response. Equilibrium for base excitation requires that 

 𝐼𝐼(𝑡𝑡) + 𝐷𝐷(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 0 (1)  

our goal is to determine if something can be said, primarily from data, about what happens to the 
mechanism that generates 𝐷𝐷(𝑡𝑡)during intervals when 𝑅𝑅(𝑡𝑡)reflects significant nonlinearity. To 
move forward we pre-multiply by the transpose of the column vector of ones (𝑟𝑟when used 
subsequently) and introducing obvious notation write 

 𝑉𝑉𝑅𝑅(𝑡𝑡) = −�𝑉𝑉𝐼𝐼(𝑡𝑡) + 𝑉𝑉𝐷𝐷(𝑡𝑡)� (2) 

To make things tractable we take the damping forces at any time as those that would have 
existed if the damping matrix was invariant, times a modulation that is to be determined, namely, 
we take them as  

                                        𝐷𝐷(𝑡𝑡) = 𝜌𝜌(𝑡𝑡)𝐶𝐶0�̇�𝑢(𝑡𝑡)            (3) 

where �̇�𝑢(𝑡𝑡) =vector or relative velocities and 𝜌𝜌(𝑡𝑡)is a scalar. Differentiating Eq.3 with respect to 
time and substituting the result into the derivative of Eq.2 writes 

                                           �̇�𝑉𝑅𝑅(𝑡𝑡) = −��̇�𝑉𝐼𝐼(𝑡𝑡) + 𝜌𝜌(𝑡𝑡)𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(𝑡𝑡) + �̇�𝜌(𝑡𝑡)𝑟𝑟𝑇𝑇𝐶𝐶0�̇�𝑢(𝑡𝑡)�         (4) 

Results of numerical simulations suggest that the third term on the right-hand side of 
Eq.4 is small compared to the other two, so we simplify by taking �̇�𝜌(𝑡𝑡) = 0 and get 

     �̇�𝑉𝑅𝑅(𝑡𝑡) = −��̇�𝑉𝐼𝐼(𝑡𝑡) + 𝜌𝜌(𝑡𝑡)𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(𝑡𝑡)�                 (5)       

Assume, temporarily, that the disjointed time intervals when inelasticity is extensive have 
been determined and have been aggregated into the time segment �̃�𝑡. Restricting evaluation of 
Eq.5 to these times one has 

                                          �̇�𝑉𝑅𝑅(�̃�𝑡) = −��̇�𝑉𝐼𝐼(�̃�𝑡) + 𝜌𝜌(�̃�𝑡)𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(�̃�𝑡)�          (6) 

At this point we replace 𝜌𝜌(�̃�𝑡) with a constant �̄�𝜌 and while the equality cannot hold at all times 
after this replacement, it can be preserved at the level of norms, so we take the 2-norm and get 
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                                                         ��̇�𝑉𝑅𝑅(�̃�𝑡)� = ���̇�𝑉𝐼𝐼(�̃�𝑡) + �̄�𝜌𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(�̃�𝑡)��          (7) 

where it’s a simple matter to show that  

                                                   �̇�𝑉𝑅𝑅(�̃�𝑡) = 𝑟𝑟𝑇𝑇𝐾𝐾𝑇𝑇(�̃�𝑡)�̇�𝑢(�̃�𝑡) (8) 

with 𝐾𝐾𝑇𝑇=structure’s tangent stiffness. Substituting Eq.8 into Eq.7 writes 

                                              𝑟𝑟𝑇𝑇𝐾𝐾𝑇𝑇(�̃�𝑡)�̇�𝑢(�̃�𝑡) = −��̇�𝑉𝐼𝐼(�̃�𝑡) + 𝜌𝜌(�̃�𝑡)𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(�̃�𝑡)�          (9) 

