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Abstract 
 

This paper presents a methodology to obtain the time history of the structural response 
using the Temporal Convolutional Network, a deep learning method. The presented 
methodology, in conjunction with sensor data from instrumented buildings, facilitates the 
prediction of the response in future earthquakes without the need for a structural analysis model. 
In this way, a computationally effective complement, or even alternative, to standard nonlinear 
time history analysis is possible. The applications of the developed method for different cases, 
including available number of records, buildings with higher mode effects, and linear and 
nonlinear response, are explored using accelerometer data from buildings instrumented by the 
California Strong Motion Instrumentation Program. Fundamental concepts of structural response 
and structural dynamics are used to guide the development of the training datasets and to explain 
the predictions. Furthermore, interpretation of the results is presented using earthquake 
engineering concepts. 

Introduction 
 

There are three fundamental methods used to determine the dynamic response of 
structures, namely, (a) installing sensors on real structures, (b) testing physical models of the 
structures in the laboratory, and (c) analyzing the numerical models of structures using 
computational methods. Among these methods, the first is the most realistic as it is based on the 
measurements from the real structures. However, there is scarcity of instrumented real 
structures. Laboratory testing also provides realistic information when the tests are conducted on 
accurate physical models of the entire structure or its components. Drawbacks of this method are 
time, cost, and laboratory space constraints. Based on the accuracy of the employed 
mathematical assumptions, the third method is relatively less realistic compared to the first two. 
However, it is the most common and convenient approach because of the availability of the 
many computational platforms to conduct the analysis.  

 
This paper aims at developing a methodology to obtain the time history of the structural 

response using a deep learning approach, namely the Temporal Convolutional Network (TCN). 
When the developed methodology is adopted in conjunction with sensor data from instrumented 
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buildings, it can facilitate the prediction of the response in future earthquakes without the need 
for a structural analysis model. In this way, the proposed methodology can complement or even 
provide a computationally effective alternative to nonlinear time history analysis. The 
applications of the developed method are presented to assess the minimum number of records 
for accurate training, and to study buildings with linear and nonlinear response and higher mode 
effects. In all applications, accelerometer data from buildings instrumented by the California 
Strong Motion Instrumentation Program (CSMIP) are used. 

 
There has been a limited number of studies in the literature to predict the structural 

response using deep learning. Some of these studies focused on predicting only the peak 
response (Zhong et al., 2023). Although the peak response is important in design, assessment, 
and Performance-Based Earthquake Engineering (PBEE), the entire response history provides a 
more complete description of the structural behavior. One particular use of the entire response 
history is detection of the existence, severity, and location of damage in Structural Health 
Monitoring (SHM), where the peak response is generally insufficient for this purpose (Muin and 
Mosalam, 2017, 2018; Park and Ang, 1985, Park et al., 1985). Considering the importance of 
predicting the entire response history, there has been a few studies focused on predicting the 
entire response using machine learning (e.g., Chen et al., 2023; Zhang et al., 2019; Kundu and 
Chakraborty, 2020; Li and Spence, 2020). These studies focused on either a structural 
component or a single instrumented building and have not provided detailed physical 
explanations of the data-driven predictions. This paper applies the developed methodology to 
several instrumented buildings with different characteristics and attempts to explain the results 
using concepts of structural dynamics. Furthermore, interpretation of the results is presented 
using earthquake engineering concepts. 

 
Following this introduction, the paper provides a brief overview of the adopted TCN, 

followed by an explanation of the metrics used to assess the accuracy of the predictions. 
Subsequently, the paper discusses the linear response predictions of instrumented mid-rise 
buildings governed by the fundamental mode of response and a tall building with higher mode 
effects. This is followed by investigating the nonlinear response predictions. Finally, conclusions 
and future studies are discussed. 

