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The California Strong Motion Instrumentation Program (CSMIP), a program within the 
California Geological Survey (CGS) of the California Department of Conservation, records the 
strong shaking of the ground and structures during earthquakes for analysis and utilization by the 
engineering and seismology communities, through a statewide network of strong motion 
instruments (www.conservation.ca.gov/CGS/smip).  CSMIP is advised by the Strong Motion 
Instrumentation Advisory Committee (SMIAC), a committee of the California Seismic Safety 
Commission.  Major program funding is provided by an assessment on construction costs for 
building permits issued by cities and counties in California, with additional funding from the 
California Governor’s Office of Emergency Services (Cal OES), the Office of Statewide Health 
Planning and Development (OSHPD) and the California Department of Transportation (Caltrans) 

In July 2001, the California Governor’s Office of Emergency Services (Cal OES) began funding 
for the California Integrated Seismic Network (CISN), a newly formed consortium of institutions 
engaged in statewide earthquake monitoring that grew out of TriNet, funded by FEMA, and 
including CGS, USGS, Caltech and UC Berkeley. The goals are to record and rapidly 
communicate ground shaking information in California, and to analyze the data for the 
improvement of seismic codes and standards (www.cisn.org).  CISN produces ShakeMaps of 
ground shaking, based on shaking recorded by stations in the network, within minutes following 
an earthquake.  The ShakeMap identifies areas of greatest ground shaking for use by OES and 
other emergency response agencies in the event of a damaging earthquake. 

The Center for Engineering Strong Motion Data (CESMD) is operated by the CSMIP in 
cooperation with the National Strong-Motion Project (NSMP), a part of the Advanced National 
Seismic System (ANSS) of the U.S. Geological Survey (USGS).  The CESMD builds on and 
incorporates the CISN Engineering Data Center and will continue to serve the California region 
while expanding to serve other ANSS regions.  The Data Center provides strong-motion data 
rapidly after a significant earthquake in the United States.  Users also have direct access to data 
from previous earthquakes and detailed information about the instrumented structures and sites. 
The CESMD also provides access to the U.S. and international strong ground motion records 
through its Virtual Data Center (VDC). The Data Center is co-hosted by CGS and USGS at 
www.strongmotioncenter.org 

DISCLAIMER 

Neither the sponsoring nor supporting agencies assume responsibility for the accuracy of the 
information presented in this report or for the opinions expressed herein.  The material presented 
in this publication should not be used or relied upon for any specific application without 
competent examination and verification of its accuracy, suitability, and applicability by qualified 
professionals.  Users of information from this publication assume all liability arising from such 
use. 

www.strongmotioncenter.org
www.cisn.org
http://www.conservation.ca.gov/CGS/smip
http://www.cisn.org
www.strongmotioncenter.org
www.conservation.ca.gov/CGS/smip
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 The California Strong  Motion Instrumentation  Program (CSMIP) in the California  
Geological Survey of the California  Department of Conservation established a Data  
Interpretation Project in 1989.  Each year CSMIP funds several data  interpretation contracts for 
the analysis  and utilization of strong-motion data.  The primary objectives of the Data  
Interpretation Project are to further  the understanding of strong ground shaking and the response  
of structures, and to increase the utilization of strong-motion data  in improving post-earthquake  
response, seismic code provisions and design practices.  

 

 
 

    
 

  
    

   

 The SMIP20  Seminar is divided  into  two sessions in the morning and two sessions  in the  
afternoon.  There are seven  presentations on the results  from CSMIP-funded projects  and two  
invited presentations.  The sessions in the morning include  four  presentations.  The first session  
will focus on  ground motion issues.  Professor  Stewart  of UCLA  will present on the  application 
of HVSR parameters in ergodic site  response  modeling.   He  will be  followed by a presentation 
from P rofessor Bozorgnia  of UCLA  on ground motions recorded during the 2019 Ridgecrest  
earthquake sequence.  The second session will  also  focus on ground motion issues.  Professor  
Taciroglu  of UCLA  will present on nonlinear dynamic  soil properties  characterized from  
geotechnical array data.  Doctor  Roten of San Diego State University w ill then present  on site 
amplification estimates from geotechnical  array data.   

 The two sessions in the  afternoon include five  presentations  which focus  on structural  
response topics.  In the  third session, Professor  Kunnath  of UC  Davis  will present on  ASCE-41 
acceptance criteria for  linear and nonlinear procedures.  He  will be followed by a presentation 
from Professor Zareian  of UC Irvine  on code torsional provisions for semi-rigid diaphragms.  
The last session  will include  a presentation on bridge  health monitoring by Professor  Mosalam  of 
UC Berkeley, and two invited presentations on structural health monitoring topics by  Doctor  
Farrar of Los Alamos National Laboratory  and Professor McCallen of the University of  Nevada 
Reno.   Individual  papers and the proceedings are available for  download by the SMIP20  
participants at  the provided link, and  will be available at  the CSMIP website  in the  future.  
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PREFACE 

As part of the Data Interpretation Project, CSMIP holds annual seminars to transfer 
recent research findings on strong-motion data to practicing seismic design professionals, earth 
scientists and post-earthquake response personnel.  The purpose of the annual seminar is to 
provide information that will be useful immediately in seismic design practice and post-
earthquake response, and in the longer term, useful in the improvement of seismic design codes 
and practices.  Proceedings and individual papers for each of the previous annual seminars are 
available at http://www.conservation.ca.gov/cgs/smip/seminar in PDF format.  Due to State 
budget constraints, CSMIP did not hold an annual seminar in 2010 or 2011.  The SMIP20 
Seminar is the twenty-ninth in this series of annual seminars. 

Daniel Swensen 
CSMIP Data Interpretation Project Manager 
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HVSR DATABASE AND MULTI-MEASUREMENT CONSISTENCY FOR 
CALIFORNIA SITES 

T. Gospe(1), P. Wang  (1),  P. Zimmaro(1,2) , J.P.  Stewart(1)   

(1) Department of Civil & Environmental Engineering, UCLA
(2) University of Calabria, Italy 

Abstract 

Frequency-dependent horizontal-to-vertical  spectral ratios (HVSR) can provide 
information on site  resonant frequencies, which are potentially useful  for predicting site  
amplification. We adapt  a relational  database developed to  archive and disseminate VS  data to 
include HVSR and investigate the consistency of HVSR derived from  different 
measurements of  ambient noise  (temporary instruments, permanent instruments) and  
earthquake recordings. The database as a whole consists of 2,797 sites in  California.  HVSR  
consistency  is analyzed  using subsets of sites with multiple data sources;  noise and seismic 
data are consistent for 60% of sites,  whereas different noise measurements have about 75%  
consistency.   

Keywords: horizontal-to-vertical spectral ratios, resonant frequencies, site response, 
relational database 

Introduction 

Seismic site response is influenced by several factors, including: resonance,  
nonlinearity, amplification due to impedance contrasts, and amplification related to wave  
propagation in sedimentary basins. Ground-motion models predict  site response conditioned  
on relatively simple site  parameters such as the  time-averaged shear wave velocity (VS) to 30 
m  depth (VS30) and the depth to 1 km/s or 2.5 km/s  VS  (z1.0 or  z2.5) (Bozorgnia  et al., 2014). 
These models are referred to as ergodic (Anderson and Brune, 1999)  even if the site 
parameters are measured on site. The  underlying models  are ergodic because they are  derived 
from  large global or regional databases, and as such are not site-specific.  

Any particular site would be expected to produce site  amplification that departs from 
the ergodic estimate for  a variety of  reasons related to location-specific  geologic conditions. 
A site amplification  model that accounts for the effects of these features on site  amplification  
is non-ergodic  (e.g., S tewart et  al., 2017). One common feature of non-ergodic  site response  
is resonance at one (fundamental site frequency,  f0) or more site frequencies (Di  Alessandro 
et al.,  2012;  Bonilla et al., 2002;  Bonilla et al., 1997), which produce peaks that  are smoothed 
out in ergodic models. While not currently used in NGA models  nor in general practice,  
horizontal-to-vertical Fourier amplitude  spectral  ratio (HVSR)  vs. frequency plots have the  
potential to add this  site-specific attribute to predictions of ergodic site response at  low cost, 
relative to  non-ergodic  procedures. While  VS30  provides a  reasonable, first-order estimate of 
site response over a wide frequency  range (Seyhan and Stewart 2014), f0  can be effective at  
describing site amplification for frequencies proximate  to  f0, but  it has limited utility  
elsewhere.  Hence, the two parameters serve different purposes and we postulate that  they can  
be most  effectively utilized together (Cadet et al., 2012; Gofrani et al., 2013).  
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Current HVSR-based site amplification models,  whether using HVSR parameters  
solely (e.g., Zhao and Xu 2013;  Ghofrani  et al. 2013;  Hassani and Atkinson 2016), or in 
combination with  VS30  (Cadet et al. 2012; Kwak et al. 2017; Hassani  and Atkinson 2017, 
2018; Hashash et al. 2020), are derived using HVSR computed from  the same earthquake  
ground motion data that  is being predicted by the model. This model development practice is  
inconsistent  with how the models would be used in forward applications, which will typically 
be for sites  without earthquake recordings. We  posit that  for HVSR to gain traction in 
California practice, several  technical issues need  to be addressed. Among these are the  
following:  

1. Practical best practices for collecting and analyzing HVSR data need to be developed and 
agreed upon by the informed technical community. 

2. A database of HVSR data, assembled to the extent possible in a manner consistent with 
best practices, should be provided and made publically available. 

3. Procedures for identifying when HVSR peaks are present and should be used in model 
development are needed, as well as procedures for characterizing those peaks (i.e., 
frequency, amplitude, width). 

4. The reliability of HVSR peaks as established from a particular noise-based measurement 
is needed, under the assumption that the measurement is made by a credible analyst. The 
issue in this case is the repeatability of HVSR when measured from noise at different 
times or with different equipment. 

5. The consistency of HVSR peaks as established from earthquake data and noise is needed. 
Noise-based measurements will dominate practical forward applications, but they are 
intended to predict earthquake shaking attributes. As a result, consistency between HVSR 
from these two data sources is desirable. 

6. Development of HVSR-based site amplification models conditioned on interpretations of 
HVSR data (i.e., identification of peaks, peak parameters) in combination with VS30 and 
perhaps sediment depth. 

The aforementioned models derived from ground motion-based HVSR in effect assume that 
earthquake- and noise-based HVSR are perfectly consistent (Issue 5) and that noise-based 
HVSR measurement are fully repeatable (Issue 4). 

This paper presents work on the first  five issues described above. We extend a VS  
profile database (PDB), an early version of which is described by Ahdi et al. (2018), to 
incorporate HVSR  data. Gospe et al. (2020) present a  schema  for the HVSR components of  
the database, which shows information that  is stored and the results that can be readily  
extracted for ground motion studies. That paper  also explains the data processing procedures 
and the procedures used to compute  HVSR from the data. We describe h ere the data  
acquisition process  and external (to the database) routines that can be used to evaluate the 
presence of  peaks and identify HVSR-related parameters used for site response studies. The 
4th and 5th issues above  are also taken up in a preliminary manner using a subset of  the full  
dataset for which  noise signals are available  from two  sources and earthquake recordings are 
available.    
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Data Sources  

Instrument Types 

The database is structured to allow entry of HVSR data from three sources: (1) 
microtremor array  measurements (MAM) obtained from temporary deployments of three-
component  seismometers specifically  targeting noise measurement (Yong et al., 2013); (2) 
three-component instruments installed temporarily or in permanent housings to record ground 
motions, but which can also be used to record non-seismic natural ground vibrations noise)  -- 
often these  instruments  continuously stream data that can be  captured; and (3) seismic  strong 
motions  (Hassani et al., 2019). Most of the data in NGA databases is  from strong motion 
accelerographs, some of  which currently operate  with continuous streaming and others of  
which are  triggered. Moreover, modern deployments often feature strong motion 
accelerographs and co-located  relatively sensitive seismometers. Among sites with  
accelerometers, we have collected HVSR data from sites with co-located continuously-
streamed seismometers and we are currently in  the process of  evaluating the potential  for  
doing this for sites having only accelerometers. For the development of HVSR-based site 
amplification models, sources 1 and  2 are preferred because these match the  data type that  
would generally be used in forward applications.  

Source 1 obtains data from velocity  transducers such as Trillium sensors,  which are 
broadband seismometers, whereas Sources 2 and  3 may utilize seismometers or  
accelerometers. Figure 1 demonstrates the bandwidth and gain for different sensors.  Different  
colors correspond to different sensors, and the dotted vertical  line  indicates the threshold for  
the sensors’  frequency range. The 40T1, L28, L22, L4C, S13, HS10 and the STS2, 3T, ESP, 
40T30, TR240, TR120, TR40 are short period and broadband sensors, respectively (Figure  
1). The sensors with the  largest bandwidth and highest gain are ideal for our analysis because  
these sensors provide  the best signal resolution. Source 2 may come from  velocity 
transducers or  24-bit accelerometers, and the sensor response with respect to period and  
signal amplitude  is illustrated in  Figure  2.   In Figure 2, broadband seismometers such as the  
STS1 capture low earth noise, and accelerometers capture earthquakes. In our study 24-bit 
accelerometers are likely required  so that  microtremor  signals can be captured.  

Figure 1. Different sensor responses and the cutoff between broadband and short period 
sensors as well as low versus high gain sensors. (after IRIS PASSCAL, 2020) 
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A potential challenge with the use of accelerometers, as might be used with Sources 
2-3, is their ability to capture meaningful signals over the frequency range of interest. As 
shown in Figure 2, the motions from “low earth noise” fall below the range from 
accelerometers; if true, this suggests that accelerometers cannot record meaningful noise 
signals for HVSR analysis. Anecdotal evidence, shown in Figure 3, in which HVSR from co-
located seismometers and accelerometers are compared, demonstrates how HVSR from 
accelerometers may not capture low-frequency peaks (in this case below 3 Hz). 

Figure 2. Period and signal amplitudes with respect to sensor response. 

 
 

  
 

 
 

 
    

   
   

   

    
 

 
    

 

 
  

  
 
 

Figure 3. Comparison of HVSR between broadband seismometer and strong motion 
accelerometer 
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HVSR Site Inventory 

While  in California around 1,700 VS  profiles are  publicly available via  the PDB (Ahdi 
et al., 2018), no HVSR site data was  available  from a public repository in  California prior to  
the present effort. We have assembled a database for  HVSR data, which is an extension of the  
PDB. Because of its preferred utility  for site response model  development, we have 
emphasized Source 1 and 2 data in populating the database.  

The largest inventory of  Source 1 HVSR data at  strong motion stations is  Yong et al.  
(2013). The  study (aka:  American Recovery and Reinvestment Act funded project; hereafter  
as ARRA project) presents data from 191 strong-motion stations, the majority of which are  
located in California (187 stations), with an additional four  stations in the central and  eastern  
United States. The ARRA data was provided as  time-domain signals, which was processed in 
the manner  described in Section 3 of  this paper.  Yong et al. (2013) provide 589 HVSR  
results for the 191 sites,  due to multiple measurements  at most sites. Another major data  
source is Geometrics, which shared  HVSR from 638 sites. This data was provided as mean  
HVSR-frequency curves, which has been digitized and added to the database. Additional  
Source 1 contributions  included in the database include:   

1. 33 sites in the Sacramento-San Joaquin Delta (T. Buckreis, personal communication, 
2020). 

2. 40 ground motion accelerograph sites maintained by the California Strong Motion 
Instrumentation Program (CSMIP), part of the California Geological Survey (CGS). 
Reports are from GEOVision (GEOVision, 2016), Petralogix (Petralogix, 2017), and 
GEOVision (GEOVision, 2018). 

3. 24 sites, some of which are ground motion stations, investigated as part of non-ergodic 
ground motion investigations by ENGEO (D. Teague, personal communication, 2020). 

Time series data from the Delta sites was processed as in Section 3 below. For the CSMIP 
and ENGEO sites, we obtained mean HVSR-frequency plots, which were added to the 
database following digitization. 

For Source 2, we queried three data centers: Incorporated Research Institutions for 
Seismology (IRIS), Southern California Earthquake Data center (SCEDC), and the Northern 
California Earthquake Data Center (NCEDC) (IRIS, 2020; SCEDC, 2013; NCEDC, 2014). 
We sampled continuously streamed data for 404 sites instrumented with high-gain 
seismometers with sampling rates between 80-250 Hz. The time series from these data were 
processed using procedures in Section 3. 

Altogether, the database currently contains HVSR data for 1330 sites, locations of 
which are shown in Figure 4. Many of these sites, including all of the ARRA sites, have 
HVSR from both Source 1 and Source 2, which causes the number of HVSR entries (1728) to 
exceed the number of sites (1330). Of the 1330 sites with HVSR, 668 are located in the 
immediate vicinity of strong motion stations. 

Using the data currently incorporated into the PDB, Figure 5 shows the relative  
number of  VS  profiles and HVSR sites in California. Whereas various techniques have been  
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used to collect profile data since the 1960s, the collection of HVSR data is much more recent. 
The sudden jump in microtremor data is from the present project, using the above sources. 

Figure 4. Locations of sites in PDB with HVSR from either temporary deployments (MAM) 
or continuously streaming ground motion sensors (seismometers). 

Figure 5. Cumulative distribution of VS profiles and HVSR data in California versus time. 

Data Interpretation Tools 

The  HVSR database provides plots of  median-component (RotD50, per  Boore 2010)  
or  geometric mean HVSR between time windows and tables showing azimuthal  variations  
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but  does not provide specific parameters derived  from  these results,  such  as might be used as 
site parameters to supplement  VS30. To facilitate such applications, the HVSR data archived in 
the relational database can be accessed via online  Jupyter Notebook tools  (example output in  
Figure  6)  or R-scripts. These tools interact with  the data  to interpret the data. The interpreted 
parameters include (1) identification  of features as peaks; (2) plots  of azimuthal variations of 
HVSR; and  (3) for each  peak in the median-component HVSR, fitting of  a pulse function to 
evaluate peak frequency, peak amplitude, and width of peak. Jupyter notebooks are currently 
available  for (2) and R-scripts are available for (1) and (3) (Jupyter notebooks for these tasks  
are in preparation as of this writing).  We envision that such post-processing tools will be used 
to analyze the data  in the  cloud without the need to download data locally.  

Figure  6  shows an example RotD50  HVSR for the CI.GR2  site  (Griffiths Park  
Observatory) in Los  Angeles, California. Site CI.GR2  is located  near  the nose of a ridge in  
the  Santa Monica  Mountains;  azimuths from  approximately 0-45 deg align approximately 
with  the ridgeline axis, whereas azimuths of 90-180 deg are oriented down-slope for different 
portions of the ridge nose. The strongest 1 Hz resonance is between azimuths ≈ 110-170 deg, 
which roughly aligns with the down-slope directions. In these  down-slope  directions, we  
expect topographic  amplification effects  to be strongest (Di Giulio et al., 2009).   

Figure 6. A site near the Griffith Park Observatory in Los Angeles (CI.GR2). Left: frequency 
versus HVSR from a microtremor recording; right: azimuthal variation of the same recording. 

Peak Identification 

HVSR plots can generally be classified as containing no peaks, one peak, or multiple 
peaks. If there are multiple peaks, we identify the first two peaks (i.e., the two peaks at the 
lowest frequencies). A peak generally indicates the site has strong impedance contrast(s) near 
one or more modal frequencies (e.g., Tuan et al., 2011) whereas multiple peaks may indicate 
multiple impedance contrasts at different depths. When there is no peak present in an HVSR, 
this suggests the site is either underlain with a sediment-filled depth profile that lacks a 
significant impedance contrast or it is a rock site with nearly depth-invariant near-surface 
velocities. 

The mean HVSR curve is used for peak identification. SESAME guidelines  
(SESAME,  2004) provide a procedure for the  identification  of peaks that first considers three  
criteria that  assess the reliability of  the HVSR curve and then considers six conditions  
intended  to  establish  the presence of  a clear HVSR peak. The first two criteria for the  
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reliability of HVSR curves constrain  the minimum required number of sub-windows and 
duration; these requirements are accounted for  in the query and processing procedures  
described  by Gospe et al. (2020). Hence, the additional  procedures used to  identify peaks are  
the third reliability criterion and  the six conditions,  which are listed in Table 1.  

Table 1. Reliability criterion and conditions for peak identification from SESAME (2004) 

In Table  1, fpeak  is the peak frequency of interest  (there could be multiple  fpeak  values 
in a single curve); f  is the independent frequency;  AH/V(f) is the  amplitude of the  HVSR mean  
curve at frequency f; Apeak  is the amplitude at fpeak; σA(f) is  the  standard deviation of  AH/V(f) at 
f; σA(fpeak)  is the standard deviation of  AH/V(f) at fpeak; and σf  is the standard deviation of  fpeak. 
In Table  1, the rows labelled Reliability 3, Clear  5, and Clear  6 are  fpeak-dependent. The  
greater  fpeak  is, the more stringent are the standards for establishing a peak  as reliable and  
clear.   

The six conditions  consider factors such as the  amplitude of  the peak relative to  
ordinates at  neighboring frequencies  and the width of the peak. In the case of the CI.GR2  site,  
the conditions are all satisfied  except for #5, which is not satisfied (the peak is too wide).  