Since 𝐾𝐾𝑇𝑇(�̃�𝑡) is not known the lhs of Eq.9 cannot be explicitly evaluated, but if the term is 
small, relative to‖𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(�̃�𝑡)‖, it appears reasonable to decide on �̄�𝜌as the value that minimizes the 
rhs of the Eq.7. We can summarize as follows: 

 

• The IDNB scheme computes a value, �̄�𝜌, such that the inherent damping 
during nonlinear excursions is estimated as 𝜉𝜉𝑛𝑛𝑛𝑛𝑛𝑛 = �̄�𝜌𝜉𝜉, where 𝜉𝜉is the damping 
ratio that holds if the structure behaved linearly. The value of �̄�𝜌is taken as 
that which minimizes the rhs of Eq.7 

 

Is the Discarded Term Small Enough? 

 A necessary condition for minimization of the rhs Eq.7 to give meaningful results for �̄�𝜌is 
that   

      ‖𝑟𝑟𝑇𝑇𝐾𝐾𝑇𝑇(�̃�𝑡)�̇�𝑢(�̃�𝑡)‖ ≪ ��𝑟𝑟𝑇𝑇𝐶𝐶0�̈�𝑢(�̃�𝑡)��      (10) 

In a shear building where first story yielding dominates the lhs of Eq.10 is exactly zero 
(in the absence of strain hardening) and the inequality is guaranteed satisfied. In general, 
however, one does not know if this is so, and it seems that all that can be said is that if it’s not 
satisfied �̄�𝜌will be overestimated. It is not unreasonable to wonder whether the constraint in Eq.10 
is ever satisfied when real data is considered so we tried to see if a relation that shed some light 
on the question could be derived. A useful expression obtained using approximations with 
bounded errors could not be found but a very rough result is as follows: assume the damping 
matrix C0 is stiffness proportional with a fundamental mode damping 𝜉𝜉, so that 𝐶𝐶0 =
2𝜉𝜉𝜔𝜔−1𝐾𝐾and express the tangent stiffness as a fraction of the initial matrix, namely 𝐾𝐾𝑇𝑇 = 𝜂𝜂𝐾𝐾. 
With these replacements and taking 𝑏𝑏 = 𝑟𝑟𝑇𝑇𝐾𝐾one finds that Eq.10 translates to 𝜂𝜂‖𝑏𝑏�̇�𝑢(�̃�𝑡)‖ ≪
2𝜉𝜉𝜔𝜔−1‖𝑏𝑏�̈�𝑢(�̃�𝑡)‖ which, taking ‖𝑏𝑏�̈�𝑢(�̃�𝑡)‖ ≅ 𝜔𝜔‖𝑏𝑏�̇�𝑢(�̃�𝑡)‖gives 𝜂𝜂 ≪ 2𝜉𝜉. The foregoing states that 
satisfaction of the constraint hinges on the tangent stiffness scaling being small compared to 
twice the critical damping ratio of the fundamental mode. This examination is too rough to allow 
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solid assertions, but it appears to leave open the possibility that the constraint may be satisfied, 
which would not be the case if the result had been 𝜂𝜂 ≪ 0.02𝜉𝜉. 

 

On the selection of �̃�𝑡 

 The signal in Eq.9 is a reordered version of the signal of Eq.5, subsequently truncated to 
a length �̃�𝑡. The reordering is done with the goal of making the early values have a high 
probability of being points when inelasticity is extensive, with the approach used thus far being 
to order the points in increasing absolute value. The truncating length �̃�𝑡is in principle the 
aggregate length of all the yielding segments (although a fraction should also work) and in the 
numerical section we’ve taken it to be within 1 to 2% of the strong motion. 

   

Inherent Damping Models 

Since the inherent damping behavior is unknown, validation of IDNB must be carried out 
in simulations. Specifically, one postulates various inherent damping models that are coupled 
with the hysteresis response as well as constant damping one and the goal is to determine 
whether or not IDNB can discriminate between them using signals from a limited number of 
floors (plus information on the location of the sensors and the relative values of the story 
weights). For this purpose, we selected 3 previously proposed inherent damping models plus a 
new one introduced here designated as the 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 model. Nonlinear damping models that 
require that the eigenvalue problem be solved each time the tangent stiffness changes have also 
been proposed but we decided not to include them since they are computationally expensive and 
have not been put forth with compelling theoretical support. 