 
Temporal Convolutional Network 

 
The TCN was proposed by Lea et al. (2017) and is a powerful and innovative deep 

learning architecture designed for processing sequential data, particularly for time-series analysis 
and natural language processing tasks. TCNs are built upon the Convolutional Neural Networks 
(CNNs) but they can be adapted to model temporal dependencies in sequential data, making 
them suitable for tasks which require understanding patterns and trends over time. TCNs employ 
a stack of one-dimensional convolutional layers to efficiently learn dependencies across different 
time steps. This design allows TCNs to utilize parallel computing, which makes them efficient 
and fast to train. TCNs have gained popularity due to their ability to capture long-range 
dependencies in sequential data without suffering from the vanishing gradient problem often 
encountered by other deep learning methods, like Recurrent Neural Networks (RNNs). They 
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have been successfully applied in various domains, such as natural language processing, speech 
recognition, and sensor data analysis.  

 
Accuracy Evaluation Metrics 

 
The metrics used for evaluating the accuracy of the predictions of the adopted TCN are: 

1) correlation coefficient, 2) probability distribution of the errors, 3) errors in the peak response, 
4) frequency contents of the response (obtained from the response spectrum or the Fourier 
amplitude spectrum), and 5) Cumulative Absolute Velocity (CAV). The first two metrics are 
statistical parameters, where the correlation coefficient and the error at time step i are defined 
with Equations 1 and 2, respectively. As discussed earlier, the peak response is commonly used 
in design, assessment, and PBEE. Therefore, it needs to be predicted accurately. The third metric 
focuses on the accuracy of the prediction of the peak response (Equation 3). Comparisons of the 
frequency contents of the true and predicted responses provide fundamental insights into how the 
predictions can be improved, e.g., if the dominant frequency in the response is not captured 
properly, this indicates that the natural frequencies of the building are not “learned” properly by 
the TCN providing guidance on how to improve the predictions, as discussed later. Finally, CAV 
(Equation 4) is shown to be a reliable indicator of damage (Muin and Mosalam, 2017), which 
needs to be predicted accurately for any consequent detection of damage from the predicted 
response using SHM. 
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where, 𝑦𝑦𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑦𝑦𝑖𝑖
𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 are respectively the true and predicted responses at time step i, 𝑦𝑦�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

and 𝑦𝑦�𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝 are the mean values of the true and predicted responses, respectively, n is the 
number of time steps, and max indicates the peak response.  
 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇) = ∫ |�̈�𝑢(𝑡𝑡)|𝑑𝑑𝑡𝑡𝑝𝑝=𝑇𝑇
𝑝𝑝=0           (4) 

where T is the current time at which CAV is computed (typically it is the entire duration of the 
time series) and �̈�𝑢(𝑡𝑡) is the response acceleration at a given time t. 
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Linear Elastic Response Prediction of Low and Mid-Rise Buildings 
 
Single Degree of Freedom (SDOF) Numerical Model 

For verification of the developed TCN model and its implementation, the displacement 
and acceleration responses of a linear elastic SDOF system are predicted and compared with the 
actual computed results. For this purpose, a SDOF system is considered with a period of 0.41 sec 
and damping ratio of 2.35% and is trained using 11 motions and tested using 7 motions. The 
chosen period and damping ratio are those identified for the San Bernardino 6-story hotel in the 
NS direction, which is discussed next. The motions used for training and testing are the recorded 
ground and response accelerations of the same hotel building. Using the metrics discussed 
earlier, both displacement and acceleration predictions are very accurate with a correlation 
coefficient of 99.99% over the 7 tested motions, verifying the implementation of the TCN 
method. The predicted acceleration and displacement time histories are compared with the 
computed ones (referred to as real) for one of the test motions (Fontana Earthquake of 25 July 
2015) in Figure 1, along with the comparison of the frequency contents, showing a very close 
match. 
 

  
(a) (b) 

  
(c) (d) 

Figure 1. Comparison of predicted and computed (a) acceleration time history, (b) frequency 
content from acceleration, (c) displacement time history, and (d) frequency content from 
displacement, for the linear elastic SDOF system in one of the test motions (Fontana Earthquake 
of 25 July 2015). 