Examination of similar results  from many sites suggest that the criteria in SESAME  
(2004) are too conservative. Alternative criteria  are developed that are more effective at 
identifying  the presence of peaks at  California sites (Wang 2020). These criteria were  
established  based on visual inspections of HVSR  to identify sites with peaks, and for  the  
subset of  those sites that  fail SESAME criteria, identification  of the SESAME criteria that are 
not satisfied. The new recommended criteria are summarized in Table  2 which excludes the  
Clear 5 condition and weakens  other conditions.  
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Table  2.  Suggested new  reliability criterion and peak identification conditions, modified 
from SESAME (2004)  by Wang (2020).  

An R script implements these criteria and determines if an HVSR curve contains a 
peak. The R script allows the user to select the conditions to be satisfied for assessing the 
presence of a peak, and notifies the user of which conditions the a particular peak satisfies. 

Peak Fitting 

For mean HVSR plots with a peak, we fit a Gaussian pulse function adapted from 
Hassani and Atkinson (2016) as follows (Wang 2020): 

1 𝑙𝑙𝑙𝑙(𝑓𝑓/𝑓𝑓 2

                        = 𝑐𝑐 𝑝𝑝𝑖𝑖)𝐹𝐹𝐻𝐻/𝑉𝑉,𝑖𝑖 0,𝑖𝑖 + 𝑐𝑐1,𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 �(− � � �                                         (1)  
2 2𝑤𝑤𝑖𝑖 

where  fpi  is the fitted peak frequency,  c1,i  is the peak amplitude relative to  c0,i, wi  is peak 
width, c0,i  is a frequency-independent constant, i  is the order of peak, and f  is frequency in 
Hz. The fit  is performed using nonlinear regression in R with the  Optim  function, which 
minimizes the sum of squared errors.  Figure  7 shows results for the CI.GR2  site, which 
contains a peak of amplitude 2.8 at  frequency 1.2 Hz.  
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Figure 7. RotD50 HVSR for CI.GR2 site with Gaussian fit to the peak using Eq. (1). 

HVSR Comparisons Between Data Sources 

In the HVSR database, we have processed and stored three types of data, microtremor 
array measurements (MAM), microtremor noise queried from permanently installed 
seismometers continuously streamed data (CSD), and recorded seismic ground motions. As 
described in the Introduction, the reliability and consistency of HVSR are important 
questions related to the eventual development of practice-oriented HVSR models. Here we 
perform a preliminary investigation of these questions using a dataset consisting of 102 sites 
with both MAM and CSD HVSR, and a related dataset of 138 sites with both noise and 
seismic HVSR. In the following subsections, we investigate differences in noise-vs-seismic 
HVSR and noise-based HVSR. The comparisons are made in terms of presence of peaks, 
fitted peak frequencies, and fitted peak amplitudes. 

Comparison Between Earthquake- and Noise-Based HVSR 

As described in Section 3.1, HVSR mean curves can be classified into two broad 
categories, clear peaks and no peaks. Using the criteria in Section 3.1, we have identified the 
presence of peaks for a group of 138 sites with HVSR from common instruments that have 
recorded earthquake motions and CSD. The 138 sites can be divided into four groups: (1) 
both data sources produce peaks, (2) both data sources produce no peak, (3) earthquake 
ground motion HVSR has a peak but CSD HVSR does not, and (4) CSD HVSR has a peak 
but earthquake ground motion HVSR does not. The breakdown of sites into these four groups 
is presented in Table 3.  Figure 8 shows examples of “P-P”, “N-N”, “N-P”, and “P-N” sites. 

Table 3. The comparison of peaks presence from HVSR computed using strong motion and 
CSD 

Eqk: 
CSD 

Pk.: 
Pk. 

No Pk. : No 
Pk. 

No Pk. : Pk. Pk.: No Pk. 

Count 39 45 35 19 

Percent ~28% ~33% ~25% ~14% 
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Figure 8. The examples of HVSR for “P-P”, “N-N”, “N-P”, and “P-N” sites. 
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Table 3 shows that 61% of sites produce consistent results from the noise and 
earthquake HVSR (“P-P” and “N-N” groups) . Among the 74 sites with peaks from noise-
based HVSR, approximately half have peaks in seismic HVSR. This suggests the potential 
for a significant rate of “false positives” (peaks identified from noise that are not present in 
ground motions). Among the 64 sites without peaks from noise-based HVSR, approximately 
⅔ also lack peaks in seismic HVSR. This suggests a relatively low rate of false negatives. If 
these rates of false positives and false negatives persist in the larger database that will be used 
for model development, it will add uncertainty to HVSR-based models. 

An additional important  question is:  if HVSR from both data  sources have peaks, then 
how do the fitted coefficients from  the two sources compare?  To investigate this question, we  
compare fitted parameters for the 39  “P-P” sites in Figure 9. The figure shows that most  
points are along the 45-degree line (15  sites have fp  misfits <  20%), however, 9 sites have  
misfits that exceed  a factor of four.  Overall, the peak  frequencies  are  moderately  correlated  
(correlation coefficient,  ρ  = 0.65). The plot of  ap  indicates a weaker correlation. There are 
more points  below the 45-degree line, which indicates that peak amplitudes from earthquake 
HVSR are generally slightly larger than those from noise HVSR. This finding is consistent 
with strong motion versus noise comparisons found in soft  sites  in Mexico (Lermo and 
Chávez-García, 1994), sites  in Iceland (Field et al., 1995), Greece (Atakan et al., 1997), the  
Garner Valley array in  California  (Lachet et al., 1996), southern Italy (Theodulidis et al., 
1996), and various sites  across Europe (Mucciarelli et al., 2003), the Caribbean, and Tehran 
(Haghshenas et al., 2008).  

Figure  9.   Comparison of  peak  fitted parameters  fp  and ap  from earthquake and noise (CSD)  
data  

 
Comparison Between Microtremor- and Continuously Steamed Noise HVSR 

Similar to Section 4.1, we have identified the presence of peaks for a group of 102 
sites with HVSR derived from ambient noise as recorded by MAMs and CSD. The 
instruments that made these recordings are not co-located, because the MAM sensors could 
not always be positioned directly adjacent to the strong motion station (Yong et al. 
2013). The statistics of peaks and no peaks are presented in Table 4. Figure 10 illustrates 
examples of “P-P”, “N-N”, “N-P”, and “P-N” sites. 
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Table 4. The comparison of peaks presence from HVSR computed using MAM and CSD 
Eqk: CSD Pk.: 

Pk. 
No Pk. : No 

Pk. 
No Pk. : Pk. Pk.: No Pk. 

Count 52 24 8 18 

Precent ~51% ~24% ~8% ~17% 

Table 4 shows that 75% of sites produce consistent peak identification results from 
the two noise-based HVSR (“P-P” and “N-N” groups). We have no reason to suspect one 
noise measurement is preferred to another, so these data reflect the reliability of HVSR when 
only a single measurement is made (there is a ¾ chance that a second measurement would 
produce a similar outcome regarding the presence of a peak). 

We compare the fitted coefficients from the two sources for the 52 “P-P” sites in  
Figure 11. Of the 52 sites, 80% have  fp  values within 20% of  each other, and only 20% have  
misfits  > a factor of four. The correlation coefficient is 0.87.  Inspections of sites that are  
located off of the 1:1 line  (Figure 12)  show that the peaks in  these cases are relatively weak,  
falling only marginally within the peak category. As this work progresses and the peak 
identification procedures are refined, some of  these sites might be re-classified as no-peak 
sites.   The plot of peak amplitudes  (ap) in Figure  11 indicates  a weaker correlation  (𝜌𝜌=0.64)  
than the  fp  results.   

Discussion 

As explained in the  Introduction, the purpose for measuring and compiling HVSR  
data is to use it for the derivation of site parameters that can  be used in ground motion  
models, as  an augment to VS30. In a  typical forward application (i.e., use  of a model to predict  
ground motions that have not yet occurred),  an engineer will  measure HVSR at the site of  
interest, decide if a peak  is present, and if so, identify peak parameters. The comparisons in  
Section 4.2 shows that had the engineer made the noise measurement in a slightly different  
manner, and perhaps at a different time, the  likelihood of obtaining a  significantly different  
outcome  is small but not negligible. Studies of this type, comparing results from multiple  
noise-based  measurements, are relatively rare in  the literature, so we are unable to compare to  
previous findings.  

The results in Section 4.1 show that if a peak is identified, there is only about a 50% 
chance that a peak will also be present in seismic HVSR data. This high rate of false-
positives will decrease, but not eliminate, the effectiveness of models conditioned on HVSR 
peak parameters. On the other hand, if no-peak is identified, there is a strong likelihood that 
the seismic HVSR also lacks peaks. The consistency of seismic and noise-based HVSR 
peaks has been studied previously, with most investigators finding consistent results (Lermo 
and Chávez-García, 1994; Field et al., 1995; Atakan et al., 1997; Lachet et al., 1996; 
Theodulidis et al., 1996; Mucciarelli et al., 2003; Haghshenas et al., 2008; and Hassani et al. 
2019) and a few finding some inconsistent results (Satoh et al. 2001). Comparisons of HVSR 
from the two vibration sources might well vary depending on site geology, so further 
investigation of this issue for site conditions in California is needed. 
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Figure 10. The examples of HVSR for “P-P”, “N-N”, “N-P”, and “P-N” site for MAM 
versus CSD. 
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Figure  11.  Comparison of fp  (left) and  ap  (right)  of peak fitted parameters between CSD and 
MAM.  

Figure 12. HVSR for permanent strong motion stations and temporary arrays. 

Conclusions 

Because HVSR-based parameters are not used currently in ground motion prediction 
applications, a number of  steps are required to support eventual model development and 
utilization  in practice. This study  represents a step in that direction. We have created an open-
source relational  database of  HVSR  and associated processing parameters and  incorporated  
this information into an existing community VS  Profile Database (PDB) in the United States.  
Users can utilize  and analyze  the processed records through interactive Jupyter  Notebook 
tools that evaluate azimuthal dependence, identify the presence of peaks  in an HVSR, and fit  
peaks using Eq. (1).  
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To demonstrate the value of the compiled data, we compare HVSR attributes for 
seismic and noise based data, and for two different noise measurements. The different noise 
measurements are more consistent with each other than the noise-to-seismic comparison. Of 
the California sites considered, about 30-40% do not have peaks. Accordingly, it will be 
important for eventual HVSR-based models to be able to accommodate this common result of 
HVSR testing. 
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Abstract 
 

We summarize an analysis of ground motions recorded during three events that occurred 
during the July 2019 Ridgecrest earthquake sequence. We collected and uniformly processed 
1,483 three-component recordings for the events from an array of 824 sensors spanning ten 
seismographic networks. Signal processing followed well-established NGA procedures. We 
developed site condition metadata from available geophysical data and multiple models. We 
computed intensity measures such as spectral acceleration at a number of oscillator periods and 
inelastic response spectra. We compared elastic and inelastic response spectra to seismic design 
spectra in building codes to evaluate ground motion damage potential at spatially-distributed 
sites. 
 

Introduction 
 

The three events of the 2019 Ridgecrest earthquake sequence started at 10:33 AM local 
time on July 4, 2019, with a moment magnitude (M) 6.5 event located south of China Lake and 
west of Searles Valley, California. This M6.5 event occurred on a left-lateral NE-trending fault 
(roughly parallel with the Garlock fault to the south) at a hypocentral depth of 10.5 km. This 
earthquake was followed on July 5 by a M5.5 event at 4:07 AM local time at a hypocentral depth 
of 7.0 km, and a M7.1 event at 8:19 PM local time, the latter on a NW-trending right-lateral fault 
at a depth of 8.0 km (GEER [2019]). These events occurred on faults within the formerly-named 
greater Little Lake fault zone, but have now been differentiated after the recent earthquakes and 
are referred to as the Salt Wells Valley fault zone (for the M6.5 event; DuRoss et al. [2020]), and 
the Paxton Ranch fault zone (for the M7.1 event; DuRoss et al. [2020]). Since they were 
proximal in space and time, the M6.5 and M5.5 events are considered to be foreshocks to the 
M7.1 event (Ahdi, et al., 2020). 
 

In this paper, we present a summary of recorded and processed ground motions, 
independent (measured) metadata, including information describing the recording stations (sites), 
and dependent (computed) data and metadata, such as various source-to-site distance metrics and 
directivity parameters, and computed elastic and inelastic response spectra. The response spectra 
are compared to the design spectra at each recording station to understand geographic trends. All 
data are publicly available from the UCLA Natural Hazards Risk and Resiliency Research 
Center (NHR3), as described in a report by Ahdi et al. (2019). A more complete version of this 
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paper has been previously published by Ahdi et al. (2020). 
 

Compilation of Site Metadata 
 

Seismological parameters such as magnitude, style of faulting, and fault geometry were 
reviewed and compiled to facilitate ground motion studies, including calculation of multiple 
distance metrics such as the epicentral, hypocentral, rupture, and Joyner-Boore distance (closest 
distance from site to the surface projection of the fault surface). The selection and computation 
of these parameters is described in Ahdi et al. (2020). The following subsections elaborate on the 
estimation of site parameters for recording sites. 
 

A site database (SDB) was developed, encompassing information such as (where 
available for each station) network code, station location information (latitude, longitude, and 
elevation), information on the time-averaged shear-wave velocity (VS) in the upper 30 m (VS30) 
obtained from both measured VS profiles and from proxy-based VS30 estimates, and basin depth 
parameters (zx), which are measured as the vertical distance from the ground surface to the first 
encounter of x = 1.0, 1.5, and 2.5 km/s VS horizons. 

 
Estimation of VS30 at Recording Stations 
 

Figure 1 shows a map of stations in the SDB with site markers color-coded by NEHRP 
site classes. VS30 values were assigned based on the availability of measured VS profiles from 
geophysical measurements proximate (< 300 m) to the recording station. Profile data was queried 
from the Community Shear Wave Velocity Profile Database of Ahdi et al. (2018). When 
measured VS30 values are unavailable, VS30 is assigned based on various proxy-based models, 
including those based on surficial geology, topographic slope, and geomorphic terrain 
classifications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Spatial distribution of recording stations in the ground motion database. Stations are 
color-shaded according to VS30-based NEHRP site class (Ahdi, et al., 2020). 
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The following protocol was used in assigning VS30 values for a given station: 
 

1. Consider available published databases of measured VS profiles and VS30 values:  
• United States Community VS Profile Database (PDB, Ahdi et al., 2018), which 

includes data from the USGS VS30 Compilation (Yong et al., 2016) 
• NGA-West2 Site Database (Seyhan et al., 2014) 
• Center for Engineering Strong Motion Data (CESMD, 2019) 

2. Match available measured VS30 values from all databases to station of interest by 
computing the distances between the station and the locations of the VS30 
measurement, and take the closest measurement (using a 300-m cutoff distance) if 
there are multiple available measurements that do not match the station coordinates 
exactly (i.e., distance = 0 m). 

3. Use proxy-based VS30 estimation models if: 
a. There exists no VS30 measurement within 300 m of the station; or 
b. The only measured VS30 within 300 m of the station was obtained using the 

Refraction Microtremor (ReMi™) method (Louie, 2001). 
 

Descriptions of various geophysical methods used to obtain VS profiles are beyond the 
scope of this paper, but we largely followed the guidelines set forth in VS data attribution as 
outlined in Ahdi et al. (2018). The SDB includes 824 recording stations. A total of 203 (25%) 
stations have measured VS30 values, and for the remaining 621 stations, VS30 values are inferred 
using proxy-based methods (described below). 

 
For sites lacking in-situ VS30 measurements, one or more of the following four proxy-

based models was utilized: 
 

1. krig: a Kriging-based regression map informed by measured VS30 data and a hybrid 
geology-topographic slope model. The Kriging approach is from Thompson et al. 
(2014) and Thompson (2018), and the hybrid model is from Wills et al. (2015); 

2. terr: geomorphic terrain proxy model (Yong, 2016) based on terrain classes from 
Iwahashi and Pike (2007); 

3. slp: topographic slope-based model (Wald and Allen, 2007). 
 

To compute the model output, all sites in the SDB were assigned the relevant values of 
terrain classes or topographic slope gradients or were plotted on the raster map for the krig 
model. Figure 2 illustrates the assignment of VS30 based on these parameters. The krig model is 
preferred due to its inclusion of measured VS30 values, and thus is utilized wherever data falls 
within the geographic extent of the model (i.e., the state of California). Weights of 2/3 and 1/3 
were applied for sites using both the krig and terr models, respectively. All inferred VS30 values 
from proxy-based models used the krig or krig-terr pair of models, except for 10 sites located in 
Nevada for which the kriging map is not defined, and one site (CGS station number 13877) 
which plots in the water due to the relatively coarse resolution of the kriging map and the 1-km 
spacing of the terrain classifications. 
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Estimation of Basin Depth Terms at Recording Stations 
 

The zx parameters were obtained by querying the Unified Community Velocity Models 
(CVMs) provided by the Southern California Earthquake Center (SCEC; Small et al., 2017). 
Values were obtained by querying a meta-model, which is a tiled system of multiple velocity 
models. For this project, the meta-model consisted of five velocity models, which are defined in 
Table 4 of Ahdi et al. (2020) based on a framework developed in Nweke et al. (2018). The tiled 
system uses latitude and longitude coordinates to query the CVMs in order of their designated 
priority. If the coordinates fall within the geographical extents of a model, then the appropriate zx 
value will be selected (Small et al., 2017). If the coordinate falls outside the geographical extents 
of the given model, the next CVM in the tiled order will be checked, and the process is repeated 
until a CVM is encountered that encompasses the location of interest. To account for locations 
outside the boundary region of the velocity models in the meta-model, a background 1D velocity 
model is placed last in the tiled structure as it covers the largest area and serves as a supporting 
model to the standard CVMs. If a site’s coordinates were to fall outside of all tiled CVM extents, 
the site is not assigned a zx value. For this dataset, all 824 stations fell within the extent of the 
tiled CVMs and were thus assigned zx values. When the model output for a site yields z1.0 = 0, we 
check against geological maps. Zero depth is retained for sites located on mapped hard rock 
geology (crystalline rock, Cretaceous rock, or volcanic rock units), and z1.0 is indicated as 
undefined if the geology is mapped as Tertiary rock or sediments. 
 

 
 
Figure 2. Flowchart depicting logic for assignments for proxy-based VS30 values in absence of 
measurements within proximity to station (see Ahdi, et al., 2020). Note that the geo model 
(hybrid geology-slope proxy model of Wills et al. 2015) was not considered on its own, as it is a 
basis for the map used in the kriging-based model of Thompson (2018). 
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Ground-Motion Intensity Measures 
 

Elastic response spectra were computed for the time series collected for the three main 
events, including the three individual as-recorded components (H1, H2, and V), the RotD50 and 
RotD100 components, and the fault-parallel and fault-normal components of the records in the 
vicinity of the faults. RotD50 and RotD100 are defined by Boore (2010). Figure 3 shows an 
example of these intensity measures for the site CLC located 2 km from the M7.1 rupture, as 
compared to ground motion models (GMMs) and code-based values. Figure 3a (top left) 
compares the RotD50 component to predictions from the NGA-West2 GMMs. More comparison 
cases are provided in Ahdi et al. (2020). Figure 3b compares the RotD100 component to the 
ASCE 7-10 mapped design values—the Risk-Targeted Maximum Considered Earthquake, 
MCER, and the Design Earthquake, DE (DE = 2/3 * MCER), adjusted for its site class (ASCE, 
2010, 2016). This comparison shows that the Ridgecrest M7.1 mainshock exceeded the Design-
Earthquake spectrum at this location for most structural periods. Figure 3c compares the 
response spectrum of the three as-recorded components to the maximum component (RotD100). 
The H1 horizontal direction has the highest spectral demand for all periods. Figure 3d compares 
the response spectra for the FP and FN components to the maximum component shown in Figure 
3c. At this location, the FP component carries most of the energy at long periods. These rotated 
components are valuable to studies of near-fault effects and provide insight on ground motion 
polarization. 
 