 

Rayleigh Damping with Tangent Stiffness 

A generalization of the widely used Rayleigh damping model, introduced to realize a loss 
of effectiveness during plasticity takes the damping matrix, C, as 

                                                       𝐶𝐶 = 𝛼𝛼𝐶𝐶 + 𝛽𝛽𝐾𝐾𝑇𝑇 (11) 

where M = mass matrix, KT = tangent stiffness matrix and 𝛼𝛼,𝛽𝛽are constants. The complexity 
with which the tangent stiffness is formed can vary from the simple elasto-plastic hinges to the 
much more computationally intensive distributed plasticity models that are widely used in 
research but less so in conventional seismic engineering practice. Since the model of Eq.11 is the 
same as the standard Rayleigh model during elastic response, computation of the constants 𝛼𝛼,𝛽𝛽is 
not affected by the anticipated nonlinearity. The model in Eq.11 has been around for a long time 
and is sometimes viewed with reservation because of the abrupt changes in the damping that 
accompany the changes in stiffness in lumped plasticity models and because it can reach 
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conditions where the damping can add energy to the system because some eigenvalues turn 
negative. The first item leads to unbalances that are highly localized in time and have little effect 
in the global response and the second, except perhaps in studies where the focus is dynamic 
instability, is seldom active. We take the opportunity to note, however, that a potentially 
important issue in modeling damping, albeit not restricted to the Rayleigh model, is the 
appearance of unbalanced forces at massless coordinates [9,10]. 

 

Luco and Lanzi (2017)  

Luco and Lanzi [6] introduced a model where the damping matrix is taken as 

                                                                 𝐶𝐶 = 𝐶𝐶0𝐾𝐾−1𝐾𝐾𝑇𝑇                     (12) 

where C0 is any arbitrary damping matrix and K is the initial stiffness. One issue that is worth 
noting in the model of Eq.12 is that the matrix C is not necessarily symmetrical. 

 

Lanzi and Luco (2018)  

Shortly after the appearance of the model in Eq.12 the same authors propose a model for the 
damping that writes [10] 

                                                                           𝐶𝐶 = 𝐾𝐾𝑇𝑇𝐾𝐾−1𝐶𝐶0𝐾𝐾−1𝐾𝐾𝑇𝑇          (13) 

which removes the noted lack of symmetry and eliminates the possibility of negative 
eigenvalues. The reason for the last observation being that the damping matrix in Eq.13 is a 
congruent transformation of C0, and congruent transformations do not change the number of 
positive, negative and zero eigenvalues of a matrix. A curious byproduct of the same property is 
the fact that as an eigenvalue of the tangent stiffness approaches zero the dissipation in a 
particular velocity pattern does the same but if the inelasticity continues and some eigenvalue of 
the second order tangent stiffness is rendered negative the dissipation increases again.  

 

 CSMIP𝜿𝜿 

A feature common to all the previous models is that they cannot be modified in the 
plastic range without changing behavior when the response is linear. The model introduced in 
this project, which takes the damping matrix as 

      𝐶𝐶 = �‖𝐾𝐾𝑇𝑇‖
‖𝐾𝐾‖

�
𝜅𝜅
𝐶𝐶0 (14) 
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where C0 is arbitrary, 𝐶𝐶is a free parameter and ‖. ‖stands for the 2-norm, has this tunning ability. 
As can be seen, when 𝐶𝐶 = 0 the model reverts to a constant damping matrix and as 𝐶𝐶increases 
the magnitude of the inherent damping during the inelastic response decreases.  