0 10 20 30 40 50 60 70 80 90

Time [sec]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Ac
ce

le
ra

tio
n 

[g
]

Prediction

Real

0 0.5 1 1.5

Period [Sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Sa

 [g
]

Prediction

Real

0 10 20 30 40 50 60 70 80 90

Time [sec]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

D
is

pl
ac

em
en

t [
in

ch
]

Prediction

Real

0 0.5 1 1.5

Period [sec]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fo
ur

ie
r A

m
pl

itu
de

10
-3 Event2 Roof

Prediction

Real



SMIP23 Seminar Proceedings 

5 
 

The response of an elastic SDOF system subjected to ground motions depends only on: (a) 
the natural period of the SDOF system, (b) the damping ratio of the SDOF system, and (c) the 
applied ground motion, which are considered as the three features to be learned by the TCN for 
subsequent predictions (Table 1). The highly accurate predictions of the SDOF system indicate 
that the TCN model is successful in learning the period and the damping ratio (Features 1 and 2, 
respectively, in Table 1) and the training model has enough variety of the ground motions for the 
model to learn the response of this system when subjected to different excitations (Feature 3 in 
Table 1). 
 

Table 1. Features that characterize the earthquake response of different structural systems. 
System Feature 1 Feature 2 Feature 3 
Linear Elastic SDOF  Natural period Damping ratio 

Ground motion 

Low and Mid-rise 
Buildings Linear Elastic First mode period Varying first mode 

damping ratios 
Tall Buildings Linear 
Elastic 

Multiple modes 
periods  

Multiple modes 
damping ratios 

Low and Mid-rise 
Buildings Nonlinear 

First mode period 
elongation 

Varying first mode 
damping ratios 

 
6-Story Reinforced Concrete (RC) Hotel Building in San Bernardino 

After this fundamental step of demonstrating that the implemented TCN model is 
successful in predicting the response history of an elastic SDOF system numerical model, 
predictions are performed for the linear elastic response of two instrumented CSMIP buildings 
(Figure 2). The first is a 6-story RC Shear Wall (RCSW) hotel building in San Bernardino, 
California, designed in 1970. This building is instrumented with 9 accelerometers, three on each 
of the 1st, 3rd, and 6th (roof) floors, and has recorded multiple seismic events from 1987 to 
2018. The EW and NS direction responses of this building are studied in this section for the 
linear response and in a later section for the nonlinear response. In the EW direction, Channel 1 
on the 1st floor is used as input, and Channels 4 and 7, on the 3rd floor and roof, respectively, are 
used as outputs. It is noted that the 1st floor boundary conditions are fixed. Therefore, Channel 1 
directly represents the ground motion input to the structure. There are a total of 26 events 
recorded by this station, where records 1 to 11 and records 12 to 18 are respectively used for 
training and testing, Table 2, which lists the Peak Ground Acceleration (PGA) and Peak Floor 
Acceleration (PFA) for the EW and NS directions. As shown in Figure 3, the motions used in the 
training set cover the entire range of shaking levels recorded on this building. It is possible to use 
another Intensity Measure (IM) to define the horizontal axis of this figure, however the PGA is 
used for simplicity as the objective is not to use the IM for quantitative damage detection or 
other purposes, but it is rather to characterize the training and testing set motions on a plot with 
experienced shaking levels. As discussed later, 11 motions were sufficient for predicting accurate 
results for the linear elastic response in the EW direction, and more motions were utilized for 
capturing the nonlinear response in the NS direction. 
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(a) (b) 

  
(c) (d) 

Figure 2. Sensor locations and photographs of (a, b) 6-story building at San Bernardino and (c, 
d) 4-story building in Hemet.  
 

 
Figure 3. The training and testing sets used for the San Bernardino 6-story building EW 
direction. 
 

For the input-output pairs, two cases are used: (i) the unprocessed accelerations, and (ii) 
CSMIP processed accelerations that use bandpass filters and baseline correction. Accuracy of the 
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training and testing sets for both cases, computed using the correlation coefficient (Equation 1), 
are reported in Table 3. The training accuracy of 0.97 for both the unprocessed and processed 
data shows that there are no major outliers in the set. From the testing set accuracies, it is 
observed that training of both unprocessed and processed data result in successful predictions. 
However, using the unprocessed data results in more accurate predictions, although the 
difference is small. This observation is not specific to this building and has been observed for the 
other two studied instrumented buildings. The explanation of this observation is that the 
processed output is not necessarily the direct result of the processed ground motion input. 
Therefore, the relationship between the input and output deviates slightly from true physics when 
processed data is used for input and output. Considering the higher accuracy using the 
unprocessed data, the rest of the paper reports the results that use unprocessed data. 