Damage Potential of Recorded Ground Motions 
 

In this section we present a summary of response of a generic single-degree-of-freedom 
(SDOF) inelastic system to the recorded ground motions. Inelastic analyses of representative 
structural types using the recorded ground motions provide an opportunity to draw different 
insights into the geographic distribution of expected generic inelastic-structure response and 
damage potential in the area affected by the seismic event (Ahdi, et al, 2020). These analyses 
were performed on a generalized inelastic SDOF model using OpenSees (McKenna et al., 2010). 
The main feature of an inelastic model is its ability to capture strength reduction and softening 
due to yielding, as well as hysteretic energy dissipation. The “yield strength” of the SDOF is 
based on the strength reduction factor (Rd), defined as the ratio between the lateral-force strength 
for design and the yield strength of the structure, Vy. This value is equivalent to a combination of 
the strength-reduction factor R and the overstrength factor used in seismic structural design. The 
typical range for Rd is between 0.5 and 4. When Rd = 1, the structure will yield at the DE level. 
When Rd > 1, the structure will yield when subjected to a below-design-level earthquake. When 
Rd < 1, the structure will remain elastic at and below the DE (Ahdi, et al, 2020). The estimated 
yield strength of the structure is, thus, defined as a function of the design spectrum at the site. 
The ASCE 7-10 MCER spectrum (ASCE,  2010) was obtained for each recording station via the 
USGS Design-Maps Web-Services tools. Either the ASCE 7-10 standard or ASCE 7-16 
specification (ASCE, 2016) could be used; we used the former as it does not require site-specific 
analyses for softer soil conditions, which would prevent uniform and automated application of 
the current methodology to all recording stations presented herein. Two values of Rd were 
chosen for the analyses (Rd = 2 and 4). These values are expected to represent structures 
designed to an R-factor between 4 and 8.  
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Figure 3. Example plots from the M7.1 event for site CLC of (a) observed RotD50 response spectrum compared with the average of 
the five NGA-West2 predictions; (b) observed RotD100 response spectrum as compared with the ASCE 7-10 MCER spectrum and DE 
(= 2/3 MCER) spectrum; (c) observed RotD100, H1, H2, and V response spectra; and (d) observed RotD100, fault-normal (FN) and 
fault-parallel (FP) response spectra (Ahdi, et al., 2020). 
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Both inelastic and elastic responses of the SDOF system were computed for all the 
recordings for the M7.1 event for both periods and strength levels. For the elastic case, a 
damping ratio of 5% was used, which is common in engineering practice. For the inelastic case, 
a reduced damping ratio of 2% was utilized, as the hysteretic energy dissipation is already 
captured in these nonlinear analyses as compared to the elastic case, which leverages a higher 
viscous damping ratio in order to partly capture the hysteretic damping which is not explicitly 
modeled therein. 

 
An example of the inelastic response parameters is mapped for T = 1.0 s in Figure 4 for 

Rd = 2. The figure consists of 4 maps. The first map, on the top left shows the geographic 
distribution of the maximum elastic-deformation demand (Sd). The data in this map is the same 
for both cases of Rd. The second map, on the top right, plots the geographic distribution of Dy, 
which is defined by expected strength evaluated from the Rd factor and the ASCE 7-10 MCE 
spectra. The map on the bottom left shows the geographic distribution of the inelastic-
deformation demands (Dmax). The normalized deformation demands show that there are different 
regions with different levels of expected response, both near and far from the epicenter. The 
patterns shown in the damage-potential maps show that distance and site conditions are not the 
only response parameters. Details of such analysis can be found in Ahdi, et al. (2020). 
 
Predicted versus Observed Response Spectra 
 

A comparison of the PSA values computed based on the recorded ground motions and 
those predicted by the NGA-West2 GMMs was carried out. Figure 3a shows an example of such 
comparisons for the M7.1 event at site CLC. Five NGA-West2 models were considered: 
Abrahamson et al. (2014), Boore et al. (2014), Campbell and Bozorgnia (2014), Chiou and 
Youngs (2014), and Idriss (2014); hereafter ASK, BSSA, CB, CY, and ID, respectively. 

 
Ahdi et al. (2020) analyzed residuals (difference between natural log of computed 

intensity measure and NGA-West2 model medians) to evaluate potential biases in the modeling 
of source, path, and site effects. Figure 5 shows an example of the average residuals for the M7.1 
event. Ahdi et al. (2020) present the same plot for the other two events, which are omitted here 
for brevity. All residuals are slightly positive for the two larger events at short periods. At longer 
periods, average residuals increase, perhaps due to under-prediction of basin depth scaling by the 
GMMs. 
 

Summary 
 

A summary of analysis of the ground motions recorded in the 2019 Ridgecrest 
earthquake sequence is presented. The metadata pertaining to the earthquake source, such as 
finite-fault solutions, seismic site information including VS30 and basin depths, and wave-
propagation path distances are compiled. We utilize a relational database to organize and store 
all data. Comparisons of the response spectra of the recorded ground motions to those of the 
NGA-West2 GMMs show on average favorable model performance. The large number of 
recordings and the dense distribution of the recordings in a region that is crossed by significant 
faults has allowed us to compute intensity measures beyond elastic response spectra so that we 
can quantify the expected distribution of damage in areas of varying seismic demands (both near 
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and far from faults). 
 

 
Figure 4. Deformation response of elastic and inelastic models, Rd = 2 (Ahdi et al, 2020).  
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Figure 5. Event terms (average residuals) for the M7.1 main shock and the five NGA-West2 
models vs. spectral period (Ahdi, et al., 2020). 
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CHARACTERIZATION OF NONLINEAR DYNAMIC SOIL PROPERTIES FROM 
GEOTECHNICAL ARRAY DATA 

S. F. Ghahari, and E. Taciroglu 

Department of Civil & Environmental Engineering, University of California, Los Angeles 

Abstract 

Dynamic soil properties are key ingredients of analyses for predicting/assessing soil-
structure interaction (SSI) and site response effects under seismic excitations. While there is 
already a large amount of valuable data recorded by numerous geotechnical arrays worldwide, 
there is no reliable technique that enables the extraction of dynamic nonlinear/hysteretic 
properties of soil layers. Herein, a stochastic filtering method devised for estimating the 
nonlinear soil properties from earthquake data recorded by geotechnical arrays.1D-3C finite 
element site models are used, and the soil layers’ constitutive model parameters and input 
excitation (bedrock or within motions) time-histories are identified using Unscented Kalman 
Filtering techniques. The method is first verified using synthetic examples and then validated 
using real-life data from centrifuge tests as well as the well-known Lotung site. Subsequently, 
the method is applied to earthquake data recorded by several CSMIP Geotechnical Arrays. 

Introduction 

Although near-surface nonlinear soil layers have negligible dimensions  compared to  the  
path-lengths  that seismic waves traverse  from the source  to the  site, they  significantly contribute  
to  the observed motion at  the ground surface  [1]. Realistic physics-based predictions cannot be  
achieved unless they are  the said nonlinearities are  into account. While there are several  veritable 
analytical and numerical methods to predict site-response  given bedrock or outcrop motions  
(e.g., [ 2]–[4]), t heir accuracies  inherently depend on the knowledge of  the  soil  layers’ dynamic 
properties. However, laboratory testing of “undisturbed”  soil samples inevitably involves some  
violation  of in-situ conditions. For example, loading paths in the laboratory  tests are significantly  
different from those  that the soil experiences in  the field.  Field measurements  had been 
suggested  to r esolve this problem. Cross-Hole Tests (CHT),  Down-Hole Tests (DHT),  
Suspension Logging, Seismic Reflection, Seismic Refraction, and Spectral Analysis  of Surface  
Waves (SASW) are among various methods  that are  used for measuring  shear wave velocities of  
soil layers,  which is a  key parameter for predicting the linear dynamic  responses  of a  soil deposit.  
However, even these in-situ  tests cannot mimic the  site's actual behavior under real-life  
earthquakes because the sources of  real-life seismic waves are  inherently  different from those  
used in in-situ tests. Moreover, in-situ  tests are typically  only able  to  capture the very-small-
strain (and  thus linear) soil layers' responses. On the other hand, it is well accepted that soil 
mostly behaves nonlinearly during even moderate earthquakes  and reaches strains well beyond 
those that can be induced in conventional in-situ tests  [5].  

31 



 

 

 

 

  
     
  
    

   
 

   
    

    
    
    

  
 

   
 

     
    

   
 

 
 

 
     

     
 

 
  

 

 
  

 

SMIP20 Seminar Proceedings 

Not surprisingly, the estimation of dynamic site properties from recorded ground motions 
has been an important topic of research (for example, [6], [7]) because earthquakes may be 
regarded as prototype in-situ dynamic tests carried out by nature and the data recorded during 
earthquakes offer precious opportunities for the study of in-situ behavior of soil within a strain 
range that has engineering significance.  However, most of the identification studies carried out 
in the past are limited to linear or equivalent linear soil properties of soil layers [8], [9]. These 
limited studies, in which soil nonlinearity was considered, have limited applicability because the 
assumed constitutive nonlinear model was very simple [10]. Moreover, in many of these studies, 
in-depth motions were used as input excitations through the conventional outcrop method (with 
absorbing boundary condition), which reduces the method's applicability range. More 
importantly, it is well accepted that within motions are polluted by down-going waves and 
should not be used as outcrop input excitations [11]. 

In this project, within a proposed general framework for nonlinear site characterization, 
which resolves all of the aforementioned limitations, we developed, tested, and validated input-
output and output-only identification algorithms to estimate the nonlinear soil properties form 
data recorded in a geotechnical array. The proposed framework was verified using synthetic 
examples and validated using centrifuge data as well as real-life data recorded at the well-known 
Lotung site. 

The Proposed Framework 

As schematically shown in Figure 1, the objective is to identify (i) the most plausible 
nonlinear constitutive model, (ii) parameters of the selected model, and (iii) the incident motion 
by using data recorded at several depths. A common simplifying assumption is also adopted— 
namely, the problem is an ideal 1D case with known layering and some relatively good initial but 
uncertain estimations of the parameters. 

Figure 1. The proposed framework. 

There are two approaches to carry out dynamic site response analyses,  as shown in 
Figure  2. In the more traditional approach, the site is modeled  up to the bedrock (half-space)  
level; and radiation damping is modeled by using an absorbing boundary to prevent  wave  
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reflection. Through t his  approach, the incident motion must be used as input excitation, which 
can  theoretically be obtained from the  nearby rock outcrop motion  (with a ½ factor). As seen,  
this approach is only valid if  there is  no impedance contrast below the boundary level, a nd there  
is a very close rock outcrop motion. In another approach, the domain can be cut at any depth as  
long as the so-called within motion  is used as input excitation, a nd a fixed boundary is used.  

Figure 2. One-dimensional site response analysis approaches. 

We propose to solve the inverse problem using output-only sequential Bayesian 
estimation [12], [13], as shown in Figure 3. In this approach, the 1D FE model of the site is 
modeled up to the bedrock depth with an absorbing boundary condition if the bedrock is not 
rigid. A soil constitutive model is chosen, and its parameters are identified along with the 
unknown incident motion through the Bayesian model updating. The entire process is then 
repeated using different constitutive models, and the most plausible and its optimal parameters 
are determined through classical model selection criteria [14], [15]. This joint input-parameter 
estimation solution will be later verified and validated through synthetic and centrifuge test data, 
respectively. It should be emphasized that input-output estimation can be employed if the 
bedrock is rigid, and there is a measurement at the bedrock depth to use as input excitation. 

Figure 3. The one-step solution. 
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The  aforementioned joint  input-parameter estimation solution is prone  to a high level of 
uncertainty  if the number of parameters is  large or the number of in-depth recorded data is  
limited.  To resolve this issue,  we solve the  inverse problem in two  sequential  steps (see  Figure  
4). In Step 1, the 1D FE model of the site  is fixed  at the  lowest instrumented level,  such  that the 
recorded within motions  can be used as input  excitation. A soil constitutive model  is chosen, a nd 
its parameters are  identified through the Bayesian model updating. Once completed the  first step, 
the bedrock layer  is added to the  model in step 2 (through an absorbing boundary condition), a nd 
its parameters are  estimated along with the  incident motion, while  the system above  this level is  
known. Note that  the first step  can be limited to  any depth as long as there is measured within  
motion at that depth. This is a crucial benefit,  especially  for the cases with  deep bedrock level  
and only a few sensors at shallow depth for which properties  of those shallow layers  can be  
estimated with higher reliability. However, the  model has to be extended up to the bedrock depth 
in the second step to be  able  to estimate  incident motions too.   

Figure 4. The two-step solution. 

The Bayesian Model Updating 

Bayesian model updating is briefly reviewed for the readers’ convenience. The 
formulation is presented for the general case of input-parameter estimation, while it is employed 
partially in Steps 1 and 2 as part of the two-step solution described above. 

Let’s assume a site with  a soil deposit, a s shown in Figure 5  (left). There are  𝑚𝑚  soil layers 
located above an elastic half-space with finite rigidity (bedrock) and excited by vertically 
propagating earthquake  excitations. Absolute accelerations at  several points (not necessarily at 
all  layers or  even boundaries of layers) are recorded  by a geotechnical array. This continuous  
system can be  modeled using a  Finite Element (FE) model,  as shown in Figure 5  (right) [16]. In 
this model,  the soil is modeled in  two-dimensions using plane  strain elements. To account for  the  
finite rigidity of the bedrock, a Lysmer-Kuhlemeyer  [17]  dashpot is incorporated  at the base of  
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the soil column, whose coefficient equals the product of the mass density and shear wave 
velocity of the bedrock with the area of the base of the soil column (size of the element). The soil 
column is excited at the base by a horizontal force time-history, which is equal to the ground 
velocity multiplied by the dashpot’s coefficient [18]. 

Figure 5. Instrumented soil deposit (left) and its equivalent discrete FE model (right). 

The response of  the FE model  at each time step  to the applied force  time-history can be  
expressed as a  nonlinear  function of the  model parameter vector,  𝜽𝜽, and the  time-history of the  
force, 𝒇𝒇1:𝑖𝑖,  

𝒚𝒚�𝑖𝑖 = ℎ𝑖𝑖(𝜽𝜽, 𝒇𝒇1:𝑖𝑖 ), (1) 

where  𝜽𝜽 = [𝜃𝜃1, … , 𝜃𝜃𝑛𝑛𝜃𝜃 ]  contains  𝑛𝑛𝜃𝜃  parameters (e.g.,  the layers’ shear wave velocities,  
parameters  of the constitutive models, etc.) that define  the FE model, and   ℎ𝑖𝑖(. )  is the nonlinear  
response function of the FE model at time step  𝑖𝑖, encapsulating all  the dynamics of the  model  
from time step 1 to  𝑖𝑖. The measured response vector of the  site, 𝒚𝒚𝑖𝑖, is related to the FE predicted 
response, 𝒚𝒚� , as  𝑖𝑖

𝒗𝒗𝑖𝑖 (𝜽𝜽, 𝒇𝒇1:𝑖𝑖) = 𝒚𝒚𝑖𝑖 − 𝒚𝒚�𝑖𝑖(𝜽𝜽, 𝒇𝒇1:𝑖𝑖 ), (2) 

where  𝒗𝒗 ∈ R𝑛𝑛𝒚𝒚×1 
𝑖𝑖   is the simulation error vector  that  accounts for the misfit between the 

measured  responses of  the site at  𝑛𝑛𝒚𝒚  locations and the FE-predicted  response.  The simulation  
error  is ideally modeled  as a zero-mean Gaussian white  noise vector (i.e., 𝒗𝒗𝑖𝑖 ~𝑁𝑁(𝟎𝟎, 𝐑𝐑)) by 
neglecting the effects of modeling error. The objective of the estimation problem is  to find the  

𝑇𝑇
estimates  of the  unknown parameter vector, i.e., 

 
𝝍𝝍 = �𝜽𝜽𝑇𝑇 
𝑖𝑖 , 𝒇𝒇 𝑇𝑇

1:𝑖𝑖 � , for which the discrepancies 
between the measured  and FE predicted responses are minimized in a probabilistic sense. Since 
the estimation  problem is highly nonlinear, a sequential estimation approach is used to improve  
estimation efficiency. In our approach, the  time domain  is divided into successive overlapping 
time windows,  referred to as the estimation windows.  The  problem  is then solved at  each  
window to estimate  the  unknown parameter  vector.  
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Assume that the 𝑚𝑚-th  estimation window  spans from  time step  𝑡𝑡𝑚𝑚 
1  to time step  𝑡𝑡𝑚𝑚 

2 . 
Therefore, the unknown parameter vector  at this  estimation window is defined as  𝝍𝝍𝑚𝑚 = 

𝑇𝑇 
�𝜽𝜽𝑇𝑇 , 𝒇𝒇𝑚𝑚 𝑇𝑇 (𝑛𝑛 +𝑚𝑚 � , where  𝝍𝝍 𝜽𝜽 𝑡𝑡𝑙𝑙)×1 𝑚𝑚 𝑚𝑚 

𝑡𝑡𝑚𝑚:𝑡𝑡 𝑚𝑚 ∈ R  , in which 𝑡𝑡𝑙𝑙 = 𝑡𝑡2 − 𝑡𝑡11 2
 is the window length. The  

unknown parameter vector,  𝝍𝝍𝑚𝑚,  can be estimated using a parameter-only  Kalman filtering  
method (e.g., [19]). To this end, the  unknown parameter vector  is  modeled as a random vector,  
the evolution of which is  characterized by a Gaussian Markov process—also known as a random  
walk. Then, a state-space model  is set up, in which the state equation governs the  evolution of  
the random  parameter vector  and the measurement equation corresponds to the  discrepancies 
between the measured and FE predicted responses  [20], i.e.,  

𝝍𝝍𝑚𝑚,𝑘𝑘+1 = 𝝍𝝍𝑚𝑚,𝑘𝑘 + 𝜸𝜸𝑚𝑚,𝑘𝑘 ,  (3)  

𝒚𝒚𝑡𝑡𝑚𝑚1 :𝑡𝑡𝑚𝑚 
2

= 𝒚𝒚�𝑡𝑡𝑚𝑚1 :𝑡𝑡𝑚𝑚 
2 ,𝑘𝑘+1�𝝍𝝍𝑚𝑚,𝑘𝑘+1� + 𝒗𝒗𝑡𝑡𝑚𝑚 

1 :𝑡𝑡𝑚𝑚 
2 ,𝑘𝑘+1,  (4)  

where  𝜸𝜸 ~𝑁𝑁(𝟎𝟎, 𝐐𝐐), 𝒗𝒗 � �  �𝑡𝑡𝑙𝑙×𝑛𝑛𝒚𝒚�×�𝑡𝑡𝑙𝑙×𝑛𝑛𝒚𝒚� 𝑚𝑚,𝑘𝑘 𝑡𝑡𝑚𝑚1 :𝑡𝑡𝑚𝑚  
2 ,𝑘𝑘+1 ~𝑁𝑁(𝟎𝟎, 𝐑𝐑), where  𝐑𝐑 ∈ R  is a block 

diagonal  matrix, whose  block diagonals are  the  simulation error covariance matrix  𝐑𝐑. In Eqs. (3)  
and (4), 𝑘𝑘  denotes the iteration number. As can be observed, the estimation process at each  
estimation window is iterative, i.e., the mean vector and covariance matrix of the unknown 
parameter vector  is iteratively updated based on the discrepancies between the time  histories of  
the measured and estimated responses.   

An  Unscented  Kalman Filtering (UKF) [21]  method can then be used to update the  
unknown parameter vector at each iteration. In our method, the  nonlinear  FE model  is evaluated 
separately  at a set of deterministically selected realizations of the  unknown parameter vector,  
which are  referred to as  the  sigma points (SPs) denoted by  𝝑𝝑𝑗𝑗 . The sigma points are selected  
around the prior mean estimate 𝝍𝝍�− . In this  study,  a scaled  Unscented  Transformation  (UT)  based  
on 2𝑛𝑛𝝍𝝍 + 1  sigma points (i.e.,  𝑗𝑗 = 1,2, … ,2𝑛𝑛𝝍𝝍 + 1)  is used, where 𝑛𝑛𝝍𝝍  denotes the size of  the  
extended parameter vector. The mean and covariance matrix of the FE predicted structural  
responses,  and the cross-covariance matrix of 𝝍𝝍  and 𝒚𝒚  are respectively  computed using a  
weighted sampling method as  

2𝑛𝑛𝝍𝝍+1𝒚𝒚�  𝑗𝑗 = ∑  
𝑗𝑗=1 𝑊𝑊𝑚𝑚 𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗�,   (5)  

� 2𝑛𝑛𝜓𝜓+1 𝑗𝑗 𝑇𝑇𝝑𝝑𝑗𝑗
 

𝐏𝐏𝒚𝒚𝒚𝒚 = ∑ 𝑊𝑊𝑒𝑒 �𝒚𝒚�𝑖𝑖� � 𝑗𝑗 −  − 𝒚𝒚���𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗� 𝒚𝒚�� =1 + 𝐑𝐑,   (6)  

2𝑛𝑛𝜓𝜓+1 

𝐏𝐏�𝝍𝝍𝒚𝒚 = � 𝑗𝑗  𝑊𝑊 𝝑𝝑𝑗𝑗 − 𝝍𝝍�𝑒𝑒 � −�[𝒚𝒚�𝑖𝑖(𝝑𝝑𝑗𝑗) − 𝒚𝒚� ]𝑇𝑇 ,  (7)  
𝑗𝑗=1 

where 𝑊𝑊𝑗𝑗 
𝑚𝑚 and 𝑊𝑊𝑗𝑗 

𝑒𝑒  denote weighting coefficients  [21]. Now, the UKF prediction-
correction procedure can be employed to estimate the posterior parameter mean vector  𝝍𝝍�+  

𝑚𝑚,𝑘𝑘+1  
and covariance matrix 𝐏𝐏�+𝝍𝝍,𝑚𝑚,𝑘𝑘+1  at each  iteration. The proposed identification algorithm is  
summarized in  Table 1.  
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Table 1. Identification algorithm for joint estimation of the model parameters and the FIM time 
history. 