 

On the Damping Matrix for Small Amplitude Response 

 Evaluation of the rhs of Eq.9 requires that a damping matrix for the initial elastic 
response, C0 be established; some possibilities are discussed next. 

 

Classical Damping 

Any classical damping matrix can be written as 

                                                 𝐶𝐶 = 𝐶𝐶�∑ 𝜗𝜗𝑗𝑗𝜙𝜙𝑗𝑗𝜙𝜙𝑗𝑗𝑇𝑇𝑛𝑛
𝑗𝑗=1 �𝐶𝐶 (15) 

where  𝜗𝜗𝑗𝑗 = 2𝜔𝜔𝑗𝑗𝜉𝜉𝑗𝑗and 𝜙𝜙𝑗𝑗, 𝜔𝜔𝑗𝑗 and 𝜉𝜉𝑗𝑗are the mass normalized mode shape, frequency and the 
damping ratio of the jth mode, respectively. In an experimental setting the rank of the matrix in 
Eq.15 will equal the number of identified modes and there is, of course, the issue of having only 
a limited number of monitored levels, which requires that the mode shapes be expanded. The 
rank issue is not expected to have practical relevance but the need for a significant identification 
effort followed by modal expansion does not make Eq.15 attractive. 

 

Identification Free Extraction 

 If the response is measured at all coordinates the damping matrix can be extracted from 
the data without requiring system identification. The scheme shares with Eq.15 the fact that the 
mass matrix must be known but no modal truncation is incurred. To illustrate let the seismic 
response prior to the development of inelastic action be gathered in matrices �̈�𝑌, �̇�𝑈,𝑈𝑈 ∈
ℜ𝑛𝑛×𝑁𝑁containing, as columns, vectors of absolute acceleration, relative velocities and relative 
displacements, with n=number of levels in the building and 𝑁𝑁 =the total number of time steps 
used. Since we’ve assumed that the response is linear during the data collection one can write 

                                                𝐶𝐶�̈�𝑌 + 𝐶𝐶�̇�𝑈 + 𝐾𝐾𝑈𝑈 = 0 (16) 

Selecting 𝑁𝑁 > 𝑛𝑛 guarantees there are right null spaces and taking  

                                                             𝑈𝑈𝛤𝛤 = 0 (17) 

one has (from Eq.16)  
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            𝐶𝐶�̇�𝑈𝛤𝛤 = −𝐶𝐶�̈�𝑌𝛤𝛤          (18) 

so the damping matrix is given by 

  𝐶𝐶 = −𝐶𝐶�̈�𝑌𝛤𝛤��̇�𝑈𝛤𝛤�+          (19) 

where the superscript + stands for pseudo inversion. If the mass matrix is known and all the 
levels are measured Eq.19 would be the method of choice but in the common scenario where 
only some levels are measured the reconstruction of the response may introduce significant error, 
so we do not opt for this alternative either. 

 

Mass Proportional Damping 

A simple and very convenient approach for our purposes is to take the initial damping 
matrix as mass proportional. The reason being that in this case both the first and the second terms 
on the rhs of Eq.9 are proportional to M and this eliminates dependence on the actual values of 
the mass, leaving only the much simpler demand of estimating the relative values. Another 
attractive feature being that sensor density has no effect on the estimation of C0 and that all that 
is required from system identification is an estimate of the frequency and damping of the 
fundamental mode. There is, in fact, not even a need to separate these two quantities since their 
product is the real part of the pole of the fundamental mode, which is what is actually computed 
in the identification. It is true, of course, that the mass proportional model allows control over 
one mode only, but one suspects that this is not a significant issue in this case. 