 
Table 2. San Bernadino 6-story hotel training and testing records. 

# Earthquake Name PGA 
NS (g) 

PFA NS 
(g) 

PGA 
EW (g) 

PFA 
EW (g) 

1 Borrego Springs Area Earthquake of 07 Jul 2010 0.053 0.2 0.024 0.045 
2 Devore Earthquake of 29 Dec 2015 0.049 0.106 0.054 0.121 
3 Fontana Earthquake of 15 Jan 2014 0.04 0.089 0.034 0.044 
4 Inglewood Area   Earthquake of 17 May 2009 0.008 0.027 0.008 0.016 
5 Ocotillo Area Earthquake of 14 Jun 2010 0.006 0.022 0.006 0.014 
6 San Bernardino Earthquake of 08 Jan 2009 0.058 0.168 0.094 0.219 
7 Beaumont Earthquake of 14 Sep 2011 0.02 0.041 0.027 0.064 
8 La Habra Earthquake of 28 Mar 2014 0.021 0.033 0.024 0.077 
9 Loma Linda Earthquake of 13 Mar 2017 0.022 0.05 0.025 0.038 
10 Ontario Earthquake of 20 Dec 2011 0.004 0.009 0.004 0.014 
11 Yorba Linda Earthquake of 07 Aug 2012 0.009 0.016 0.003 0.01 
12 Beaumont Area Earthquake of 16 Jan 2010 0.006 0.013 0.005 0.013 
13 Big Bear Lake Earthquake of 05 Jul 2014 0.01 0.03 0.011 0.029 
14 Fontana Earthquake of 25 Jul 2015 0.011 0.025 0.01 0.021 
15 Loma Linda Earthquake of 08 Oct 2016 0.01 0.017 0.008 0.012 
16 Devore Earthquake of 28 Apr 2012 0.017 0.043 0.01 0.029 
17 Loma Linda Earthquake of 04 Mar 2013 0.007 0.017 0.012 0.032 
18 Chino Hills Earthquake of 29 July 2008 0.05 0.113 0.036 0.117 

 
Table 3. Accuracy of the San Bernardino 6-story building acceleration predictions in the E-W 
direction. 

Data Correlation Coefficient 
Training Set Testing Set 

Unprocessed 0.97 0.91 
Processed 0.97 0.88 
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The high accuracy indicated by the correlation coefficient is also supported by the narrow 
probability distribution of the normalized error (Equation 2) with the mean close to zero (Figure 
4). The predicted acceleration time histories at the 3rd and 6th (roof) floors are compared with 
the recorded time histories for one of the test motions (Fontana Earthquake of 25 July 2015) in 
Figure 5, along with the comparison of the frequency contents, showing a close match at both 
floors in the time and frequency domains. Comparison of peak values indicated an error of -
4.80% and -4.94% according to Equation 3. 
 

 
Figure 4. Narrow probability distributions of the normalized prediction errors in the EW 
direction at the 3rd and 6th (roof) floors of the San Bernardino 6-story building. 
 

It is inevitable in real instrumented buildings to prevent the peak prediction errors 
completely. Therefore, the errors in the peak predictions can be interpreted from the following 
two perspectives related to their use in earthquake engineering:  
(1) Epistemic uncertainty is due to errors in mathematical modeling, where the error due to the 

TCN model is an example. Therefore, in design and assessment of buildings, the results of a 
single ground motion are not used. ASCE7-22 (2022) requires 11 motions for nonlinear 
dynamic analysis and a varying number of ground motions (e.g., 20) is essential for 
probabilistic PBEE (Günay and Mosalam, 2013). Accordingly, in addition to the individual 
motion results, comparison of the probability distributions of the true and predicted responses 
are helpful for evaluating the accuracy of the predictions. The PFA at the 3rd and 6th floors 
are assumed to follow a lognormal probability distribution, which are computed using the 
peak values of all test motions and plotted for the true and predicted accelerations in Figure 
6. It is observed that the resulting probability distributions are close to each other at both 
floors, illustrating the accuracy of the predictions from this perspective. 