1. Set the estimation window length 𝑡𝑡𝑙𝑙, and the start and end points of each estimation window. 
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as 

 𝑇𝑇𝑇𝑇 𝑇𝑇  0    𝐏𝐏��+ � 
0 0 , + 𝜽𝜽𝜽𝜽,0 𝟎𝟎 

𝝍𝝍 = �𝜽𝜽 𝒇𝒇𝑡𝑡0:𝑡𝑡0 � ,  and  𝐏𝐏𝝍𝝍,0 = � �.  
1 2 𝟎𝟎 𝐏𝐏�𝒇𝒇0 

3. Define the process noise covariance matrix 𝐐𝐐 and the simulation error covariance matrix 𝐑𝐑. Set up matrix 𝐑𝐑�. 
4. For the 𝑚𝑚-th estimation window: 

4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown parameter vector 
from the last  estimation window  (i.e.,  +𝝍𝝍�   + 

1, and  𝐏𝐏+ 
𝑚𝑚− 𝝍𝝍,𝑚𝑚−1 ). Set up  𝝍𝝍�  +  and 𝐏𝐏+ 

𝑚𝑚,0 𝝍𝝍,𝑚𝑚,0  based on ψ̂ m −1  and 
𝐏𝐏+𝝍𝝍,𝑚𝑚−1.  
4.2. Iterate (𝑘𝑘  =  1,  2,  …):  

a.  Set  𝝍𝝍�  − = 𝝍𝝍�𝑚𝑚  +  − +
,k+1 𝑚𝑚,k, 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘+1 = 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘 + 𝐐𝐐. 

b.  Generate  sigma  points. Run the FE model for  (2𝑛𝑛 � �𝝍𝝍 + 1)  sigma  points. Derive   𝒚𝒚�,  𝐏𝐏𝒚𝒚𝒚𝒚, and  𝐏𝐏𝝍𝝍𝒚𝒚  using  
Eqs.  (5)-(7).  
c.  Compute  the  Kalman  gain  matrix:  𝐊𝐊 −1 

 = 𝐏𝐏�𝝍𝝍𝒚𝒚�𝐏𝐏�𝒚𝒚𝒚𝒚� .  
d.  Find the corrected estimates  of  the mean  vector and covariance matrix  of  the unknown  parameter  vector:  
 𝝍𝝍�+ = 𝝍𝝍�− + 𝐊𝐊  �𝒚𝒚 − 𝒚𝒚��,  𝐏𝐏+ − � � 𝑇𝑇 

𝑡𝑡𝑚𝑚 𝑚𝑚,k+1 :𝑡𝑡𝑚𝑚 𝑚𝑚,k+1 1 2 𝝍𝝍,𝑚𝑚,𝑘𝑘+1 = 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘+1 − 𝐊𝐊�𝐏𝐏𝒚𝒚𝒚𝒚 + 𝐑𝐑�𝐊𝐊 . 

e. Check for  convergence:   if  �𝝍𝝍�+ − 𝝍𝝍�+  �+  𝑚𝑚,𝑘𝑘+1 𝑚𝑚,𝑘𝑘 � < 0.02 × 𝝍𝝍 𝑚𝑚,𝑘𝑘−1  or 𝑘𝑘 + 1 > 10,  then move  to the next  
estimation  window  (𝑚𝑚  =  𝑚𝑚  +  1,  go  to  step  4);  otherwise,  iterate  again  at  the  current  estimation  window  
(𝑘𝑘  =  𝑘𝑘  +  1,  go to  step 4.2).   

The Selected Constitutive Model 

During the last few decades, a broad range of nonlinear soil models—uniaxial to multi-
axial, phenomenological to physics-based—have been devised (e.g., [22], [23], [24], [25], [26]). 
For example, one of the most well-known and advanced nonlinear soil models is the one devised 
by Elgamal and co-workers [26]. In that model, soil plasticity is formulated based on the multi-
surface concept, with a non-associative flow rule to reproduce the well-known dilatancy effect. 
The yield surfaces are of the Drucker-Prager [27] type. This model is frequently used in the 
direct simulation of SSI problems within the research community and is already available in 
OpenSees [28]. The multiple hierarchical yield surfaces of this model enable it to approximate 
the soil behavior within a broad range of strain regimes, but this is also its disadvantage in that a 
large number of requisite model parameters renders the calibration process formidable. By the 
same token, the model may exhibit spurious sensitivities. As we are going to solve a massive 
inverse problem using real-life data, these two major drawbacks are problematic. 

A model with a simpler scaffold is that proposed by Borja and Amies [23]. This is also a 
multi-surface model but it only has a bounding surface and a vanishing elastic region. 
Incidentally, the Borja-Amies (BA) model only needs a few parameters for calibration. The 
validity of this model was examined by utilizing the downhole array motions recorded at Lotung, 
Taiwan, through one-dimensional nonlinear site response analyses [29] with promising success. 
The model admits an additive decomposition of the stress into inviscid (frictional) and viscous 
parts, as in: 

𝝈𝝈 =  𝝈𝝈𝑖𝑖𝑛𝑛𝑖𝑖 +  𝝈𝝈𝑖𝑖𝑖𝑖𝑣𝑣 ,      𝝈𝝈𝑖𝑖𝑛𝑛𝑖𝑖 = 𝑪𝑪𝑒𝑒: (𝝐𝝐 − 𝝐𝝐𝑝𝑝),     𝝈𝝈𝑖𝑖𝑖𝑖𝑣𝑣 = 𝑫𝑫: 𝝐𝝐  (8)̇  
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where  𝑪𝑪𝑒𝑒  and D  are elastic stiffness and  viscous damping tensors, respectively;  𝛜𝛜  is the 
total strain tensor; 𝛜𝛜𝑝𝑝  is the plastic  strain tensor; and  𝛜𝛜  is the  total strain rate.  Given this  
decomposition, the model can also incorporate material level strain-rate-dependent damping, 
which enables a modeler to match field-identified damping behavior, even when such behavior  is 
complex. Omitting details here  for brevity, the  main equation to calibrate  this model is,   

̇

𝑚𝑚 −1 
𝐺𝐺 3 2𝜏𝜏𝑜𝑜 𝑅𝑅⁄√2 + 𝜏𝜏

=  1 −  � �ℎ � 𝑜𝑜 − 𝜏𝜏 
  � + 𝐻𝐻0� 𝑑𝑑𝜏𝜏  (9)  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 2𝜏𝜏𝑜𝑜 0 𝜏𝜏 

where G = τo/γo  is the secant shear stiffness, and  R  is the  radius of the bounding surface, 
and parameters h, m  and H0  control  the intensity of the hardening. The model can be  directly 
calibrated using an experimentally  obtained (or otherwise  estimated from real-life) G/Gmax  curve  
[30]  and a frequency-dependent damping curve. In the present study, we will  explore the  
capabilities  of this  soil model in capturing  the dynamic  response of soils, and we will incorporate  
it with the  UKF-based estimation method we  have  described above.  

The advantages of the BA model are clear:   
• It is a thermodynamically consistent model based on the classical viscoplasticity 

framework with well-defined parameters. 
• It is a three-dimensional model, and thus, if it is accurately calibrated, it can accurately 

predict soil behavior under multi-axial stress states, such as those due to irregular surface 
topography and soil stratigraphy, or underground scatterers. 

As a part of a parallel study, the BA model has been successfully implemented in 
OpenSees and extensively verified and validated [31]. In this study, we use OpenSees [28] for all 
needed simulations, and the soil model is this recently implemented BA model. 

Verification 

Proof-Of-Concept Study 

To verify the single-step j oint input-parameter estimation  solution, we synthetically 
generated the acceleration response of a 4-layer  soil deposit on top of bedrock, a s shown in 
Figure  6. To show that the estimation solution can work regardless  of the material model,  
pressure-dependent elastic-plastic  behavior is  considered for the  soil  wherein  plasticity is 
formulated based on the multi-surface concept  with a non-associative  flow rule to reproduce the  
dilatancy effect [26]. This model  is already implemented in OpenSees  [28]. The most important  
parameters  needed to create  this  model are shown in Figure  6 for reproducibility. A  Rayleigh 
damping matrix  is considered, which generates low strain damping ratios of 2% at 0.2 and 20 
Hz. The  model is  excited by the ground motion shown on the bottom-right of Figure  6, which  is 
recorded by the Gilroy #1 array;  and  the site response (accelerations)  is measured  at five below-
ground locations.  

Since the numerical accuracy of the wave transmission is known to be affected by both 
the frequency content of the input and the propagation wave-speed characteristics of the domain, 
the spatial element size was considered to be one-tenth of the smallest wavelength [32]. By 
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limiting the frequency of interest to 20 Hz and by assuming a minimum shear wave velocity of 
40 m/s (much lower than available values), the element size of 0.2 m was used in this example. 
As this is an inverse problem, we used uniform meshing in-depth, while a finer mesh could be 
used in layers with higher shear wave velocities. Also, while the sampling rate is kept at 200 Hz 
in the analyses for the accuracy of the direct integration method, the highest reliable frequency 
would be 20 Hz. 

Figure 6. An illustrative example. 

Figure 7. Identification results. Recorded and predicted responses (top-left), exact and identified 
bedrock acceleration (bottom-left), and Hysteresis loops near the surface and near the bedrock 

(right). 
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The input force (i.e., bedrock velocity time history), the shear wave velocities at three top  
layers, the pressure-dependency coefficient (𝑑𝑑), and low-strain  damping are assumed as 
unknown parameters and are estimated through the proposed output-only estimation method. We  
only used 10 seconds of  the signals for the  estimation and ran the algorithm in consecutive 2.5-
second windows with a 1-second overlap. We assumed a 50% initial  error  for the unknown 
parameters. The identification results are shown in  Figure 7. As seen, the  bedrock acceleration, 
site response at the instrumented  locations,  as well as hysteresis loops near the surface and the 
bedrock are  identified with very good accuracy (no stress/strain data was used for  the 
identification). Results  show that all  of the unknown parameters, except the damping value, are  
estimated with final errors that  are less than 3%. The damping  value was not accurately  
identified because it does not significantly change the  site response as seen in  Figure 7. The  
sensitivity of the measured response with respect  to the model parameters (parameter  
identifiability) needs an in-depth  identifiability study which will be discussed later.   

The Lotung Site 

To verify the proposed inverse solution, the Lotung site is simulated which will be later 
used for the validation studies too. Therefore, this site and its data are briefly reviewed here. 

The Lotung Large-Scale Seismic Tests (LSST) site is located  in the North-East of  
Taiwan. This site was established in  a seismically active region in 1985 to study seismic soil-
structure  interactions effects on nuclear power plants. To do so, two scaled structures were 
constructed by the Electric Power Research Institute (EPRI) and the Taiwan Power Company 
[33]. In addition to the structures, the responses of the soil were recorded in several locations on 
the surface, and  at different  depths, a s shown in Figure 8.  Due to such dense instrumentation, the  
data from  this site has been the subject of  many studies [29], [34]–[38]. Specifically, Zeghal and 
Elgamal [7], [39]  have extensively studied several earthquake data sets recorded at this site 
between 1985 to 1986 (Table 2)1.   

 
Out of these 18 events, the first  three events and Event No. 13 are not  available. Also, the  

digitized signals' resolution i s relatively poor  in several cases  (Events No. 5, 6, 8, 9, 10, 15, 17, 
and 18). We also need data with a  significant  level of  motion to observe  soil nonlinearity. 
Moreover, the  site's behavior  must be close  to 1D, so the source of  the earthquake should be far  
from the site. Considering these criteria, events 7  and 16 are  the  best candidates that  have been  
used by Borja et al. [29], [38], [40]  too. The channels mostly used in previous studies  and used 
here are FA1-5, DHB6, DHB11, DHB17, and DHB47 (see  Figure 8) which are at depths of 0, 6, 
11, 17, and 47 meters, respectively. It is noteworthy that Channel 47 is not available  in Event No.  
16, so Step 1 (Input-Output identification) can  only be  carried out for the first 17 meters.   

1 Data is publicly available at http://soilquake.net/Downholearray/Lotung/ 
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Figure 8. Plan (left) and elevation (right) views of the Lotung site. 

Table 2. Recorded earthquake data at the Lotung site [7], [41]. 

As the BA model  is being used in this study, we model  the  Lotung site  using the  
information provided by Borja  et al. [29], [38]. Figure 9  shows the layered FE model of the first 
47 m of the  Lotung site  with a fixed bottom  condition (within boundary condition) and the shear  
wave velocity and elastic shear modulus profiles. The instrumented depths are specified by red 
circles (the lowest  level is at the fixed boundary). The parameters of the BA model for  all layers 
are the same and taken  from  [40]  as  𝑅𝑅 = 0.0015𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚, 𝐻𝐻0 = 0, ℎ = 0.63𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚 = 0.97  and the  
Poission ratio is 0.48. The fundamental natural  frequency of the elastic  model  that is  fixed at  
47m-depth  is 1.33 Hz. Note that  this  frequency could be different from the natural  frequency of  
the Lotung site. The natural frequency of the  model is obtained by applying a fictitious fixed 
boundary condition (imposing an infinite  impedance contrast), but the dominant frequency 
observed in the recorded data could be different  depending to the depth at which there is actually  
such significant impedance contrast  [42].   
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Figure 9. The FE model of the first 47 m of the Lotung site with a fixed bottom condition (left) 
and shear wave velocity and elastic shear modulus profile (right) [40]. 

To set the damping parameters, Borja et al. [40] identified a dominant excitation 
frequency of 0.65 Hz from the recorded signal at a depth of 47 m in the LSST7 event. They 
assumed a 1% stiffness proportional damping resulting in a factor of 0.005. So, the same level of 
damping was assumed in this study whenever simulations are carried out. To make the results 
comparable, the same modeling and analysis assumptions are used. An element size of 1 m is 
used through which frequencies up to 25 Hz can be resolved. So, all recorded signals are 
decimated to 50 Hz. Analyses are also carried out at the same rate, but subsampling is used 
whenever there is a convergence issue. Similar to [40], the Hilber-Hughes-Taylor (HHT) 
integration method with 𝛼𝛼 = −0.1, 𝛽𝛽 = 0.3025, and 𝛾𝛾 = 0.6 is employed for all analyses. The 
effect of pore water pressure is neglected and all analyses are carried out in a total stress state. 

Verification Studies 

As mentioned earlier, the first step of the proposed two-step solution can be carried out 
for any depth as long as there is a sensor at that depth to record the “within motion.” So, we 
present results for the first 17 m because there is a large gap between this depth and 47 m. 

As shown before (see Figure 9), the  modulus of elasticity increases  linearly  in the first 17  
m. So, the parameters 𝑃𝑃1  to 𝑃𝑃9  are considered as candidate updating parameters  to represent the  
soil properties using the  following definitions:  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃1 + 𝑧𝑧𝑃𝑃2  (10)  

𝜈𝜈 = 𝑃𝑃3  (11)  

𝑆𝑆𝑢𝑢 = 𝑃𝑃4 + 𝑧𝑧𝑃𝑃5  (12)  
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ℎ = 𝑃𝑃6 + 𝑧𝑧𝑃𝑃7 (13) 

𝑚𝑚 = 𝑃𝑃8 (14) 

𝑎𝑎1 = 𝑃𝑃9 (15) 
where 𝑧𝑧  is the depth from  the ground surface and 𝑆𝑆𝑢𝑢  is undrained shear strength. An 

identifiability study [43]  is first  carried out using LSST7 simulation data  to find out which 
parameters are identifiable.  Figure 10(left) shows  the entropy gain of  these 9 parameters. As  
seen, the Poisson’s ratio is unidentifiable (at least  around the  assumed value), while  the other 8 
parameters are identifiable. However, there  are  two important notes: 1- the identifiability here  
means the responses are sensitive to the variation  of these parameters, but  the results of the 
identification could be sensitive to the start point, as the problem  is not  convex. 2- There is no 
absolute threshold above which parameters are guaranteed to be identifiable. Indeed, this index 
can only detect the identifiability of parameters  with respect to each other. Another fact that can  
reduce  the identifiability of the parameters is their mutual correlation.  Figure 10(right) shows the  
severity of  this correlation among these nine parameters  (scaled to their entropy to be  
comparable). As seen, the only significant  correlation is between parameters defining depth 
variation of 𝑆𝑆𝑢𝑢  and ℎ. That is, 𝑆𝑆𝑢𝑢  and ℎ  might  not be properly identified.  

Figure 11 s hows how the identification algorithm  performs having 8 unknown parameters  
(the Poisson ratio is excluded) and using simulated data from  LSST7 event. We started the  
identification assuming  a 50% initial error. As seen, while the predicted  responses are perfectly  
matched to the recorded  (here simulated) responses, some parameters are not identified very well  
due to the observed cross-correlation in the  identifiability results.   

We repeated the same problem with  depth invariant parameters in simulation and  
identification, i.e., 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃1, 𝑆𝑆𝑢𝑢 = 𝑃𝑃4, ℎ = 𝑃𝑃6, 𝑚𝑚 = 𝑃𝑃8, and 𝑎𝑎1 = 𝑃𝑃9. As shown in Figure 12, 
this is a healthy identification problem because there is no information sharing among  
parameters,  so all  five parameters are identified  with an acceptable level  of accuracy.   

Figure 10. The identifiability study: entropy gain of each parameter (left), and the mutual 
information (right). 
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Figure 11. The identification results using 8 parameters. Left: identification progress, right: 
comparison between recorded (simulated) and predicted responses in the EW direction at the 

ground surface and depth 6m. 

Figure 12. The identification results using 5 parameters. Left: identification progress, right: 
comparison between recorded (simulated) and predicted responses in the EW direction at the 

ground surface and depth 6m. 

Validation 

The Earthquake Data of The Lotung Site 

Having a good understanding of the parameters’ identifiability and the algorithm’s 
performance, we use the real data from the LSST16 event to validate the estimation method. This 
event was selected because the behavior of the site is more close to 1D due to the long distance 
to the earthquake source [38]. We carry out the identification using two sets of updating 
parameters. In the first case, we use the same set of 8 parameters used in the simulated case 
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study, and we start the identification using the  values suggested in [38]. Figure 13(left) shows  
how the parameters change in time when different time windows of data are received  by the 
identification algorithm. The comparison between recorded, initial, and updated responses in 
Figure 14(left) shows  that the updated model can predict responses, 22%,  15%, and 13% more  
accurately  than the initial model  in the EW-direction, respectively. By fixing the shear strength 
and consequently reducing the number of parameters, the accuracy of  the  updated model is  even 
higher as  shown in Figure 14(right). The percentage numbers are 27%, 19%, and 16%,  
respectively, in this case.   

Figure 13. The identification results using two different parameter sets. 

Figure 14. Comparison between recorded, initial, and updated responses using two different sets 
of parameters. The plots from top to bottom are responses at the ground surface to a depth of 11 

m, respectively.  
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The Centrifuge Test Data 

The centrifuge test data is p recious data for the validation studies because parameters of  
the domain and input excitations  are  largely under control. Herein, we use  data from a  very 
recent centrifuge test series on buried culvert structures. The configuration of the test  and the 
types of  input excitations used to excite  the domain are shown in Figure 15. The details of  these  
tests can be found in [44]. The data from the free-field column (far from structures) under Event 
#10 is used here. The 1D-3C FE model, the  sensor location, and the parameters of the BA model,  
which are  obtained from [45], a re shown in Figure 15  too.  Assuming these values as exact  
parameters, the simulated responses  at 5 instrumented elevations under Motion #10 are  
compared with the recorded signals in Figure 16. The simulation was carried out in both 
OpenSees  and Abaqus for further verification of  the  OpenSees  BA implementation. As seen, the  
model can simulate the response very well.   

Figure 15. Centrifuge experiment.  

AF28 AE25 AD18 

AC12 AA1 
Figure 16. Forward simulation using assumed considered exact values.   

We use this model and data to validate the single-step solution, as the  model is physically 
fixed at the  base. The base motion along with seven parameters  specified in Figure 15  are 
considered as unknown parameters. We start  the  updating assuming a 50% initial error for  the  
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parameters and  10% initial Coefficient Of Variation (COV). The results  of the  identification are  
shown in Table 3. As seen, out of these 7 parameters, Parameter 3 has a very large estimation  
COV showing that the problem is almost insensitive  to this parameter,  and the estimated value is 
unreliable.  All other parameters are  estimated with small COV,  and the estimated values are 
reliable,  and most of  them are close to the considered exact values with various differences.  
However, Parameter 5 shows a very  large difference with respect to  the considered  exact value.  
To see how the predicted responses using these values differ from  Figure 17  is presented. In  this  
figure, the comparison between recorded and predicted using the estimated parameters are shown 
on the right  side, while the previous simulations are shown on the left side. As seen, the 
responses obtained  from the updated model  are closer to  the recorded  responses. As these 
responses  are used for  the model updating, it is not surprising to see such better prediction, but  as  
shown in Figure 18, the  estimated input excitation is very close to the recorded motion at the  
base of the shake table, c onfirming the results of  the output-only  model updating is very reliable.   

Figure 17. Comparison between recorded and predicted acceleration responses at four top 
sensors using considered exact (left) and identified (right) parameters. 

47 



SMIP20 Seminar Proceedings 

Figure 18. Comparison between exact and estimated input excitations. 

Table 3. identification results. 
Parameter  Initial Value   Final Value   Initial COV   Final COV   

 1  +50%  -1.4%  10%  0.0% 

 2  +50%  +91%  10%  0.2% 

 3  +50%  +50%  10%  70% 

 4  +50%  +7%  10%  1.0% 

 5  +50%  +800%  10%  3.2% 

 6  +50%  -33%  10%  2% 

 7  +50%  -13%  10%  0.0% 

 

 

 

 

 
         

 
  

 
 

 

 

 
 

Application to CSMIP Geotechnical Arrays 

As a real-life  application, the data from the CSMIP station 68323 is used. Figure 19(left) 
shows the instrumentation layout and the P- and S-wave velocity profiles. The idealized version 
of the  Vs  profile was taken from [46]  as shown in Figure 19(right). this idealized profile was later 
more idealized into 6  layers as colored  in Figure 19(right). By the time of this study, 8  
earthquake events have been recorded by this station, which are all very weak motions. The  
largest event is the 2014 South Napa event in which Peak Ground Acceleration (at  the  surface)  
was about 0.03g.  