 

Response Reconstruction 

 The large majority of instrumented structures for which records are available have 
sensors in a subset of all the floors so to apply IDNB it is necessary to reconstruct the response in 
some levels. Much has been done in this area and there are techniques with various levels of 
refinement [11,12]. Interpolation schemes are projections of the measurements on a basis that 
covers the full building height. These bases can be defined using estimated mode shapes or 
determined by functions that depend on the position of the sensors, as is the case in the widely 
used Cubic Spline (CS) or can be interpolations of the left side singular vectors of the data 
matrix (in which case the response can be segmented, and different basis formulated for different 
time intervals). In all cases, however, if inelasticity produces localized distortions, the results can 
degrade notably. Consider, for example, a two-story structure where the second floor and the 
ground are measured, and one is interested in estimating the drift in both levels. In the linear case 
reasonable results are expected but in the nonlinear case the true response (but not the prediction) 
will be strongly dependent on the distribution of the inelasticity.  

 To illustrate quantitatively consider an 8-story shear structure with sensors only on the 
even number floors and assume one is to reconstruct the unmeasured floors using a cubic spline. 
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Fig.1 plots the reconstructed absolute acceleration in the 7th level and compares it with the exact 
result for two conditions, one where the earthquake is scaled so that the response is linear and the 
other where inelasticity is significant. As can be seen, the accuracy in the case of the linear 
response is good but in the case with nonlinearity the error is important. 

                        

Figure 1. Normalized acceleration on the 7th level of an 8-story structure; reconstructed (in red) 
and exact result (in blue) for two conditions a) linear response and b) nonlinear response (max 
story ductility around 3)  

 

Summary of IDNB 

• Use a part of the data where (quasi) linear response can be anticipated and some system 
identification approach to estimate the frequency and damping of the first mode (real part 
of the first pole) (see Technical Note) 

• Define the mass proportional damping matrix for small response amplitudes using the 
above results.   

• Select an interpolation scheme and reconstruct the response at unmeasured levels. 
• Use the pattern of story weights (actual values not needed) to compute an estimate for the 

history of the inertial base shear, 𝑉𝑉𝐼𝐼(𝑡𝑡) 
• Use the mass proportional damping matrix to compute the derivative of the constant 

damping base shear �̇�𝑉𝐷𝐷(𝑡𝑡) as 𝑟𝑟𝑇𝑇𝐶𝐶𝑛𝑛�̈�𝑢, where �̈�𝑢are the relative accelerations 
• Differentiate 𝑉𝑉𝐼𝐼(𝑡𝑡)numerically. 
• Compute �̇�𝑉𝑅𝑅(𝑡𝑡) = �̇�𝑉𝐼𝐼(𝑡𝑡) + �̄�𝜌�̇�𝑉𝐷𝐷(𝑡𝑡)for values of �̄�𝜌covering some selected range, e.g., 

−0.1 ≤ �̄�𝜌 ≤ 1.5 
• Sort ��̇�𝑉𝑅𝑅(𝑡𝑡)�in ascending and decide on �̃�𝑡. 
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• Plot the norm of the signal of the previous bullet vs �̄�𝜌and identify the minimum. If the 
minimum occurs at values of �̄�𝜌that are notably larger than 1 the constraint of Eq.10 is not 
satisfied and the information on inherent damping during nonlinearity cannot be extracted 
using IDNB. 
 

Technical Note: Although the response before the strong motion has the damping of the 
reference state, this segment is just a few seconds long and thus too short to perform a reliable 
identification. One can use the segment that follows the strong motion, which is typically much 
longer but must then keep in mind that in this case the�̄�𝜌from IDNB refers to a scaling of the 
damping that prevails after the strong motion. Although the “late response” linear damping is the 
same as the one at the outset in common nonlinear models, this is unlikely to be the case in real 
buildings, especially in the case of concrete. What we’ve done on this account when IDNB is 
applied is to take the reference damping as that obtained using the shortest signal (starting at t = 
0) for which the first pole appears in the identification, provided this signal does not have a 
significant fraction in the strong motion region. When the signal that starts at the origin proves 
too long, we compute the reference damping using the linear response that follows the strong 
motion.  