(2) The relationship between estimated peak response and damage is obtained using fragility 
functions. Another way of evaluating the peak prediction is the comparison of damage 
probability corresponding to the predicted and real results. As an example, the fragility 
function of a cooling tower, assumed to be located at the roof of the San Bernardino 6-story 
hotel building, is shown in Figure 7. The damage state that this fragility function represents is 
that the cooling tower and attached piping are damaged. It is defined by a mean of 0.5g and a 
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dispersion of 0.4 (FEMA-P58, 2018a, b). The probability of exceedance (POE) of this 
damage state, using the predicted and true 6th floor PFA for the Chino Hills Earthquake of 07 
Aug 2012 (Figure 5), are 5.9% and 6.8%, respectively. In addition to the damage prediction 
for this single event, the POE in the fragility function [(𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝐶𝐶), Figure 7] can be 
integrated with the probability of true and predicted PFA [𝑝𝑝(𝑃𝑃𝑃𝑃𝐶𝐶), Figure 6b] using the total 
probability theorem, resulting in the POE of the damage state considering all the test motions 
[𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷), Equation 5]. It is noted that the probability of the damage state is equal to POE 
because only one damage state is used herein. Therefore, the resulting probability of damage 
to a cooling tower located at the roof of the 6-story San Bernardino hotel building, 
considering all 7 test motions, is 0.33% and 0.30%, respectively, when the true and predicted 
peaks are used. 

 
𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷) = ∑ 𝑃𝑃𝑃𝑃𝑃𝑃(𝐷𝐷𝐷𝐷|𝑃𝑃𝑃𝑃𝐶𝐶)𝑝𝑝(𝑃𝑃𝑃𝑃𝐶𝐶)𝑃𝑃𝑃𝑃𝑃𝑃          (5) 

 
The above discussion presented the results from a probabilistic PBEE perspective based 

on peak predictions. As discussed earlier, the entire response history is important to characterize 
the full structural behavior, and in this context the CAV (Equation 4) is a parameter that is closely 
related to damage and is a suitable metric to evaluate the predictions. Figure 8 shows the CAV of 
the predicted and true accelerations for one of the test motions (Chino Hills Earthquake of 07 
Aug 2012). From this figure, similar to the acceleration time histories, it is observed that the CAV 
time histories of the predicted and true accelerations are very close to each other, showing that 
the predicted response can be used reliably to identify damage.  
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(a) (b) 

  
(c) (d) 

Figure 5. Comparison of predicted and recorded acceleration time history and the corresponding 
frequency contents in the EW direction of the San Bernardino 6-story building at (a, b) 3rd floor, 
(c, d) 6th floor (Chino Hills Earthquake of 07 Aug 2012). 
 

  
(a) (b) 

Figure 6. Probability distributions of predicted and recorded PFA of the San Bernardino 6-story 
building at the (a) 3rd and (b) 6th floors. 
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Figure 7. Fragility function for a cooling tower assumed to be located at the 6th floor (roof) of 
the San Bernardino 6-story building. 
 

  
(a) (b) 

Figure 8. CAV of the true and predicted PFA at the (a) 3rd and (b) 6th floors of the San 
Bernardino 6-story building (Chino Hills Earthquake of 07 Aug 2012). 