The  Vs  profile below 35 m is  unknown, so we only carry out the first step (input-output)  
identification. Figure 20  shows the comparison between the predicted responses using the  
updated model and the recorded signals. The comparison between the updated Vs profile and the  
initial  and modified profiles are  shown in Figure 21. The modified profile  is the  idealized version  
of the  initial profile as shown in Figure 19(right).   
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Figure 19. Benicia-Martinez Geotechnical Array. Instrumentation layout from CESMD (left), 
shear wave velocity, and small-strain damping profile. 

Ground surface Depth 11 m 
Figure 20. Comparison between recorded and predicted responses in the South Napa 2014 

earthquake. Plots from top to bottom show NS, vertical, and EW directions. 

To see how this updated model works under another earthquake event, we carried out a 
blind prediction under El Cerrito 2010 event. Figure 22 shows a comparison between recorded 
and predicted ground surface motions using initial(modified) and updated models. As seen, the 
updated model can predict the ground surface more accurately. 

Several other CSMIP stations were also studied using the proposed method. The results 
of those cases will be presented in the final report of the project. 
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Figure 21. Comparison between initial, modified, and updated Vs profile. 

Initial(modified) model Updated model 
Figure 22. Comparison between recorded and predicted ground surface responses in the El 
Cerrito 2010 earthquake. Plots from top to bottom show NS, vertical, and EW directions. 

Conclusions 

Dynamic soil properties are key ingredients of analysis for predicting/assessing soil-
structure interaction (SSI) and site response effects under seismic excitations. Although there are 
various techniques and tools to carry out forward site response analysis with various complexity 
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levels, there could be significant uncertainty due to the available uncertainties in nonlinear soil 
models and their parameters. In this project, we developed, tested, and validated input-output and 
output-only identification algorithms to estimate nonlinear soil properties from data recorded in 
the geotechnical array. The method was verified using synthetic examples and validated using 
centrifuge data and data recorded in the well-known Lotung site. The method was also applied to 
several CSMIP Geotechnical Arrays. 

Acknowledgment 

The authors would like to acknowledge Prof. Pedro Arduino from the University of 
Washington for his fruitful comments, OpenSees implementation of the BA model, and Prof. 
Hamed Ebrahimain from the University of Nevada at Reno, who kindly shared his Bayesian 
estimation computer codes. The contributions of Dr. Wenyang Zhang and Dr. Fariba Abazarsa 
are greatly appreciated. The work presented in this manuscript was funded by the California 
Geological Survey (Contract No. 1019-015). Any opinions, findings, conclusions, or 
recommendations expressed in this material are those of the authors and do not necessarily 
reflect the views of the sponsoring agencies. 

References 

[1] S. L. Kramer, Geotechnical Earthquake Engineering, vol. 6. New York: Prentice-
Hall, 1996. 

[2] I. M. Idriss and H. B. Seed, “Seismic Response of Horizontal Soil Layers,” J. Soil 
Mech. Found. Div., vol. 94, no. 4, pp. 1003–1034, 1968. 

[3] J. M. Roesset, “Soil amplification of earthquakes,” Numer. methods Geotech. 
Eng., pp. 639–682, 1977. 

[4] D. Park and Y. M. a. Hashash, “Soil Damping Formulation in Nonlinear Time 
Domain Site Response Analysis,” J. Earthq. Eng., vol. 8, no. 2, pp. 249–274, 2004, doi: 
10.1080/13632460409350489. 

[5] I. a Beresnev and K. Wen, “Nonlinear Soil Response-A Reality ?,” Bull. Seismol. 
Soc. Am., vol. 86, no. 6, pp. 1964–1978, 1996, doi: 10.1061/(ASCE)0733-
9410(1996)122:9(725). 

[6] E. H. Field and K. H. Jacob, “A comparison and test of various site-response 
estimation techniques, including three that are not reference-site dependent,” Bull. Seismol. Soc. 
Am., vol. 85, no. 4, pp. 1127–1143, 1995. 

[7] A. W. Elgamal, M. Zeghal, H. T. Tang, and J. C. Stepp, “Lotung Downhole 
Array. I: Evaluation of Site Dynamic Properties,” J. Geotech. Eng., vol. 121, no. 4, pp. 350–362, 
1995, doi: 10.1061/(ASCE)0733-9410(1995)121:4(350). 

51 



 

 

 

 

 

 
 

 
 

 
 

      
 

 
    

 
 

  
   

 
 

  
  

 
  
   

 
 

  
  

 
 

     
 

 
   

 
 

   
 

 
   

   
 

 
 

  

SMIP20 Seminar Proceedings 

[8] S. F. Ghahari, F. Abazarsa, C. Jeong, A. Kurtulus, and E. Taciroglu, “Blind 
identification of site effects and bedrock motions from surface response signals,” Soil Dyn. 
Earthq. Eng., vol. 107c, pp. 322–331, 2018. 

[9] S. F. Ghahari, F. Abazarsa, and E. Taciroglu, “Probabilistic blind identification of 
site effects from ground surface signals,” Bull. Earthq. Eng., 2017, doi: 10.1007/s10518-017-
0253-0. 

[10] J.-S. Lin, “Extraction of dynamic soil properties using extended Kalman filter,” J. 
Geotech. Eng., vol. 120, no. 12, 1994, doi: 10.1061/(ASCE)0733-9410(1994)120:12(2100). 

[11] E. Şafak, “Models and methods to characterize site amplification from a pair of 
records,” Earthq. Spectra, vol. 13, no. 1, pp. 97–129, 1997, doi: 10.1193/1.1585934. 

[12] H. Ebrahimian, R. Astroza, J. P. Conte, and C. Papadimitriou, “Bayesian optimal 
estimation for output-only nonlinear system and damage identification of civil structures,” 
Struct. Control Heal. Monit., vol. 25, no. 4, 2018, doi: 10.1002/stc.2128. 

[13] H. Ebrahimian, S. F. Ghahari, D. Asimaki, and E. Taciroglu, “A Nonlinear Model 
Inversion to Estimate Dynamic Soil Stiffness of Building Structures.” 

[14] C. Papadimitriou, J. L. Beck, and S. K. Au, “Entropy-based optimal sensor 
location for structural model updating,” JVC/Journal Vib. Control, 2000, doi: 
10.1177/107754630000600508. 

[15] J. L. Beck and L. S. Katafygiotis, “Updating Models and Their Uncertainties. I: 
Bayesian Statistical Framework,” J. Eng. Mech., vol. 124, no. 4, pp. 455–461, 1998, doi: 
10.1061/(ASCE)0733-9399(1998)124:4(455). 

[16] C. McGann and P. Arduino, “Site response analysis of a layered soil column (total 
stress analysis),” Opensees Ex. Wiki. Univ. Washingt., 2010. 

[17] J. Lysmer and R. L. Kuhlemeyer, “Finite Dynamic Model For Infinite Media,” J. 
Eng. Mech. Div., vol. 95, no. 4, pp. 859–878, 1969, doi: 10.1089/dia.2007.0302. 

[18] W. B. Joyner and A. T. F. Chen, “Calculation of nonlinear ground response in 
earthquakes,” Bull. Seismol. Soc. Am., vol. 65, no. 5, pp. 1315–1336, 1975. 

[19] H. Ebrahimian, R. Astroza, J. P. Conte, and R. A. de Callafon, “Nonlinear finite 
element model updating for damage identification of civil structures using batch Bayesian 
estimation,” Mech. Syst. Signal Process., vol. 84, pp. 194–222, 2017, doi: 
10.1016/j.ymssp.2016.02.002. 

[20] S. Haykin, Kalman Filtering and Neural Networks, vol. 5, no. 3. 2001. 

52 



 

 

 

 

    
 

 
 

   
 

  
 

 
   

 
 

  
  

 
 

  
   

 
 

   
  

 
  

 
 

   
 

 
 

  
 

 
  

  
   

  
 

  
  

 
 

  
   

 

SMIP20 Seminar Proceedings 

[21] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to nonlinear 
systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, 1997, vol. 3068, p. 
182, doi: 10.1117/12.280797. 

[22] M. Vucetic and R. Dobry, “Effect of soil plasticity on cyclic response,” J. 
Geotech. Eng., 1991, doi: 10.1061/(ASCE)0733-9410(1991)117:1(89). 

[23] R. I. Borja and A. P. Amies, “Multiaxial cyclic plasticity model for clays,” J. 
Geotech. Eng., vol. 120, no. 6, pp. 1051–1070, 1994. 

[24] M. T. Manzari and Y. F. Dafalias, “A critical state two-surface plasticity model 
for sands,” Geotechnique, 1997, doi: 10.1680/geot.1997.47.2.255. 

[25] F. Pisanò and B. Jeremić, “Simulating stiffness degradation and damping in soils 
via a simple visco-elastic-plastic model,” Soil Dyn. Earthq. Eng., vol. 63, pp. 98–109, 2014, doi: 
10.1016/j.soildyn.2014.02.014. 

[26] Z. Yang, A. Elgamal, and E. Parra, “Computational Model for Cyclic Mobility 
and Associated Shear Deformation,” J. Geotech. Geoenvironmental Eng., vol. 129, no. 12, pp. 
1119–1127, 2003, doi: 10.1061/(ASCE)1090-0241(2003)129:12(1119). 

[27] D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis or limit 
design,” Q. Appl. Math., vol. 10, no. 2, pp. 157–165, 1952, doi: 10.1090/qam/48291. 

[28] F. McKenna, “OpenSees: a framework for earthquake engineering simulation,” 
Comput. Sci. Eng., vol. 13, no. 4, pp. 58–66, 2011. 

[29] R. I. Borja, H. Y. Chao, F. J. Montans, and C. H. Lin, “Nonlinear ground response 
at Lotung LSST site,” J. Geotech. Geoenvironmental Eng., vol. 125, no. 3, pp. 187–197, 1999, 
doi: 10.1061/(ASCE)1090-0241(1999)125:3(187). 

[30] M. B. Darendeli, “Development of a new family of normalized modulus reduction 
and material damping curves,” 2001. 

[31] M. Arduino, P; Taciroglu, E; Bonilla, F.; Taiebat, “Development of a numerical 
nonlinear soil module to expand the capabilities of the SCEC BroadBand Platform,” 2019. 

[32] R. L. Kuhlemeyer and J. Lysmer, “Finite element method accuracy for wave 
propagation problems,” J. Soil Mech. Found. Div., vol. 99, no. 5, pp. 421–427, 1973. 

[33] H. T. Tang, Y. K. Tang, and J. C. Stepp, “Lotung large-scale seismic experiment 
and soil-structure interaction method validation,” Nucl. Eng. Des., 1990, doi: 10.1016/0029-
5493(90)90260-5. 

[34] X. S. Li, C. K. Shen, and Z. L. Wang, “Fully coupled inelastic site response 
analysis for 1986 Lotung earthquake,” J. Geotech. Geoenvironmental Eng., 1998, doi: 
10.1061/(ASCE)1090-0241(1998)124:7(560). 

53 



 

 

 

 

   
 

 
 

  
  

 
   

 
 

 
  

 
 

   
  

 
 

  
  

 
 

 
 

 
 

 
  

 
 

 

 
 

  
 

  
 

 

  
 

  
    

 

SMIP20 Seminar Proceedings 

[35] G. Elia, M. Rouainia, D. Karofyllakis, and Y. Guzel, “Modelling the nonlinear 
site response at the LSST down-hole accelerometer array in Lotung,” Soil Dyn. Earthq. Eng., 
2017, doi: 10.1016/j.soildyn.2017.08.007. 

[36] S. D. Glaser and L. G. Baise, “System identification estimation of soil properties 
at the Lotung site,” Soil Dyn. Earthq. Eng., 2000, doi: 10.1016/S0267-7261(00)00026-9. 

[37] C. Y. Chang, C. M. Mok, and H. T. Tang, “Inference of dynamic shear modulus 
from Lotung downhole data,” J. Geotech. Eng., 1996, doi: 10.1061/(ASCE)0733-
9410(1996)122:8(657). 

[38] R. I. Borja, B. G. Duvernay, and C.-H. Lin, “Ground response in Lotung: total 
stress analyses and parametric studies,” J. Geotech. Geoenvironmental Eng., vol. 128, no. 1, pp. 
54–63, 2002. 

[39] M. Zeghal, A.-W. Elgamal, H. T. Tang, and J. C. Stepp, “Lotung Downhole 
Array. II: Evaluation of Soil Nonlinear Properties,” J. Geotech. Eng., vol. 121, no. 4, pp. 363– 
378, 1995, doi: 10.1061/(ASCE)0733-9410(1995)121:4(363). 

[40] R. I. Borja, C. H. Lin, K. M. Sama, and G. M. Masada, “Modelling nonlinear 
ground response of non-liquefiable soils,” Earthq. Eng. Struct. Dyn., 2000, doi: 
10.1002/(SICI)1096-9845(200001)29:1<63::AID-EQE901>3.0.CO;2-Y. 

[41] M. Zeghal, A. W. Elgamal, H. T. Tang, and J. C. Stepp, “Lotung downhole array. 
II: Evaluation of nonlinear soil properties,” J. Geotech. Eng., 1995, doi: 10.1061/(ASCE)0733-
9410(1995)121:4(363). 

[42] Y. Tao and E. Rathje, “The Importance of Distinguishing Pseudoresonances and 
Outcrop Resonances in Downhole Array Data,” Bull. Seismol. Soc. Am., 2020, doi: 
10.1785/0120190097. 

[43] R. R. Ebrahimian, H.; Astroza, R.; Conte, J.P.; Bitmead, “An Information-
theoretic Approach for Identifiability Assessment of Nonlinear Structural Finite Element 
Models,” ASCE J. Eng. Mech., vol. in press, 2018. 

[44] E. Esmaeilzadeh Seylabi, E. Agapaki, D. Pitilakis, J. Stewart, S. Brandenberg, 
and E. Taciroglu, “Development of validated methods for soil-structure interaction analysis of 
buried structures,” Des. Dataset, 2017. 

[45] E. E. Seylabi, H. Ebrahimian, W. Zhang, D. Asimaki, and E. Taciroglu, 
“Bayesian Estimation of Nonlinear Soil Model Parameters Using Centrifuge Experimental 
Data,” in Geotechnical Special Publication, 2018, doi: 10.1061/9780784481486.042. 

[46] K. Afshari and J. Stewart, “Implications of California vertical array data for the 
analysis of site response with 1D geotechnical modeling,” 2017. 

54 



 
 
 

 
 

   
 
 

  
 

    
 
 

 
 

 
 

             
 

           
    

 
  

 
  

  
 

          
  

  
  

  
   

   

   
    

   
   

 
  

SMIP20 Seminar Proceedings 

ESTIMATION OF SITE AMPLIFICATION FROM GEOTECHNICAL ARRAY DATA 
USING NEURAL NETWORKS 

Daniel Roten and Kim B. Olsen 

Department of Geological Sciences, San Diego State University 

Abstract 

We use deep learning to  predict  surface-to-borehole Fourier amplification functions (AFs)  
from discretized shear-wave velocity profiles. Specifically, we train a fully connected and a  
convolutional  neural  network  (NN)  using  observed  mean  AFs  observed  at  ∼ 600 KiK-net  and  
California Strong  Motion Instrument Program (CSMIP) vertical array sites. Compared to  
predictions  based on theoretical SH  1D amplifications, the NN results  in up to 50% reduction of  
the mean squared log error between predictions  and observations at sites  not used for  training. In 
the future, NNs may lead to a purely  data-driven prediction of site response that is  independent  
of proxies or simplifying assumptions.  
 

 

Introduction 

The densification of seismic networks, such as the CSMIP strong motion network in 
California and the KiK-net observatory in Japan, have vastly increased the number of earthquake 
records available for strong motion research. In addition, the deployment of borehole 
accelerometers at many locations has resulted in a large volume of vertical array data which has 
contributed to a better understanding of linear and nonlinear site response during strong shaking 
[e.g.1–4]. 

However, despite the increased amount of data, the standard deviations of intensity 
measures in ground motion prediction equations (GMPEs) have barely decreased over the past 
four decades [5, 6]. Standard deviations in GMPEs remain high because empirical methods use 
very simple models to approximate highly complex wave propagation phenomena [7]. Site 
conditions in most GMPEs are typically reduced to the average velocity in the top 30 meters, 
VS30and in some cases basement depth (e.g. the depth to a constant shear-wave velocity of 1 
km/s, Z1) [8]. Similarly, ground motions recorded on vertical arrays have demonstrated the 
shortcomings of current site response prediction techniques, in particular the assumption of a 
laterally constantmedium [2, 9, 10]. Three dimensional simulations with sophisticated structural 
models and nonlinear wave propagation codes are needed to study the response of such sites 
[e.g., 11, 12]. Although such case studies may shed light on the wave propagation effects behind 
the site response observed at a particular location, it is not clear how this approach can be 
generalized to sites for which no sophisticated 3D velocity models are available. Clearly, new 
methods are needed which harness the sheer volume of strong motion data (including data 
acquired on vertical arrays) to improve seismic hazard analysis. 

While seismology has always been a data intensive field, enormous amounts of data are 
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nowadays being collected in a broad spectrum of fields ranging from technology to finance to 
healthcare. Combined with increasingly powerful computers, the availability of these very large 
datasets has been driving progress in machine learning (ML) techniques, in particular deep 
learning applications which thrive under large amounts of data. 

An exciting aspect of deep neural networks (NNs) is their ability to detect patterns in the 
input data which allows them to make sense of labeled output data. In contrast to shallow 
learning algorithms, deep neural networks are less dependent on feature engineering, i.e., the 
process of transforming input data into features from which the output can be derived using a 
simple mathematical expression. In site response prediction, one could think of proxies such as 
VS30 or Z1 as engineered features needed to carry out regression analysis for calibration of 
traditional GMPEs (i.e., a shallow learning method). A deep learning algorithm would not 
depend on such engineered features, and could process the entire velocity information available 
for a site, without resorting to simplifications which discard valuable data. The idea is that the 
network will identify new features from the provided velocity profile, which guide a more 
accurate site response prediction compared to proxies such as VS30 or Z1. 

In this study, we propose to train a deep neural network to learn the observed site 
response at CSMIP and KiK-net sites based on the entire soil stratigraphy and potentially other 
parameters characterizing the incoming wavefield. The goal is to develop a method which 
predicts site response based entirely on observed vertical array data, without relying on 
simplifying assumptions, such as one-dimensionality or a vertically-incident wave field, made in 
traditional site response assessment. 

We have arranged the content of our paper as follows. In section 2, we provide a quick 
overview of deep learning and elaborate on the design of the NN. We have tested the feasibility 
of the method by by calculating theoretical, one-dimensional SH transfer functions (SH1D) for 
662 real KiK-net soil profiles, and for training a fully connected neural network to predict the 
amplification functions (AFs) from the soil profiles. In second section 3, we describe the data 
preparation methods used in the calculation of transfer functions from CSMIP geotechnical 
arrays and KiK-net strong motion sites. Results of site response prediction using the deep 
learning are presented in section 4. 

Deep Learning and Design of Neural Networks 

Artificial neural networks (ANNs) are modeled after biological neural networks found in 
animal brains, and consist of a collection of artificial neurons interacting with each other. ANNs 
are typically organized in layers, and every ANN consists of an input layer accepting the input 
parameters and an output layer which produces the desired prediction. 

Overview of Neural Networks 

Deep neural networks feature at least one, but typically several hidden layers located 
between the input and output layers. In a fully connected ANN, also called multi-layer 
perceptron (MLP), each artificial neuron in each layer is connected to every other neuron of the 
previous and next layer. (Fig. 1). Therefore, each neuron receives an input signal from every 
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neuron in the previous layer, and redirects a modified signal to every neuron in the next layer. 
The input function z(x) into a neuron consists of a weighted sum of the inputs x = (x1, x2, x3, 
...xm) from the m individual neurons of the previous layer: 

z(x) = wx +b, 

where w is a vector describing the weights of each neural connection. The offset b is also called 
bias. If the current layer has n nodes and the previous layer has m nodes, there are n m 
connections from the current to the previous layer, and the weight matrix connecting the two 
nodes has shape n m. In addition, there are n offsets that must be trained. The weights w and 
offset b are trainable parameters. 

Activation functions allow the ANN to learn nonlinear functions. Without activation 
functions, the total output of the ANN would represent a linear function regardless of the depth 
of the networks (i.e., regardless of the number of hidden layers). Typical choices of activation 
functions include sigmoids, rectified linear units (ReLUs) or hyperbolic tangent functions (tanh) 
[13]. If the ANN is used for regression, the output node uses a linear activation, allowing the 
ANN to output any real number. 