 

Validation 

To get a sense of what is the best attainable performance we consider the situation where 
accelerations are available at every level and the damping matrix for small amplitude response is 
known. For conciseness we limit the examination to an 8-story shear building with a symmetrical 
plan and consider two ground motions, both recorded during the Northridge earthquake. The 
masses, story stiffness, and the yield levels are: m=14(1,1,1,1,1,1,1,1}, 
k=1.91e4{1,1,1,0.7,0.7,0.7,0.5,0.5} and Vy =800{1,1,1,0.9,0.9,0.7,0.7} in units of kips, ft and 
secs, with the periods of the first 3 modes = {1.0, 0.368,0.232} secs. The simulations are carried 
out for 4 alternative inherent damping models, namely: a) Constant b) CSMIPκ (𝐶𝐶 = 4) c) Lanzi 
and Luco and d) Rayleigh with tangent stiffness. The goal is to determine if application of the 
scheme allows correct identification of models with hysteretic coupling and constant damping. 

 

Ground Motion #1 

Ground motion #1 is the record from channel #3 of CSMIP station 24436 during the 17 
June 1994, Northridge Earthquake, a station that is located at the Tarzana Cedar Hill Nursery. 
The record itself, and the shear force vs drift relation for the first story of the model, computed 
under the premise that the damping is 5% in every mode and uncoupled from hysteresis, are 
depicted in Fig.2. 



SMIP23 Seminar Proceedings 

32 

 

 

Figure 2. a) ground motion #1 b) first floor shear force drift response. 

As can be seen, the inelasticity is significant, with a displacement ductility in the first 
level slightly larger than 3. The shear force vs drift relationship, as shown in (b), follows a Bouc-
Wen model.  Fig 3 shows the results from application of IDNB. 

 

 

               

 

 

 

 

 

Figure 3. ��̇�𝑉𝑅𝑅� (normalized) for �̃�𝑡 = 1.5𝑠𝑠𝑠𝑠𝑠𝑠 (𝛥𝛥𝑡𝑡 = 0.02𝑠𝑠𝑠𝑠𝑠𝑠) vs 𝜌𝜌for a) constant damping b) 
𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 with 𝐶𝐶 = 4  c) Lanzi and Luco d) Rayleigh damping with tangent stiffness (5% in every 
mode). 

 As can be seen, the minimum in Fig.3a is reached in the vicinity of 1, correctly pointing 
to the fact that in this instance the damping matrix is constant. The results in (b) depicts a 
minimum at around 0.5, which gives an idea of how a nonlinearity with the extent shown in 
Fig.2 is mapped to �̄�𝜌 by the CSMIP𝐶𝐶 model with 𝐶𝐶 =4. For the damping model proposed by 
Lanzi and Luco the minimum takes place very near zero, suggesting that this model produces 
large reductions in the inherent damping during the nonlinearity and finally in (d) which shows 
the result for the  Rayleigh model with tangent stiffness, the minimum is only slightly to the left 
of the result for 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 wit 𝐶𝐶 = 4. suggesting that these two models, at least in this example, 
produce comparable reductions.  
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Ground Motion #2 

 We consider the same recording station but use the horizontal record orthogonal to the 
previous one, which now corresponds to channel 1. The plot of the motion and the shear vs drift 
relation, which are depicted in Fig.4, show that the extent of inelasticity is somewhat larger than 
for motion #1. The maximum response ductility reaching a value slightly over 4.                                

                    

Figure 4. a) ground motion #2 b) first floor shear force drift response. 

 Instead of repeating the same cases as in Fig.3, we examine results obtained for data 
generated using the 𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 model with different values of 𝐶𝐶, namely: 0,2,4 and 6. For𝐶𝐶 = 0the 
damping is constant and for the others the location of �̄�𝜌is expected to shift progressively to the 
left. The results in Fig.5 confirm these expectations.  