 
Considering these accurate predictions with an 11-motion training set, a parametric study 

is performed for exploring the minimum number of records needed for acceptable accuracy of 
the trained model. The number of records used in training is accordingly varied between 1 and 11 
and the 3rd and 6th floor accelerations are predicted for each case (Figure 9). Time histories, 
peak responses, and correlation coefficients are used as parameters for the evaluation of the 
trained model accuracy. The time history predictions for the Chino Hills Earthquake of 07 Aug 
2012 in Figure 9 are similar in general, indicating that the TCN model is capable of accurately 
learning the entire time history pattern even with 1 or 2 motions. The correct prediction of the 
time history pattern indicates that the model successfully learns the dominating first mode in this 
case. This similarity of the predicted time history patterns is also supported by the correlation 
coefficients in Figure 10(a), which remain unchanged around 0.95 from a training set size of 11 
down to 4. However, the error in the peak response, Figure 10(b), increases more dramatically 
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from 5% for a training set size of 11 to 15% for a training set size of 8. This is attributed to lack 
of the ability of the TCN model to successfully learn the varying damping ratios over the 
different levels of motions when the number of motions in the training set is reduced. 

 
From a structural dynamics perspective, the linear elastic response of a Multi-Degree of 

Freedom (MDOF) system depends on the natural periods, damping ratios, and mode shapes. The 
response of low and mid-rise buildings is generally governed by the first mode, which is also the 
case for the San Bernardino 6-story hotel building. Therefore, similar to the SDOF system 
previously discussed, the features that define the response are the period and damping ratio of the 
first mode and the ground motion itself (Table 1). It is noted that the response also depends on 
the mode shape, however the first mode shape and the modal participation factor can be 
considered as a constant scale factor for all motions and therefore the mode shape is not listed as 
a feature in Table 1 for this system. 

 
Although all motions are in the linear elastic range as observed by the identified natural 

periods, damping ratios vary because of the contribution and complexity of different mechanisms 
to damping at different intensities (Figure 11). The phenomenon of varying damping levels in 
linear elastic response is well-known (e.g., Chopra, 2012; Cruz and Miranda, 2017). Even for the 
same motion in forced vibrations or ambient conditions, the damping ratio varies from segment 
to segment of the motion (Brownjohn et al., 2018). For proper training, the number of motions in 
the training set should be sufficient to capture different levels of damping ratios. The selected 
motions should have different intensities to capture these different damping ratios. Therefore, a 
few motions are not sufficient for learning the damping ratio feature as opposed to the case for 
the period feature and more motions are needed in the training set for accuracy in predicting the 
damping. From the results of this case study, 10 ground motions are clearly sufficient for 
learning these features (period and damping) and for consequent accurate predictions. 
 

  
(a) (b) 

Figure 9. Comparison of predicted acceleration time histories for the San Bernardino 6-story 
building using different number of records in training: (a) 3rd floor, and (b) Roof. 
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(a) (b) 

Figure 10. Effect of number of records used in the training set for the San Bernardino 6-story 
building in terms of (a) correlation coefficient of the predictions, and (b) peak error. 
 

  
(a) (b) 

Figure 11. Identified (a) fundamental mode periods, and (b) damping ratios of the San 
Bernardino 6-story building. 
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Figure 12, 10 are used for training (based on the study of the effect of the training set size for the 
San Bernardino 6-story building linear elastic response) and 3 are used for testing. As observed 
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recorded on this building and the 3 tested motions are those that lie at the middle of this range. 
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(a) (b) 

Figure 12. The training and testing sets used in the Hemet 4-story building (a) EW, and (b) NS 
directions. 
 

Similar to the San Bernardino building, high correlation coefficients are obtained for the 
training and testing sets and unprocessed data provided slightly more accurate predictions (Table 
4). Sample predictions are shown for one of the motions in Figure 13, showing the accuracy of 
the predictions in the NS and EW directions. Similar to the San Bernardino building, the TCN 
model was successful in learning the entire time history of the response of the building, including 
its natural period and the varying damping ratios, using 10 motions in the training set. 
 
Table 4. Accuracy of the Hemet 4-story building acceleration predictions in the EW and NS 
directions. 
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modes present in the response. This 54-story building is a Steel Moment Resisting Frame 
(SMRF) building with composite slabs of 2.5 inches thick concrete over 3 inches steel deck 
located at Los Angeles (LA), Figure 14. As shown in this figure, the building is instrumented 
with 20 accelerometers at the basement (4 levels below ground), ground level, and the 20th, 
36th, 46th and penthouse floors. There are Virendeel trusses and 48-inch deep transfer girders at 
the 36th and 46th floors where vertical setbacks occur. Because there is a sudden change of 
stiffness at these locations, increased accelerations are expected, and sensors are placed at these 
floors for monitoring this expected increase of the accelerations. 
 