The weights and biases are optimized by training the ANN. The goal of training is to 
minimize the loss function, which quantifies the difference between the desired output provided 
in the training data and the network’s actual output. Forward propagation in a feedforward ANN 
refers to the computation of the network’s output value based on the chosen input and the ANN’s 
current weights and biases, with information flowing from the input to the output layer. This 
order is reversed during backpropagation, where the gradient of the loss function with respect to 
the ANN’s weight is computed based on the input and desired output of one or several training 
examples. Training consists in minimizing the loss by performing gradient descent on the loss 
function. 

Because there are many trainable parameters in an ANN, and the number of training 
examples is often limited, deep neural networks are prone to overfitting [e.g. 13]. An overfitted 
model will perform very well on the input set but will generalize poorly to the test set, with low 
misfit error on the training set but high error on the test set (i.e., the model exhibits high 
variance). Overfitting also affects inversion problems encountered within different domains of 
seismology, such as seismic tomography [e.g. 14]. A common technique to reduce variance 
(overfitting) in such scenarios is to add L1 or L2 regularization, which penalizes large weights 
and thereby reduces the number of free parameters in the model. Although this type of 
regularization can also be applied to deep neural networks, it is more common to reduce variance 
using a technique called dropout [15]. In dropout regularization, a predefined fraction ofneurons 
is randomly eliminated during each training iteration. This prevents the network from relying on 
a single feature, and allows it to generalize better to data it has not encountered during training. 

FCNN Architecture 

In the fully connected ANN design used in this study, the input layer expected the shear-
wave velocities extracted at 100 predefined depths from the soil profile (Fig. 1a,c); the sampling 
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interval gradually increased from 1 m near the surface to 30 m at 1,500 m depth. The properties 
of the last layer were projected onto the remaining depth intervals at shallower sites. Thedesired 
frequency of site amplification was also provided to the ANN algorithm and represented the last 
value in the input layer. The output layer consisted of a single neuron with the siteamplification 
value at the specified frequency (Fig. 1b,c). Our design chosen for the fully connected neural 
network (FCNN, Fig. 1c) used a many-to-one layout, accepting many inputs but producing just a 
single output value. That is, the ANN only predicted the amplification at one frequency at a time. 
One could also design a similar network using a many-to-many configuration, and predict the 
amplification at several frequencies at the same time. We experimented with both many-to-one 
and many-to-many designs and found that the many-to-one configuration was superior for the 
FCNN. However, a many-to-many design was adopted for the convolutional neural network 
(CNN) described below. 

Our FCNN used 7 hidden layers, and the number of neurons decreased gradually from 
256 nodes in the first hidden layer towards the single-node output layer. Following DeVries et al. 
[16], the activation function assigned to the hidden layers alternated between hyperbolic tanh and 
ReLUs; and a linear activation function was applied at the output layer (Fig. 1). 
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Figure1: PrototypeofANN forpredictionofsimulated transfer functions. (a) Shear-wave 
velocities(vs, rednodes)werediscretizedatn =100discretedepthsand(c)fedintotheinput 
layer along with the frequency f of amplification (green node). Hidden layers in (c) are shown 
by blue neurons. Where not all nodes are shown, the true number of nodes are given at the top of 
the layer. The output node contains the amplificationAf at the specified frequency (b). 
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CNN Architecture 

In a convolutional layer, nodes are not directly connected to nodes in the next layer. 
Instead, the data in the layer are convolved using a series of filters. The dimensions of the 
convolutional layer’s output depend on the type of convolution (overlap and stepping size) and 
the number of filters, with each filter creating a new representation of the input data. However, 
as most convolutional layers use many filters, the output is typically large, and downsampled in a 
pooling layer following the convolutional layer. A set of convolutional and pooling layers may 
either be followed by another set of convolutional and pooling layers, or the data is flattened and 
directed into a fully connected layer. 

CNNs are especially effective for image recognition or classification problems, as they 
are able to extract information from the spatial arrangement of the pixels. Although predefined 
filters have long been used in image processing, the effectiveness of CNN derives from the 
network’s ability to optimize the filters depending on the training data. In other words, the filter 
parameters are optimized during back-propagation such that the features extracted by the 
different filters are effective at carrying out the CNN’s task. 

In our case, we applied a CNN to take advantage of the spatial information in the velocity 
profile. We used vs and the P-wave velocity vp as different image ’channels’, analogous to the 
red, green and blue channels used in image recognition. In contrast to image recognition, where 
the input image is three-dimensional (two spatial dimensions plus three channels), our input was 
only two-dimensional (vs and vp at different depths). We did not use densities as they were not 
provided for KiK-net profiles. 

In our CNN design, we used a single  convolutional layer with 16 filters of dimensions  5 2 
(Fig. 2) right after the input layer (dimension 1002, with  vs  and vp  at 100 predefined depths). The  
output of  the convolutional layer consisted of 100 16 values, which we reduced to 25 16 values  
using a pooling layer.  The output of the pooling layer was flattened and fed into a  fully 
connected layer of 512 nodes. Two  more hidden layers with 256 and 128 nodes followed. The  
output layer  contained 50 nodes, which represented the desired amplification function at 50 
predefined frequencies (Fig. 2). A ReLU function was used for activation right  after the pooling 
layer,  and  we  alternated  between  ReLU  and  tanh  functions  in  the  three  fully  connected  layers.  As  
in the FCNN, a linear activation was used in the output  layer. Dropout  regularization was applied 
after each  layer.  Batch normalization (Fig. 2) was carried out before  each  activation  to improve   
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Figure 2: Architecture of convolutional neural network (CNN) for prediction of site response. 

convergence (this was also done in the FCNN). Both the FCNN and the CNN were implemented 
with the Keras library for Python [17] using the TensorFlow[18] backend. 

Data Preparation 

Because data from CSMIP and KiK-net are stored in different formats, separate 
workflows were developed to extract transfer functions from CSMIP and KiK-net data, 
respectively. 

CSMIP Data 

Records from vertical arrays in the CSMIP network were downloaded from the Center 
for Engineering Strong Motion Data website [19]. In a first step, all earthquakes which resulted 
in peak ground accelerations (PGA) > 0.01g on geotechnical arrays within the CSMIP network 
were identified and retrieved from the network’s website. We were able to download these 
records directly from the web interface as the amount of data was relatively small. The search 
resulted in a total of 209 suitable records pertaining to 99 different local and regional 
earthquakes with magnitudes between 3.1 and 7.3 (Fig. 3). The retrieved records include 4 
records of the M7.1 Ridgecrest earthquake of July 5, 2019 that were acquired on geotechnical 
arrays in Palmdale, Oxnard and Los Angeles. 41 out of the total 44 CSMIP geotechnical arrays 
are represented in these records. 
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Figure 3: Location of CSMIP geotechnical arrays (triangles) and selected earthquakes (circles). 

Figure 4: Surface and borehole accelerograms recorded at the La Cienega (Los Angeles) 
geotechnical array during the 2019 M 7.1 Ridgecrest earthquake. 

A workflow was developed which parses the CSMIP ASCII files [20] to  extract ground  
motions,  performed  Fast  Fourier  Transform,  smoothing  with  a  Konno-Ohmachi  filter  [21]  and  the  
computation of the  AF.  Figure 4 shows an example of surface and downhole accelerograms used 
to  train  the  NN,  namely  records  from  the  La  Cienega  (Los  Angeles)  geotechnical  array  during  the  
M 7.1 Ridgecrest  earthquake (rupture  distance 205 km). Although the incoming wavefield is  
dominated by long-period ground motions  (period  T  10 s≈  ) ground motions  (Fig. 5a), the 
amplification by the deep alluvium can clearly be observed at  frequencies  between 1 and 10 Hz  
(Fig. 5b). The observed  Fourier amplification at different frequencies obtained from the chosen  
records represents the output that the NN is trained to predict. Shear-wave velocities at different 
depths, along with selected earthquake parameters (e.g., magnitude, rupture distance) represent 
the input layer of the  NN.  
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Figure 5: (a) Fourier amplitude and (b) AF (amplification function) from La Cienega records of 
M 7.1 Ridgecrest earthquake. 

KiK-net Data 

Although the KiK-net data website provides the option to search for earthquake records 
based on different parameters, we found that the interface was not suitable to select and 
download the relatively large amount of records that we wanted to use for this project. Instead, 
we developed a script that downloads all the earthquake records from the KiK-net website and 
stores them locally. This ’data scraper’ was programmed in Python using the requestslibrary 
[22]. 

Acceleration time series from all earthquakes recorded by KiK-net stations between 
January 1997 and August 2020 were downloaded from the Kyoshin web site [23]. Five parallel 
download sessions were executed to retrieve the records, which amount to about 105 Gb in total. 
Records of acceleration time series in K-NET ASCII format were kept in event tar archives for all 
KiK-net sites which recorded the event. Earthquake and station metadata were extracted from 
event files and stored in a local database. Three separate tables with station information (i.e., 
station code, location, elevation, sensor depth), event information (event ID, date, magnitude, 
hypocenter) and record informations (event ID, station code, peak ground acceleration, distance) 
were generated and stored in Python Pandasdataframes. 

Based on the record’s PGA (peak ground acceleration), we selected 20 representative 
events for each station. Two different selection strategies were used to generate training datasets 
for prediction of mean amplifications or event-specific amplifications, described below. 

For the prediction of mean site amplifications, we only used records with surface PGAs 
below 0.2g to exclude nonlinear effects. Where available, we randomly picked 20 events with 
PGAs within 0.05 and 0.2g. If less than 20 events with 0.05g < PGA < 0.2g were available, we 
selected the 20 events with the highest PGA. The number of 20 events per site was chosen 
because all except 4 sites (KNMH18, FKOH02, SOYH3, AICH23) recorded more than 20 events 
until August 2020, and no site recorded less than 10 events. Using more events per site would be 
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possible, but would require the introduction of training weights to give all sites equal 
consideration; otherwise the neural network would tend to automatically give more weight to 
stations that are represented by more entries in the training dataset. 

For the prediction of event-specific site amplification, events were selected such that their 
PGAs were roughly uniformly distributed between a minimum PGA of 0.05g and the maximum 
PGA recorded at that site. If less than 20 events with PGA > 0.05g were available at a site, we 
picked the 20 events with the highest PGAs. This approach was chosen to ensure sufficient 
representation of events with high PGAs for the prediction of nonlinear effects. However, results 
presented in this paper are focused on the prediction of mean AFs, which do not include 
nonlinearity. 

The next step in the KiK-net data processing workflow consisted in the extraction of time 
series data from the selected observations. We used the ObsPyFramework for Python [24] to read 
the data. Surface-to-borehole transfer functions were computed for both horizontal components, 
smoothed using a Konno-Ohmachi filter (bandwith w = 10) and the geometric mean of both 
horizontals was computed. We then interpolated the amplification at 50frequencies of interest, 
which are logarithmically spaced between 0.3 and 20 Hz. This procedure was carried out for a 
total of 13,210 events. Computationally, the data preparation was expensive because two Fast 
Fourier Transforms and Konno-Ohmachi filtering operations were executed for each record. In 
order to accelerate the process, the web scraper and data processing workflow were deployed on 
the commodity cluster Rhea at the Oakride Leadership Computation Facility (OLCF). We used 
the Apache Spark Engine [25] to distribute the data processing on up to 5 nodes and 80 CPU 
cores. This approach resulted in a wall-clock time of less than two hours for the computation and 
smoothing of the amplification functions for all the 13,210records. 

Training and test datasets were created as follows: First we randomly selected 95% of the 
sites to contribute to the training set, while the remaining sites were assigned to the test set. 
Figure 6 shows the distribution of training and test sites among the KiK-net stations. We used the 
same selection of training and test sites for all different neural network layouts and 
hyperparameter choices shown in this paper, in order to allow for a one-by-one comparison of 
network performances. We created training and test datasets by iterating over all the records 
pertaining to each given training and test site. In the many-to-many layout used in the 
convolutional neural network for the prediction of mean AFs, the training and test sets contained 
just one data point per site. In the many-to-one design of the fully connected network, one data 
point for training / testing was created for each site and frequency for the prediction of mean 
amplification. The number of datapoints per site equals the number of events at the site times the 
number of frequencies in the prediction of event-specific amplifications using the many-to-one 
NN layout. 

The training and test sets for the prediction of event-specific amplifications using the 
many-to-one NN layout contain one data point for each frequency and each observation per site. 
The many-to-many design in the CNN requires just one data point per observation and site in the 
training and test sets. 
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NN Training and Prediction  Results  

We initially trained a network to predict event-specific site amplifications. As this turned 
out to be quite difficult and computationally expensive, we reverted to working with mean site 

Figure 6: Locations of KiK-net sites assigned to training and test sets in this study. 

amplification in a first step. 

We trained the fully connected NN and convolutional NN with the mean AFs for 596  
KiK-net sites assigned  to the test test. Mini-batch  gradient descent using the Adam optimizer 
[26] was carried out to  minimize the  mean square logarithmic error  (MSLE) between observed 
and predicted theoretical AFs. We chose the MSLE as our loss function to incorporate  the large  
range of  amplifications  observed between different sites and frequencies. A low MSLE is  
consistent  with good visual agreements if AFs are plotted in  logarithmic space as is 
conventionally done. We also report the mean absolute  error  (MAE) between predicted and 
observed amplification functions. The batch size  was set to 2048 for the  FCNN and to 50 for the  
CNN. We trained the ANNs for 1,000 epochs using the default learning rate of 10−3.  

Prediction of Mean Amplification Functions using the FCNN 

Figure  7  shows  the  learning  curve  obtained  during  training  of  the  fully  connected  neural  
network (FCNN) with mean amplification  functions. The training loss  (MSLE) is reduced from 
an initial value of 1.36 to 0.015 (Table  1). Input features  (i.e.,  vs  and frequency of amplification)  
were  standardized  by  removing  the  mean  and  scaling  to  unit  variance  using  ‘StandardScaler’ from  
the  scikit-learn   library [27] before training. To  control the amount of overfitting to  the training  
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data, we used dropout regularization in the  first five hidden layers. The dropout rate was adjusted  
to a value of 0.15 by trial and error. Lower values  resulted in  a higher validation error,  while  
higher values increased  the training error without further reducing the validation error. Figure 8  

Figure 7: Learning curve with mean absolute training and validation errors during Adam 
optimization of the fully connected neural network (FCNN) for prediction of mean site response 

MSLE (train) MAE (train) MSLE (test) MAE (test) 
Baseline∗ 0.216 2.005 
FC 0.015 0.521 0.140 1.593 
CNN 0.021 0.595 0.104 1.307 

Table 1: MAE and MSLE (loss) between observed amplifications and amplifications predicted 
from the preferred fully connected (FC) and convolutional (CNN) neural networks. 

Theoretical SH1D amplification compares observed and predicted mean amplification functions 
for 9 randomly selected training sites. The low training error is reflected in the good match 
between observed and predicted mean amplification functions. 

We used the trained FCNN to predict mean site amplifications at the 66 test sites and 
obtained a MSLE of 0.014 (Table 1). Figure 9 compares the observed and predicted mean 
amplifications at 9 randomly selected test sites. The MSLE at the displayed test sites ranges from 
about 0.040 for sites where the predicted AF is close to the observations (e.g., ISKH04, MIEH06, 
KOCH13) to values above 0.150 for sites where the predicted AF does not reproduce the 
observation (e.g., YMNH14, SRCH01, YMTH07) well. However, predicting the site response 
from a soil profile is generally difficult due to multi-dimensional effects, modeling inaccuracies 
and uncertainties in soil property estimates [e.g. 9, 10]. In order to put the quality of the AFs 
predicted by the NN into perspective, we compare them with a more conventional method for site 
response prediction. We computed theoretical SH1D AFs for a vertically incident plane wave, 
with densities and quality factors derived from the shear-wave velocity profiles using an 
empirical relation [28]. 

Theoretical AFs were smoothed in the same way as observed mean AFs. The MSLE 
between theoretical and observed AFs is listed for each site in Figure 9 (as well as Fig. 8 for 
reference, although we note that is makes little sense to compare training losses to theoretical 
predictions). With the exceptions of sites GIFH25 and SRCH01, the theoretical model results in 
a larger prediction error than the NN. The MSLE of 0.22 between theoretical and observed AFs 
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for the 66 test sites (Table 1) is used as a baseline to assess the NN’s performance, and shows 
that the NN is generally predicting mean AFs more accurately than the theoretical model. 

Figure 8: Comparison between observed mean amplification functions (blue) and amplification 
functions predicted by the FCNN (orange) for 9 randomly selected training sites. Solid green 
lines show theoretical 1D site amplification functions. Numbers in brackets next to the site name 
give the training loss (MSLE) for the site. Green numbers in the upper left corner show the 
baseline loss (based on the theoretical SH1D amplification function) for the site. 
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Figure 9: Same as Figure 8, but showing mean and predicted mean amplifications for 9 randomly 
selected test sites. 
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Prediction of mean amplification functions using a CNN 

The convolutional CNN was trained using observed mean site amplifications for the same 
596 training sites as for the FCNN. As with the FCNN, we adjusted drop-out rates for the CNN 
by trial and error to minimize the trade-off between high model bias (in case of poor 
performance for training sites) and high variance (in case of overfitting). For the CNN we tuned 
to drop-out rates to different values for each layer. A drop-out rate of 0.5 was used after the 
pooling layer (Fig. 2), while drop-out rates of 0.3, 0.15 and 0.10, respectively, were used for the 
three subsequent, fully connected hidden layers. 

The CNN was trained for 2,000 epochs using a batch size of 50 sites. The loss was 
reduced from an initial value of 1.45 to a minimum of 0.043. We used the trained model to 
predict AFs for training and test sites and obtained a MSLE values of 0.021 and 0.104, 
respectively (Table 1). Note that the MSLE for predicted AFs at training sites (0.021, Table 1) is 
lower than the lowest minimum value obtained during optimization (0.043). This discrepancy is 
caused by drop-out regularization. Drop-out regularization randomly eliminates neurons during 
training, resulting in a relatively high training error. However, all neurons are enabled during 
prediction (drop-out rate is set to zero), which results in a lower prediction error than training 
error. 

Both MSLEs and MAEs at test sites sites are lower for the CNN than for the FCNN. 
Moreover, the CNN achieves a test MSLE that is 50% lower than baseline (Table 1). Figure 10 
compares observed, predicted and theoretical (baseline) AFs for the same 9 test sites as shown for 
the FCNN (Fig. 9). The CNN results in more accurate predictions especially for sites YMNH14 
(MSLE reduction from 0.146 to 0.028), MIEH08 (0.043 to 0.020) and GIFH25 (0.064 to0.030). 

Figure  11a  shows  the  distribution  of  the  MSLE  obtained by   the  baseline,  FCNN  and  CNN  
at the 66 test sites. The  CNN clearly represents an improvement with respect to both the FCNN  
and baseline. For example, the CNN distribution peaks at an MSLE of 0.05, with a median  
MSLE  of  0.073. Baseline (SH1D) errors are  more uniformly distributed with a  median MSLE of  
0.181. Compared to the  FCNN, the CNN achieves an MSLE below 0.075 for  more  sites, and less  
sites with errors above  0.225. We  also computed the change in MSLE between the two NN  
designs and the baseline  for each site and plotted up the  distribution of the change of  error  (Fig. 
11b). With respect to baseline, the NNs results in an improvement at most sites; the CNN also  
outperforms the FCNN in terms of number of sites where an  improvement is observed.  
 

Summary and Outlook 

We have calculated mean observed AFs for 662 KiK-net sites and 41 CSMIP 
geotechnical arrays. 95% of the sites were assigned as training sites, with the remaining 5% 
withheld as test sites. A FCNN and a CNN were trained to predict the observed amplification 
functions from a discretized representation of the velocity profiles. 

Both NN designs converged to a solution with minimal loss, and accurately reproduced 
the observed AFs at the training sites. While the quality of the prediction at the test sites varied, 
both the FCNN and the CNN outperformed predictions based on the theoretical SH1D site 
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response in terms of MSLE (mean squared logarithmic error) between observed and predicted 
AFs. 

Predictions made by the CNN resulted in an MSLE that was 50% lower than the SH1D 
baseline, and 25% lower than the predictions by the FCNN. Proper regularization and fine fine-
tuning of the drop-out rate was found to be essential to obtain good predictions at test sites not 
used for training. 

Figure 10: Same as Figure 9, but showing predictions by the convolutional neural network 
(CNN) at the same test sites. 
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Figure 11: (a) Distribution of site-specific MSLE obtained from baseline, FCNN and CNN 
results. (b) Distribution of change in MSLE achieved by use of FCNN and CNN with respect to 
the baseline (’Base’). 

These results show that artificial NNs have the potential to take advantage of the full 
velocity profile information for more accurate predictions of observed AFs. Although a simple 
SH1D amplification function does not represent the state of the art for site-specific seismic 
hazard analysis in engineering seismology, it serves as a useful benchmark that demonstrates the 
limits of commonly made assumptions (in particular a horizontal, 1D layered structure and a 
vertically incident plane wave). A NN which learns to predict AFs purely from data is not bound 
by such assumptions, and we have demonstrated the level of improved accuracy with respect to 
the baseline that can be learned from data. 