                                                         

Figure 5. Normalized ��̇�𝑉𝑅𝑅�for �̄�𝑡 = 1.5𝑠𝑠𝑠𝑠𝑠𝑠vs , responses from𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 a-d) 𝐶𝐶 = 0,2,4,6, 
respectively. 

IDNB on Real Building Data 

CSMIP station 12299 
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The sensor deployment is depicted in Fig.6. The largest structural response at this station, 
0.62g, is for the Palm Spring earthquake of 1986 and we thus choose this record for examination. 
We select channels {13,12,11,10} in the N-S direction for examination. From inspection of the 
time history of the excitation the strong is taken to span from time step 100 to 550. System 
identification showed that (the negative) of the real part of the 1st pole is 0.29. The sampling 
frequency is 50 Hz. 

 

Figure 6. Sensor layout at station 12299 

 The rhs of Eq.7 (normalized) are depicted in Fig.7. The results, as can be seen, are 
reasonably consistent and point to a reduction in the effectiveness of inherent damping on the 
order of 50%          

                                   

Figure 7. Normalized  ��̇�𝑉𝑅𝑅�for �̃�𝑡=7,8 and 9 𝛥𝛥𝑡𝑡. 
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CSMIP Station 14606 

The sensor deployment is depicted in Fig.8. The largest structural response at this station, 
0.49g, is for the Northridge earthquake and we chose the response of channels [3,5,8,11] for 
examination. From inspection of the time history of the input we take the strong motion to span 
from time step 1200 to 3189. System identification shows that (the negative) of the real part of 
the 1st pole is 0.447. The sampling frequency is 100 Hz.  

 

 
Figure 8. Sensor layout at station 14606 

 

The rhs of Eq.7 (normalized) is depicted in Fig.9 for three assumed “yielding” durations. 
The result, again, is reasonably consistent and point to a reduction in the effectiveness of 
inherent damping on the order of 60%         
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Figure 9. Normalized  ��̇�𝑉𝑅𝑅�for �̃�𝑡=40, 45 and 50 𝛥𝛥𝑡𝑡 

 

CSMIP station 24322 

The sensor deployment is depicted in Fig.10. The largest structural response at this 
station, 0.90g, is for the Northridge earthquake and we chose the response to this input for 
examination. We select the N-S direction and take the input motion (given the rigid basement) as 
the measurement at the ground floor. The channels used are {11,8,5,2} and we take the strong 
motion from time step 80 to 570. System identification gives (the negative) of the real part of the 
1st pole as 0.091. The sampling frequency is 50 Hz. 

 

Figure 10. Sensor layout at station 24322. 
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In this case the results for the scaling constant, as shown in Fig.11, consistently point to a 
minimum that is reached at a scaling larger than one, indicating (or presumably indicating) that 
the constraint of Eq.10 is not satisfied. In this case the IDNB interrogation does not hold.          

 

Figure 11. Normalized  ��̇�𝑉𝑅𝑅�for �̃�𝑡=6,8 and 10 𝛥𝛥𝑡𝑡. 

Concluding Observations 

 The IDNB scheme attempts to extract information on the behavior of inherent damping 
during nonlinear excursions by assuming that the rate of change of the base shear during some of 
these excursions is small enough to be discarded in equilibrium considerations. Since the 
foregoing assumption is not guaranteed satisfied the approach does not hold for all nonlinear data 
sets but this is not an important impediment since the goal is not to make assertions about 
particular structures, but to test which of the two propositions: a) constant pseudo-viscosity or b) 
some coupling with hysteresis, is the more plausible one. The results thus far suggest that the 
effectiveness of the inherent damping model may in fact decrease when hysteresis sets in, but it’s 
important to stress that the reliability of this observation is conditional on the validation of IDNB 
which, at this point, has only been done for responses from shear building models with Bouc-
When hysteresis without hardening. Work to determine the reliability of the scheme when the 
response signals come from more complex nonlinear models is currently ongoing. 
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