  
(a) (b) 

  
(c) (d) 

Figure 13. Comparison of predicted and recorded acceleration time history and the 
corresponding frequency contents in the (a, b) EW and (c, d) NS directions of the Hemet 4-story 
building (Banning Earthquake of 06 Jan 2016). 
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(a) (b) 

Figure 14. Sensor locations and photograph of the 54-story building at Los Angeles. 
 

In this case study, which has 11 recorded motions, 10 motions, same as the number 
recommended and used, respectively, for the San Bernardino and Hemet buildings, are used for 
training and the remaining one motion is used for testing (Figure 15). The testing motion in the 
EW direction is particularly interesting as the PFA is smaller than the corresponding PGA. This 
can be due to multiple reasons, including (a) the shape of the response spectrum for this motion, 
where the response acceleration at the first mode period of the building is smaller than the PGA, 
and (b) multiple modes counteracting and reducing the accelerations. The successful predictions 
in the EW and NS directions at the 46th floor for the considered test motion are shown in Figure 
16. This figure demonstrates that the trained TCN model is successful in learning more complex 
responses obtained as a superposition of multiple modes and the 10-motion training set results in 
accurate responses as in the cases of San Bernardino and Hemet buildings.  
 

  
(a) (b) 

Figure 15. The training and testing sets used for the LA 54 story building (a) EW, and (b) NS 
directions. 
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(a) (b) 

Figure 16. The 46th story acceleration predictions for the 56-story building in LA: (a) EW, and 
(b) NS directions (Chino Hills Earthquake of 29 July 2008). 
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well matched, indicating that increasing the number of motions in the training set from 11 to 23 
led to successful learning of the increase of the period elongation with increased shaking 
intensity.  
 

  
(a) (b) 

Figure 17. Identified periods of the San Bernardino 6-story hotel building in (a) EW, and (b) NS 
directions in different earthquakes. 
 

  
(a) (b) 

Figure 18. Comparison of inaccurately predicted and true (a) acceleration time history, and (b) 
the corresponding frequency content, in the NS direction of the 6-story building in San 
Bernardino (Fontana Earthquake of 25 July 2015). 
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Figure 19. The set used in the San Bernardino 6-story building NS direction to improve accuracy 
(Testing data includes three moderate events and all others used for Training data). 
 

  
(a) (b) 

  
(c) (d) 

Figure 20. Comparison of (improved) predicted and recorded acceleration time history and the 
corresponding frequency contents in the NS direction of the San Bernardino 6-story building at 
(a, b) 3rd floor, (c, d) 6th floor (Chino Hills Earthquake of 07 Aug 2012). 
 

0 0.01 0.02 0.03 0.04 0.05 0.06

PGA NS (g)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PF
A 

N
S 

(g
)

training

testing

0 10 20 30 40 50 60 70 80

Time [sec]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Ac
ce

le
ra

tio
n 

[g
]

Prediction

Real

0 0.5 1 1.5

Period [Sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
 [g

]

Prediction

Real

0 10 20 30 40 50 60 70 80

Time [sec]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Ac
ce

le
ra

tio
n 

[g
]

Prediction

Real

0 0.5 1 1.5

Period [Sec]

0

0.1

0.2

0.3

0.4

0.5

0.6

Sa
 [g

]

Prediction

Real



SMIP23 Seminar Proceedings 

20 
 

These successful predictions highlight an important and unique characteristic of obtaining 
the response using a machine learning approach. As discussed earlier, the potential reasons for 
the observed period elongation with increased intensity of shaking are concrete cracking, 
foundation rocking, and disengagement of partition walls or the loss of contributions from any 
other nonstructural components. None of these aspects are considered explicitly in the common 
physics-based computational models developed for dynamic analysis. Even if they are modeled, 
there is a large epistemic uncertainty associated with this type of modeling. Therefore, the 
obtained data-driven TCN model results show that the adopted machine learning approach fills 
this gap very well and results in accurate structural response prediction that would not be 
possible using conventional means. This case study also highlights two important aspects worthy 
of future investigation, namely, the effect of increased training dataset (justifying need for more 
instrumented systems) and use of physics-based and data-driven models hand in hand in a digital 
twin setting of the different structural systems where the digital twin complements and helps 
interpreting findings from the physical twin.  
 