In future work,  we will also evaluate the accuracy of the NN-predicted AFs against  
empirical site amplification functions, which are  typically based on the  VS30. While our efforts  in  
this  paper  were  focused  on  the  prediction  of  mean  AFs,  future  work  should  address  the  prediction 
event-specific amplification. Here, effects of incident wavefield characteristics, scattering and  
nonlinearity would be captured by feeding the network with earthquake magnitude, hypocentral  
distance, and input signal metrics (e.g. PGA, spectral  accelerations at  different frequencies,  
duration). In case of  a CNN, this requires a  slightly more complicated design with mixed data  
inputs. We also recommend for future work to explore  the use of information on  the  
multi-dimensionality of a site structure.  

The best-performing network design will be re-trained using all the extracted AFs and 
made available to the community for data-informed site response prediction using the full soil 
profile. 
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Disclaimer 

The contents of this report were developed under Contract No. 1019-014 from the 
California Department of Conservation, California Geological Survey, Strong Motion 
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agency or endorsement by the State Government. 
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Abstract 
 

Current provisions in ASCE-41 for performance-based assessment are applied to an 
existing three-story steel moment frame building that was designed and constructed prior to the 
1961 UBC code revisions. A computer model of a perimeter frame that comprises the primary 
lateral system of the building was developed and validated against available instrumented data 
from two earthquakes. Both linear and nonlinear procedures were used in the assessment. 
Findings from the study indicate that the linear static and dynamic procedures produced 
consistent demand-to-capacity ratios. The nonlinear static procedure resulted in the most severe 
demands at the lowest level with two beams failing the Collapse Prevention limit state whereas 
the nonlinear dynamic procedure produced the lowest demands on the building; however, the 
fact that some individual motions caused some beams to exceed Life Safety or Collapse 
Prevention limits indicates that ground motion selection can play a major role in the outcome of 
the assessment when using the nonlinear dynamic procedure. 
 

Introduction 
 

The development of ASCE-41 (ASCE 2017) and other ongoing efforts directed towards 
the enhancement of performance-based codes represent a significant advancement in the practice 
of earthquake engineering. However, calibration and validation of the modeling parameters and 
acceptance criteria to real building performance is clearly needed for practicing engineers to gain 
confidence in the proposed methodologies.  The use of strong motion data obtained from 
instrumented buildings experiencing strong ground shaking is an essential part of this process.  
 

ASCE-41 permits as many as four analytical procedures to estimate seismic demands: 
Linear Static Procedure (LSP), Linear Dynamic Procedure (LDP), Nonlinear Static Procedure 
(NSP), and Nonlinear Dynamic Procedure (NDP).  This implies that the assessment of a regular 
low to mid-rise building using any of the methods should reach the same conclusion on the 
performance of the system. Recently, Harris and Speicher (2018) carried out a detailed ASCE 
41-based assessment of six modern steel frames varying in height from four to sixteen stories 
designed to the provisions of ASCE-7 (ASCE 2016). Their study identified numerous 
inconsistencies in the different evaluation procedures: for example, LDP consistently resulted in 
lower demand-to-capacity ratios (DCRs) than LSP and likewise NSP consistently resulted in 
lower DCRs than NDP – though it is recognized that nonlinear responses are sensitive to model 
and analysis parameters. 
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The results reported in this paper are part of a larger study investigating three 
instrumented buildings and examining several ASCE-41 provisions. It can be viewed as an 
extension of the study by Harris and Speicher to an existing building where the numerical model 
has been calibrated to observed responses. 
 

Building and Instrumentation Data 
 

The first structure selected for assessment is a 3-story office building designed in 1958 
and located in San Bernardino, California. The structure is composed of moment frames along 
the exterior serving as the lateral load resisting system in both directions. The gravity system is a 
wood truss-joist system supported on steel columns that spans in the north-south direction. 
Figure 1 shows the plan view of the building and the elevation of the perimeter frame used in the 
assessment. 
 

     
Figure 1. Plan view of building and elevation of perimeter frame on line 1  

 
The building has been instrumented by the California Strong Motion Instrumentation 

Program (CSMIP Station 23516) with thirteen accelerometers: three at the ground level to record 
base accelerations in all three orthogonal directions, three each at the 2nd floor and roof, and four 
at the third level of the building – as shown in Figure 2. 

 
Figure 2. Locations of installed sensors 

 
Instrumented data from several earthquakes are available for this building, as indicated in 

Table 1. Of the available data, two recorded motions with the highest ground peak accelerations 
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(PGA) were selected to calibrate the simulation model: Landers (1992) and San Bernardino 
(2009). 

 
Table 1. Available instrumented data for selected building 

Earthquake Year Peak Acceleration (g) 
Ground Structure 

Landers 1992 0.110 0.280 
San Bernardino 2009 0.102 0.155 
Chino Hills 2008 0.052 0.076 
Lake Elsinore 2007 0.036 0.050 
Whittier 1987 0.030 0.090 
Calexico 2010 0.022 0.108 
Borrego Springs 2016 0.019 0.062 
Borrego Springs 2010 0.018 0.077 
Inglewood 2009 0.010 0.029 
Beaumont 2010 0.009 0.016 

 
When examining the time series for the Landers earthquake, unusual long-period content 

was observed throughout the record, particularly in the floor displacement histories (see roof 
history shown in Fig. 3). Therefore, a high-pass filter was applied with a corner frequency of 0.5 
Hz using an 8th order zero phase delay Butterworth filter. Figure 3 shows the base acceleration as 
well as the relative roof displacement before and after filtering.  
 

 
Figure 3. Unfiltered (left) and filtered (right) time histories 
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Modeling and Validation 
 

Given the general symmetry of the building plan and the fact that torsional motions were 
not evident in the profile of the recorded floor displacement histories, the analyses were carried 
out on a two-dimensional model (Fig. 4) of the perimeter moment frame in the east-west direction.  
 

 
Figure 4. Two-dimensional model of perimeter frame used in assessment 

 
Beams are modeled using elastic beam-column elements with inelastic springs 

(constructed with zero-length elements) at the ends as shown in Figure 4. All inelastic action (for 
nonlinear procedures) is lumped into these concentrated springs whose cyclic response is 
represented using the Modified Ibarra-Medina-Krawinkler deterioration model (Ibarra et al. 
2005). In order to capture the axial load-moment interaction, columns were modeled as force-
based elements with  five Lobatto integration points and the Voce-Chaboche material model was 
used to represent the inelastic cyclic behavior of steel. Center-line dimensions are used for beams 
and columns to indirectly account for the flexibility of the panel zones. The building has 
embedded column bases connected to spread footings and grade beams and therefore the base 
was assumed to be fully restrained – an assumption that was shown to be reasonable for such a 
base connection (Falborski et al. 2020). An additional leaning column is attached to the moment 
frame using rigid links with pinned connections at each end to account for P-Delta effects and 
contributing gravity loads from the interior frames are applied at each level. A set of diagonal 
braces were also added at each level to represent the stiffness contribution of non-structural 
elements – the process by which the brace stiffness was determined is described in the following 
section. 
 
Calibration of Non-Structural Stiffness 
 

An eigenvalue analysis was carried out on the bare frame structure without the diagonal 
braces and the fundamental period of the structure was estimated as 0.70 sec. A Fast Fourier 
Transform (FFT) was carried out using the acceleration time histories at each level and Transfer 
Functions (relative to the base) were obtained for both the Landers and San Bernardino 
earthquakes. The resulting plots for the Landers recordings are shown in Fig. 5 where a 
predominant frequency is evident at approximately 1.8 Hz or a period of 0.56 sec.  
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Figure 5. Fourier transform and transfer functions from acceleration histories recorded 

during Landers earthquake 
 

The procedure outlined in Falborski et al. (2020) was utilized to establish the non-
structural stiffness at each story level. At any time instant during the dynamic response of the 
structure, the shear in any story K can be estimated from: 

 

 
( ) ( ) ( ) ( )

             =  ( )

story NS STR
k K K K K

N
i ii K

V t V t V t C t

m u t
=

= + + ⋅∆

∑
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
      (1) 

 
In the above equation, ( )story

KV t is the instantaneous shear in story K at time t, ( ) and ( )NS STR
K KV t V t

are the story shears from the non-structural and structural components, respectively, ( )K KC t⋅∆ is 

the story force due to damping, and  ( )N
i ii K

m u t
=∑  is the sum of the inertia forces above story K. 

 
Using the recorded time histories, the time instants at which the interstory velocities are 

zero are determined for each story K. At these instants, the damping force is eliminated in 
Equation (1). The lateral displacements at each floor corresponding to these time instants are 
determined and applied statically to the model. The resulting shears will be structural story 
shears at each level. The total shear is determined by summing the inertia forces above that level, 
hence the non-structural contribution can be established. At each time instant when the interstory 
velocity is zero, the nonstructural story shear can be plotted vs. the corresponding interstory drift 
at story K.  Linear regression can be used to fit the data points and the resulting slope represents 
the nonstructural story stiffness. Likewise, the total and structural stiffness at each floor can be 
estimated using a similar approach. The estimated story stiffnesses are  shown for a typical floor 
in Fig. 6 for the San Bernardino recordings. Table 2 lists the numerical values of the estimated 
stiffness quantities. 
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Figure 6. Estimating non-structural stiffness for a typical story  

(Data from San Bernardino earthquake) 
 

In order to add the nonstructural stiffness, braces were introduced in two bays at each 
floor through the use of truss elements as shown previously in Fig. 4. The properties of the 
braces were adjusted until the total story stiffness matched the calculated values shown in Table 
2. This was accomplished iteratively by updating the areas of the braces, applying static lateral 
loading to the model and determining the total story stiffness. The addition of the braces to the 
model as well as incorporating the additional stiffness of the joist floor system altered the 
fundamental period of the frame to 0.54 sec, consistent with the estimated building period in the 
east-west direction from the FFT analysis (Fig. 5). 

 
Table 2. Estimated components of story stiffness 

Story Stiffness (k/in) 
KNS KSTR KTOTAL KNS/KTOTAL 

1 51.9 551.1 603.0 0.09 
2 67.2 511.0 578.2 0.12 
3 102.9 340.3 443.2 0.23 

 
Calibration of Damping 
 

The concept behind Equation (1) can also be used to calibrate damping. In this case, the 
time instants at which the interstory drifts are zero are considered. Therefore, the total damping 
force in any story at these time instants will be equal to the sum of the inertia forces above that 
story. However, the damping coefficients will correspond to the lateral degree-of-freedom of the 
floor and additional calibration will be needed to establish Rayleigh coefficients associated with 
the mass and stiffness matrices of the system. Hence, in the present study, damping was 
estimated using the logarithmic decrement method by examining the displacement histories of 
the floors at the end of the recordings. Shown in Figure 7 are the floor displacement histories at 
the end of the recording during the San Bernardino earthquake which is assumed to represent the 
free vibration phase of the response. The decay in the response over the final two cycles is used 
to estimate damping. The estimated damping ratio varies from 13% in the first floor to 19% in 
the third floor. The high damping obtained with this approach indicated some anomaly in the 
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data and/or assumption about the free vibration phase. Hence, an additional method was utilized 
to estimate damping – the analysis model (with nonstructural stiffness already calibrated) was 
subjected to both the Landers and San Bernardino base motions and the response spectra, based 
on the roof accelerations, was compared to that obtained with the actual recorded motions. 
Results are presented in Fig. 8 which suggest that a damping of 10% (assigned to both the 1st and 
2nd mode) produced a reasonable match. Hence the time history simulations presented in this 
paper are based on Rayleigh damping with coefficients corresponding to 10% of critical damping 
in the 1st and 2nd mode. 
 

 
Figure 7.  Free vibration response following the San Bernardino earthquake  

 

 
       (a)              (b) 

Figure 8.  Comparison of acceleration spectra using data from the roof response:  
(a) Landers; (b) San Bernardino  

 
Model Validation 
 

The model was calibrated assuming elastic behavior during each of the recorded motions 
based on the following facts: (1) the fundamental period did not shift during these motions, and 
(2) there was no evident structural damage in the building following the seismic events. The 
simulated and recorded roof displacement histories during the Landers and San Bernardino 
shaking are shown in Fig. 9. The peak displacements during the Landers earthquake is slightly 
over-estimated – this is attributed to the fact that the 10% damping used in the simulation was 
lower than the observed damping (see Fig. 8). The magnitude of the response during the San 
Bernardino earthquake was negligible during the first 25 seconds, hence roof displacement 
history is shown beyond this point. 

 

1 
2 
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(a) 

 
(b) 

Figure 9. Comparison of recorded vs. simulated roof displacement histories:  
(a) Landers; (b) San Bernardino 

 
Building Assessment using ASCE 41 Guidelines 

 
A seismic performance assessment of the building was carried out by analyzing the 

validated computer model of the perimeter frame and using both linear and nonlinear analysis 
procedures prescribed in ASCE 41. Note that in all procedures described hereafter, the lateral 
load application is preceded by the application of the sustained gravity loads on the frame.  The 
seismicity considered in the assessment is based on the BSE-2E hazard level, which represents a 
50% probability of occurrence in 50 years. The resulting response spectrum for the site is shown 
in Fig. 10 with the following key parameters: XSS = 1.9 g; 1XS = 1.25 g; OT = 0.13 sec and  ST = 
0.66 sec. 
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Figure 10. Response spectrum for site  
 

Linear Procedures 
 

For the Linear Static Procedure (LSP), an equivalent static load, representative of the 
seismic hazard, is applied over the height of the building. First, the pseudo lateral force V is 
calculated by using the following expression provided in ASCE 41: 
 1 2 m aV C C C S W=          (2) 
The modification factors that account for inelastic behavior 1C and hysterisis characteristics 2C
were both determined to be 1.0, whereas the effective mass factor mC = 0.9. The spectral 
acceleration aS was obtained from Fig. 10. The effective seismic weight of the building is 2058 
kips and half this value was used to estimate the total lateral load on the perimeter frame. All 
elements were deformation-controlled, hence the maximum moment demands in each element 
was obtained due to the applied lateral forces and the corresponding demand-to-capacity ratios 
(DCRs or m-factors) are plotted in Fig. 11 (a) and 12 (a).  
 

For the Linear Dynamic Procedure (LDP), the assessment was based on the response 
spectrum method. Considering the first three modes was sufficient to capture at least 90% of the 
participating mass of the frame. The equivalent static lateral load vector was then determined 
from: 
 { } [ ]{ }  ap m S= Φ Γ          (3) 
where [m] is the lumped mass matrix, [ ]Φ is the modal vector, Г is the modal participation factor, 
and Sa is the spectral acceleration at the fundamental period of the frame, obtained from the 
target response spectrum (Fig. 10). Peak responses are recorded for each set of lateral loads and 
the modal demands are combined using the square root sum of squares (SRSS). The DCRs are 
shown in Fig. 11 (b) and 12 (b) alongside the LSP results. It is seen that both linear procedures 
produce very similar DCR values – several beams exceed Life Safety (LS) performance level at 
the lower two levels whereas the columns exhibited much better performance just exceeding 
Immediate Occupany (IO) limits at the first floor level. 
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            (a)             (b) 

Figure 11. Demand-to-capacity ratios for beams:  
(a) Linear Static Procedure; (b) Linear Dynamic Procedure  

 

      
            (a)             (b) 

Figure 12. Demand-to-capacity ratios for columns:  
(a) Linear Static Procedure; (b) Linear Dynamic Procedure  

 
Nonlinear Procedures 
 

As described previously, nonlinear action in the beams is represented by concentrated 
springs while columns are modeled using distriuted plasticity elements with fiber sections to 
capture axial force-moment interaction effects. The response of each nonlinear spring is based on 
the Modified Ibarra-Medina-Krawinkler (I-K) model – the transformation of the I-K model into 
the ASCE 41 backbone envelope for use in nonlinear procedures is displayed in Fig. 13. 
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Figure 13. Modified Ibarra-Medina-Krawinkler model (left) and transformed backbone 

parameters (right) used in nonlinear procedures  
 

For the Nonlinear Static Procedure (NSP), the target displacement 𝛿𝛿𝑡𝑡 is calculated using: 

 
2

0 1 2 24
e

t a
TC C C S gδ
π

=          (4) 

The modification factors that accounts for the multi to single degree-of-freedom transformation, 
inelastic behavior, and hysteretic characteristics, respectively, were determined to be: C0 = 1.3, 
C1 = 1.034 and C2 = 1.0.  The effective fundamental period, and consequently the target 
displacement, was estimated through an iterative process to establish a converged effective 
period. The final computed target displacement was 11.28” (corresponding to a roof drift of 
2.3 %) and an effective to initial stiffness ratio of 1.24. The inelastic demands in the beams and 
columns at the target displacement are estimated using OpenSees and are compared to the ASCE 
41 acceptance criteria in Fig. 15 (a) and Fig. 16 (a). 
 
Ground Motion Selection for NDP 
 

In order to select ground motions that are representative of the seismic hazard at the site, 
the United States Geological Survey (2017) Unified Hazard Tool was used for the site 
deaggreation. The hazard at the site is controlled primarily by the San Jacinto fault with expected 
magnitude 8.0 and fault distances less than 1 km and the San Andreas fault with magnitude range 
7.0 – 8.0 and fault distances between 7 – 12 km. A total of 51 ground motions were downloaded 
from the PEER NGA ground motion database (ngawest2.berkeley.edu) with the following filters: 
fault type: strike slip; magnitude: 6 to 8; distance to rupture: 0 to 12; and shear wave velocity 
Vs30: 180 to 360 m/s. Ground motions with spectral shapes signficantly different from the target 
spectrum were discarded. The final 11 sets of ground motion (pairs) were selected such that the 
average maximum direction spectra (RotD100) was at or above 90% of the target response 
spectrum in the period range 0.2T1 – 1.5T1.  Given that the site is classified as near-fault, the 
horizontal components of each selected set was rotated to the fault-normal and fault-parallel 
directions of the causative fault. The fault closest to the site is the San Jacinto fault, hence this 
fault angle was used as the reference for rotating the ground motions. ASCE 41-17 does not 
provide specific guidance on ground motion selection for 2D analysis. Therefore, the following 
procedure was implemented: for each ground motion set already rotated in the fault parallel and 
normal orientations, the base motions and their spectra in each direction were compared; the 
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motion with a larger evident pulse in the time history or a larger spectral value within the target 
period range was selected. A additional scale factor of 1.1 was necessary to ensure that the 
actually applied ground motions had a mean spectra that was equal to or above the target spetrum 
in the required period range. Figure 14 shows the final ground motion spectra and Table 3 
summarizes essential details of the selected records. 

 

 
Figure 14.  Maximum direction spectra of scaled motions and comparison of mean 

spectrum with target spectrum at site 
 

Table 3. Selected ground motions 

GM 
# 

Record 
Sequence 
Number 

Earthquake Name Year Station Name Magnitude  Rrup 
(km) 

1 6 "Imperial Valley-02" 1940 El Centro Array #9 6.95 6.1 

2 30 "Parkfield" 1966 Cholame-Shandon 
Array #5 6.19 9.6 

3 95 "Managua_-
Nicaragua-01" 1972 "Managua_ ESSO" 6.24 4.1 

4 162 "Imperial Valley-06" 1979 "Calexico Fire Station" 6.53 10.5 
5 165 "Imperial Valley-06" 1979 "Chihuahua" 6.53 7.3 
6 185 "Imperial Valley-06" 1979 "Holtville Post Office" 6.53 7.5 
7 558 "Chalfant Valley-02" 1986 "Zack Brothers Ranch" 6.19 7.6 

8 725 "Superstition Hills-
02" 1987 "Poe Road (temp)" 6.54 11.2 

9 4098 "Parkfield-02_ CA" 2004 "Parkfield - Cholame 
1E" 6.00 3.0 

10 4102 "Parkfield-02_ CA" 2004 "Parkfield - Cholame 
3W" 6.00 3.6 

11 4108 "Parkfield-02_ CA" 2004 "Parkfield - Fault Zone 
3" 6.00 2.7 
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Nonlinear simulations of the calibrated numerical model were carried out using 
OpenSees for each of the eleven ground motions, and mean values of the plastic rotations in the 
beams and columns at each end of the element were determined. The maximum plastic rotation 
among all eleven motions was also recorded. Results are presented in Fig. 15 (b) and Fig. 16 (b) 
alongside the estimates from NSP. Two beams at the first floor level fail the Collapse Prevention 
(CP) limit when using NSP but pass Immediate Occupancy (IO) under NDP when considering 
the average rotation for the eleven motions. If the peak rotation among all motions are 
considered, the LS limit was exceeded in two beams and the CP limit was exceeded in one beam 
at the first floor level. Column demands in general were small and meet or slightly exceeded the 
criteria for IO performance level at all levels for both NSP and NDP. 
 

 
                 (a)          (b) 

Figure 15. Ductility demands for beams:  
(a) Nonlinear Static Procedure; (b) Nonlinear Dynamic Procedure  

 
 

      
                 (a)              (b) 

Figure 16. Ductility demands for columns:  
(a) Nonlinear Static Procedure; (b) Nonlinear Dynamic Procedure  

 
Conclusions  

 
An existing three-story steel moment frame building that was designed and constructed 

prior to the 1961 UBC code revisions was analyzed using the modeling and acceptance criteria 



SMIP20 Seminar Proceedings 
 
 

88 
 

outlined in ASCE-41. Significant effort was directed towards identifying the nonstructural 
stiffness of the system, estimating damping and validating the computer model of the perimeter 
frame used in the assessment of the building. 
 