Conclusions and Future Directions 
 

This paper focused on the use of Temporal Convolutional Network (TCN) models for 
obtaining the structural response in the form of time histories. Models were trained using the data 
from several instrumented buildings with different characteristics to predict the response. The 
results were explained using concepts of structural dynamics and applications in earthquake 
engineering. The conclusions of the study are summarized as follows: 

1. The developed TCN Model was verified by training and testing on a linear elastic Single 
Degree of Freedom (SDOF) system. 

2. The use of raw data results in more accurate predictions as compared to the use of 
California Strong Motion Instrumentation Program (CSMIP) processed data. This is 
because the processed output is not necessarily the direct result of the processed ground 
motion input. Therefore, the relationship between the input and output deviates slightly 
from true physics when processed data is used for input and output. 

3. The TCN model was successful for systems that are characterized by not only relatively 
simple features, such as a numerical SDOF system characterized by a single natural 
period and damping ratio, but also those with more complex response such as a tall 
building with multiple modes of vibration contributing to the overall response.  

4. A training set size of 10 motions was sufficient for predicting the response of low-, mid-, 
and high-rise buildings in the linear elastic range. 

5. The correlation coefficient and error in peak response resulted in different conclusions 
about the minimum number of records needed for accuracy. The error in peak response 
should be used as the preferred parameter for evaluating the accuracy, as the peak 
response is commonly used for design, assessment, and Performance-Based Earthquake 
Engineering (PBEE) and needs to be predicted accurately. 

6. The training dataset should include enough motions with varying intensities, frequency 
contents, and other characteristics for the TCN model to learn the dynamic 



SMIP23 Seminar Proceedings 

21 
 

characteristics of the buildings (denoted as features) as well as the relationship between 
the ground motion frequency contents and intensities and these dynamic characteristics. 

7. The probability distributions of the predicted and true peak responses were observed to 
be quite similar. This demonstrated that the TCN model predictions can be confidently 
used for characterizing the response to multiple ground motions, which is required by 
building standards and PBEE. 

8. The predicted and true responses from multiple test motions, along with relevant 
fragility functions, were used to compute the probability of damage of a cooling tower 
assumed to be located at the roof of one of the instrumented buildings. The resulting 
probability of damage was very close using the true and precited responses. This 
preliminary exercise provides confidence in the model predicted responses to detect 
nonstructural (and structural) damage. 

9. To demonstrate the importance of predicting the entire time history, Cumulative 
Absolute Velocity (CAV), a parameter closely correlated to damage, was computed using 
the predicted and true responses and the resulting CAV time histories were very close to 
each other. 

10. The slight nonlinear response of the San Bernardino 6-story building in the NS direction, 
as indicated by the period elongation with increasing shaking intensity, was successfully 
predicted by the TCN model using a 23-motion training set. As expected, the required 
number of motions in the training set was larger than that needed for the elastic 
response, but it was a manageable number, given the available records of this case study. 
The number of recorded motions required for accurate training is expected to increase 
with the increased level of the nonlinear response. 

11. The successful predictions of the nonlinear response highlighted that a machine learning 
approach can be a viable solution to predict this response accurately, as the potential 
sources of the specific nonlinearity observed here are very rarely considered with 
confidence in conventional physics-based computational models in common engineering 
practice. 
 

Several planned near-future studies include: (1) application of the TCN models to 
buildings with (a) irregularities (such as torsion), (b) larger levels of nonlinear response, and (c) 
potential soil-structure interaction, (2) prediction of displacements, and (3) predicting the 
responses of selected instrumented buildings in future earthquakes, among others. 
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