Results of the simulations indicate that both linear procedures resulted in consistent 
DCRs for both beams and columns at all floor levels. The nonlinear static procedure resulted in 
the most severe demands at the first floor with two beams failing the CP limit state. Simulations 
using NDP resulted in the lowest demands when considering the mean demands for all eleven 
ground motions. However, when the response to individual motions are examined, beams on the 
first floor failed LS performance in two cases and CP performance level in one event. This 
highlights the importance of ground motion selection and scaling when using NDP. 
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Abstract 
 
Our research puts the accidental torsion provisions in ASCE-7 for low-rise buildings in 

perspective; various combinations of plan aspect ratios, irregularity, and diaphragms rigidity 
are investigated. The presented work is based on simulations; however, the building models 
used in the study are proportioned to represent a wide range of code conforming buildings. 4-
story building prototypes with a plan aspect ratio of 1:1, 1:2, 1:4, and 1:8 are modeled. The 
building models possess translational to rotational period ratios (Ω) ranging from 1.1 to 2.0. 
Type 1a (Torsional Irregularity) and Type 1b (Extreme Torsional Irregularity) – according to 
ASCE 7 – is considered as the measure of floor plan irregularity. Uncertainty in stiffness is 
treated as the source of accidental eccentricity. Results are compared with corresponding 
MDOF models having regular plans (i.e., symmetric) and rigid diaphragms. We conclude that 
the magnification in deformation demands due to accidental torsion in buildings with a 
semirigid diaphragm, or inherent plan irregularity, is smaller than building with regular floor 
plan and rigid diaphragm. Equivalent design eccentricities obtained from this body of work 
indicate that the 5% equivalent eccentricity rule is conservative to capture the deformation's 
magnification due to accidental torsion in low-rise buildings possessing floor plan irregularity 
or semirigid diaphragms if median estimates of all stories are the basis of code calibration.  

 
Introduction 

 
ASCE 7 (ASCE, 2010, 2017) traditionally requires an increase in the inherent torsional 

moment by applying a 5% offset (perpendicular to ground motion direction) to the location of 
the center of mass on each floor. Accidental torsion is intended to account for the randomness in 
the distribution of floor mass and stiffness of Vertical Lateral Load Resisting systems (VLLRs). 
These design provisions require a magnification of accidental torsional moment for structures 
with torsional irregularity Type 1a and Type 1b and designed with Seismic Design Category 
(SDC) C to F assignment. Meanwhile, ASCE 7 does not distinguish any difference between rigid 
and semirigid floor diaphragms when it comes to the issue of accidental torsion. These 
requirements seem counterintuitive; one may expect that accidental torsional effects in semirigid 
diaphragms are less severe than rigid diaphragms due to the floor system's in-plane 
deformations. Moreover, the inherent torsional moment of torsionally irregular floor plans 
dwarfs the effect of accidental torsion, rendering their magnification less plausible.   

 
One of the earliest research endeavors for characterizing accidental torsional moment in 

symmetric-in-plan structures originated by De la Llera and Chopra (1992); they used instrument 
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data from three low-rise buildings (by California Strong Motion Instrumentation Program, 
CSMIP) and concluded that the 5% accidental torsional rule is adequate. They employed linear 
response spectrum analysis (De la Llera & Chopra, 1994;1995) to show 5% eccentricity is 
adequate for most steel and concrete special moment-resisting frames. Following a similar 
approach for reduction of MDOF systems to analytical models with three degrees of freedom 
(two translational and one rotational), other researchers such as Lin et al. (2001), Hernandez & 
Lopez (2004), De-la-Colina & Almeida (2004), Basu et al. (2014), have made recommendations 
on enhanced approaches to include accidental torsion in the response assessment of buildings for 
seismic design purposes.    

 
The sensitivity of buildings' seismic performance to the inclusion (and exclusion) of 

accidental torsion provisions in their structural design was tackled by a few researchers to shed 
light on the issue from another angle. DeBock et al. (2014), and ATC (2018), have used a 
reduced form of MDOF models for ordinary and special reinforced concrete moment frames and 
investigated the collapse performance of such models with and without the inclusion of 
accidental torsional moment in their design. They conclude that ASCE 7 accidental torsion 
design requirements are only significant for buildings with SDC D assignment if their torsional 
irregularity is beyond Type 1a (i.e., TIR>1.2). They suggest that the inclusion of accidental 
torsional moment for structural design in the form suggested by ASCE 7 is typically not needed 
except for extreme plan irregularities. With a similar focus and performance objective (i.e., 
collapse), Flores et al. (2018) has focused on steel buildings (9-story with Buckling Restrained 
Brace Frames). They recommend that accidental torsion should be included in the nonlinear 
analysis of torsionally irregular buildings. Failure to add accidental torsion in the nonlinear 
analyses can lead to significant underprediction of deformations.  

 
In contrast with Debock et al. (2014) and Flores et al. (2018), who used a rigid diaphragm 

assumption in their analytical building models, Fang and Leon (2018) investigated the difference 
between the response of low-rise steel buildings with rigid and semirigid diaphragms. Accidental 
eccentricity was created by shifting the center of mass as much as 5% of the diaphragm 
dimension. They observe that the drift demands in the asymmetric structures are higher for those 
with semirigid diaphragms than those with rigid diaphragms. This observation is argued to be 
due to the diaphragm's finite in-plane rigidity, leading to significant higher-mode effects and 
larger lateral deformation.  

 
Compared with other studies summarized above, our study aims to quantify the needed 

amount of accidental torsional moment that can represent uncertainty in stiffness of VLLRs in 
response assessment at the design level seismic excitation. The intention is to put the seismic 
design provisions of ASCE 7 in perspective. To this end, our study is aligned with De la Llera and 
Chopra (1994) because both studies aim to find an equivalent eccentricity to account for the 
accidental torsional moment. This study, however, is in contrast with DeBock et al. (2014) in 
which the impact of including (and excluding) accidental torsional moment suggested by ASCE 7 
in the design process is evaluated. The research work presented here is complementary to Xiang 
et al. (2018), where the accidental torsional moments in symmetric buildings with rigid diaphragms 
were investigated. We have expanded our previous research to address asymmetric floor plans and 
peculiarities that arise from including the diaphragm's finite stiffness (i.e., semirigid diaphragm) 
in the context of accidental torsion. The focus here is on low-rise buildings. 



SMIP20 Seminar Proceedings 
 

91 
 

Methodology 
 

In this study, uncertainty in VLLR stiffness is the only source of accidental torsion in 
buildings. This uncertainty is assumed to arise from the variability of element cross-section 
dimensions, second moment of inertia, and material strength. Using the information suggested in 
Xiang et al. (2018), a coefficient of variation (CoV) of 0.14 is set for the stiffness of VLLRs. 

  
Three-dimensional (3-D) models of 4-story buildings with a combination of three different 

plan aspect ratios (1:2, 1:4 and 1:8), three levels of diaphragm rigidity (rigid, and two levels of 
semirigid, denoted as RI, S1, and S2, respectively), and three levels horizontal irregularity (i.e., 
TIR = 1.0, 1.2, 1.4) are created. Given that translational and torsional mode of vibrations 
simultaneously affect a building's general response, the factor Ω is defined as the ratio of the 
dominant translational period (Ttran) to the dominant rotational period (Trot). Large Ω values 
associated with perimeter frame buildings and small Ω values represent core-wall systems with 
low torsional stiffness. Building models with Ω ranging from 1.1 to 2.0 are developed, which 
covers most of the building cases. These models are denoted as base models.   

 
The 3-D analytical models' realizations are created by randomizing beam and column 

stiffness and strength properties using CoV = 0.14. We assume accidental torsional moments are 
caused by the asymmetric stiffness introduced through randomness in stiffness of VLLRs. Such 
phenomena lead to a torsional moment at any horizontal irregularity (i.e., TIR = 1.0, 1.2, 1.4). 
Nonlinear Time History Analysis (NLTHA) is conducted using the Opensees platform and 60 
single component ground motion excitations at 475 year return period for San Francisco (37.7749°, 
-122.4194°). Disaggregation using OpenSHA is first employed to obtain magnitude, distance, and 
epsilon for each dominant scenario. Conditional spectrum (Baker, 2011) covering a period range 
from 0.2 times the smallest first translational period to 1.5 times the largest first translational period 
is then used to select 30 pairs of ground motion with scaling factor larger than 0.5 and lesser than 
2.0. For each base model, two random realizations are created, leading to 180 (= 3 × 60) models 
for each combination of plan aspect ratio, diaphragm rigidity, horizontal irregularity, and Ω.  
Measurements are taken for the largest displacement amplification among four corners of each 
floor based on the rigid and semirigid diaphragm assumption. Deformation demands are recorded 
and transformed into two deformation magnification factors α1 and α2 (will be explained in the 
following) to quantify accidental torsion's impact on building response. Statistical measures (e.g., 
median and 84%) of α1 are used to estimate the equivalent design eccentricity (represented by e(%) 
shown in the following), which is used to account for the effect of accidental torsion during design 
procedures.  

 
Parameters that characterize building torsional response 
 

Parameters 𝛼𝛼1 and 𝛼𝛼2 are introduced, Eq. (1) and Eq. (2), to quantify the magnification in 
displacement response due to uncertainty in VLLR stiffness. 𝛼𝛼1 and 𝛼𝛼2 are defined for each floor; 
for a 4-story building, four distinct values of 𝛼𝛼1 and 𝛼𝛼2 is computed for each random case. Similar 
factors are computed for drift demands for each story; however, to keep notations simple, we rely 
on 𝛼𝛼1 and 𝛼𝛼2 to represent floor displacement and story drift. In these equations, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 denotes the 
maximum displacement of a floor (or drift of a story) for the base model. Conversely, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
denotes the maximum displacement of a floor (or drift of a story) for a random model. There are 
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two random models for each base model; therefore, one can compute two distinct values for 𝛼𝛼1, 
and 𝛼𝛼2  for each floor (or story) given a ground motion record. 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  denotes the 
maximum translation of the middle of the floor (or middle of the story) of a base model and a 
random model, respectively. α1 is formulated to quantify the magnification in deformation 
demands due to uncertainty in VLLR stiffness compared to the base model. 𝛼𝛼2 is suggested to 
quantify the magnification of deformation compared to the middle of the floor (in the spirit of 
calculating TIR), or story, compared with the same magnification for the base model. The 
denominator of Eq. (2) for symmetric buildings is unity.  

 

𝛼𝛼1 = �
𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� Eq. (1) 

  

𝛼𝛼2 =
�𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

�𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�
 Eq. (2) 

 
We suggest equivalent eccentricity be calculated in a manner that maximum deformation 

obtained by application of lateral loads (from ASCE 7) with a distance from the center of mass 
result in a similar statistical measure of 𝛼𝛼1. One can use median, or 84%, of 𝛼𝛼1 for the calculation 
of equivalent eccentricity.  

 
Building Models and Ground Motions 

 
4-story building models are generated in the OpenSees platform. The 3-D building models 

comprise four 2D frames. Each frame is designed as a single bay generic frame with 20' bay width 
and 12' story height. (see Figure 1). The ratio of the moment of inertia of beams and columns in 
this idealized model is set to be 1.0, which leads to a reasonable beam to column stiffness ratio 
and strong column weak beam ratio (assuming proportional strength and stiffness).  

 
Distribution of moment of inertia along the building height follows story shear distribution 

according to the ASCE 7 Equivalent Lateral Force (ELF) method. Moment of inertia of beams and 
columns of base models with symmetric floors are computed through an optimization method 
targeting a period of 1.6s for the base model with symmetric floor plans and rigid diaphragms. 
Asymmetric base models are created by moving the center of mass laterally and perpendicular to 
the direction of ground motion application to achieve TIR = 1.2 and 1.4. Rotation of beams and 
columns are computed at story yield point (i.e., 0.01 drift ratio) from which moment capacity of 
beams and columns is obtained. Springs with bilinear hysteretic (Ibarra et al., 2005) characteristics 
are placed at the beam, as illustrated in Figure 1. Parameters for the bilinear hysteretic springs are 
shown in Figure 1b.  

 
Symmetric base models with a plan aspect ratio of 1:1, 1:2, 1:4, and 1:8 are generated with 

rigid diaphragms. These base models are later modified to develop base models with a semirigid 
diaphragm. Figure 2 shows the plan view of the 3-D models used in this study. A 3-D model with 
a plan aspect ratio of 1:n is modeled as n number of 1:1 square buildings being placed in a row. 
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This model is further simplified using four VLLRs, with each VLLR being n times stiffer and 
stronger, and with rotational stiffness Kθ, period ratio Ω. The dimension of the slab is unchanged. 
Each building model represents a certain case with fixed Ω and plan aspect ratio, and only those 
cases with two translational periods (in two orthogonal directions) ratio larger than 0.5 and less 
than 2 are retained for NLTHA.  

 

 
Figure 1. Generic frame used in this study: (a) geometry, (b) spring backbone curve 

 

 
Figure 2. Floor plan to achieve various plan aspect ratios 

 
The semirigid diaphragm is modeled as a beam in the middle of the floor, from one end to 

another. This beam's in-plane stiffness is uniform for all floors and is calibrated for the most critical 
level (i.e., roof). Two levels of finite diaphragm stiffness are defined, inspired by ASCE 7, Section 
12.3.1.3, denoted with the variable β. β = 1 represents the case in which the floor's in-plane 
stiffness leads to an extra amount of lateral drift (in the middle) equal to the story drift if lateral 
loads are applied as an equivalent tributary lateral load. For β = 2, the floor's in-plane stiffness is 
calibrated to two times the lateral drift obtained for β = 1. 

 
General Observations and Trends 

 
Statistics of torsional characteristics α2 and equivalent eccentricity (i.e., e%) are 

computed at all floor and story levels. One may focus on statistics of the most critical floor (or 
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story) with the largest value of 𝛼𝛼2 and e%, representing the worst-case scenario. On the other 
hand, utilizing all floors' statistics results in a more refined understanding of accidental torsion's 
effect on low-rise buildings' deformation response. Both forms are presented in this section, 
alongside the effect of floor asymmetry and finite in-plane rigidity. We start by investigating the 
effect of floor asymmetry on 𝛼𝛼2 and e% separately from the effect of finite in-plane rigidity on 
the same parameters. The intention is to grasp the needed understanding of each of these two 
building characteristics' impact before studying their combined effect. The combined effect of 
floor asymmetry and finite in-plane rigidity on α2 will follow this early discussion. 

 
A short explanation about the format of the presented figures (Figures 3-7) can assist in a 

better understanding of their intent. Figures are presented in a 3 by 2 mosaic format; the left and right 
columns show the parameter under study's statistical measures for the critical floor/story and the 
entire building, respectively. Black and red colors, respectively, indicate 50% and 84% statistics of 
the parameter studied (i.e. 𝛼𝛼2 or e%). Markers are presented for different floor plan aspect ratios of 
1:1, 1:2, 1:4, and 1:8. Given its lack of viability, there is no structure with a semirigid diaphragm and 
a 1:1 floor plan aspect ratio. The horizontal of all plots is set to show Ω with values ranging from 
1.1 to 2. Xiang et al. (2018) studied the Ω values of CSMIP instrumented buildings using collected 
instrument data; the range Ω used here covers a wide range of Ω values observed by Xiang et al. 
(2018). 

 
Figures 3 and 4 show the impact of plan irregularity and finite in-plane rigidity on 𝛼𝛼2, 

respectively. Both figures show a reduction in median amplification of deformations due to 
accidental torsion compared to the case with a symmetric floor plan and rigid diaphragm. This 
observation is stable for both the most critical floor and all floors alike, although the median 𝛼𝛼2 
once all floors are considered is less. The reduction in the median of 𝛼𝛼2, however, because of the 
inclusion of finite in-plane stiffness of diaphragms is much larger than what is observed for 
considering asymmetric floor plans. It appears that diaphragm rigidity provides the opportunity of 
transferring floor rotations (due to accidental torsion) to the frames rather than absorbing it in the 
form of in-plane curvature. The impact of diaphragm finite in-plane rigidity on the reduction of 𝛼𝛼2 
is stable and has caused a major reduction in the 84% statistics of 𝛼𝛼2 indicating there are not a 
significant number of cases that do not follow the suggested trend.  

 
The cases with asymmetric floor plan and rigid diaphragm (i.e., Figure 3) show a reduction 

in the median value of  𝛼𝛼2  especially for low values of Ω that represent torsionally flexible 
structures. We postulate that randomness in VLLR stiffness ameliorates the impact of asymmetric 
plan in increasing 𝛼𝛼2. Given the dynamics of such a system, it is likely that the value of 𝛼𝛼2 is less 
than unity; for this reason, the 50% values of 𝛼𝛼2 are low once all the floors are included in the 
statistics. The slope of 𝛼𝛼2 to Ω is reduced for larger values of TIR, which mainly shows that the 
torsional flexibility of the building is less important once the system is inherently asymmetric. 84% 
of 𝛼𝛼2 for asymmetric floor plan and rigid diaphragm does not show the same level of drop that 84% 
of 𝛼𝛼2 for cases with finite in-plane rigidity of diaphragms show. This shows that the reduction of 
𝛼𝛼2  for asymmetric floor plans with a rigid diaphragm is not as determined as to when the 
diaphragm is semirigid. The variability of 𝛼𝛼2 has increased for torsionally stiff structures (large Ω) 
with asymmetric floor plans.    
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Figure 3. Variation of statistical measures of 𝛼𝛼2 concerning Ω, plan aspect ratio, and floor 

plan irregularity for rigid diaphragm structures: critical story, all stories 
 

     
Figure 4. Variation of statistical measures of 𝛼𝛼2 concerning Ω, plan aspect ratio, and 

diaphragm in-plane rigidity for symmetric structures: critical story, all stories 
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Figure 5. Variation of statistical measures of e% concerning Ω, plan aspect ratio, and floor 

plan irregularity for rigid diaphragm structures: critical story, all stories 
 

      
Figure 6. Variation of statistical measures of e% concerning Ω, plan aspect ratio, and 

diaphragm in-plane rigidity for symmetric structures: critical story, all stories 
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Figure 7. Variation of statistical measures of 𝛼𝛼2 concerning Ω, plan aspect ratio, and 

diaphragm in-plane rigidity for TIR = 1.2 structures: critical story, all stories 
     

The sensitivity of statistical measures of equivalent eccentricity due to plan irregularity 
and finite in-plane rigidity, respectively, is illustrated in Figures 5 and 6. The estimated 
equivalent eccentricity is based on the similarity of story drifts for pushover and NLTHA results. 
The observations and discussion presented for the median of 𝛼𝛼2 is applicable for e%; the median 
of e% is reduced compared to the case with a symmetric floor plan and rigid diaphragm. The 
reduction is mostly observed for the median of e% of all stories. The statistics for the most 
critical story was relatively unchanged when floor asymmetry was introduced. For cases with a 
semirigid diaphragm, the reduction in e% is not as severe as it is for 𝛼𝛼2; this is mainly because 
both pushover and NLTHA estimates of drift are reduced and their ratio (which is how e% is 
calculated) remains unchanged. Based on the presented results, it is plausible to declare that the 
5% accidental torsion provisions of ASCE 7 is relatively conservative for low-rise buildings with 
semirigid diaphragms or with plan asymmetry if median estimates of e% for all stories are the 
basis of such code calibration. 

 
The combined effects of plan irregularity and finite in-plane rigidity on 𝛼𝛼2 is illustrated in 

Figures 7. A comparison between Figure 7 and Figure 4 shows that the combination of plan 
asymmetry and finite in-plane rigidity does not affect the trends observed earlier. Still, the median 
of 𝛼𝛼2 is reduced as finite in-plane rigidity is considered. The increase in observed variations (i.e., 
84% estimate of 𝛼𝛼2) compared to the case of a symmetric floor plan is an expected phenomenon, 
as observed in Figure 3.  
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Concluding Remarks and Future Work 
 

We quantified the equivalent eccentricity and displacement amplifications that capture the 
accidental torsional moment's effects in low-rise building structures. It is assumed that randomness 
in VLLRs stiffness is the source of accidental torsion. 4-story buildings with plan aspect ratios of 
1:1, 1:3, 1:4, and 1:8, and period ratio Ω ranging from 1.1 to 2.0 are considered. For each 
combination, 3-D models are generated, and each model consists of a single-bay generic frame 
whose stiffness and strength are calibrated to meet target dominant periods. Models with various 
plan asymmetry and diaphragms in-plane rigidity were developed. The coefficient of variation of 
the stiffness of all structural elements is set to 0.14. By selecting 30 pairs of ground motions 
representing seismic hazard with average 475 years return period at San Francisco, Monte-Carlo 
simulation was employed to obtain statistical measures of α2 and e% due to randomness in VLLRs 
stiffness.  

 
The results demonstrate that the 5% equivalent eccentricity rule is conservative to capture 

the effect of accidental torsion in low-rise buildings; in all cases, this value is conservative unless 
statistics other than the median of all stories are planned to be used as the basis of code calibration. 
We plan to use instrumented buildings data with recorded translational and rotational responses to 
validate the presented simulation results.  
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HUMAN-MACHINE COLLABORATION FRAMEWORK FOR BRIDGE HEALTH 
MONITORING 

Sifat Muin* , Chrystal Chern, and Khalid M. Mosalam† ‡

University of California, Berkeley 

Abstract 

The importance and relevance of structural health monitoring (SHM) for highway bridges 
in the United States is highlighted by the bridges’ poor condition and the growing amount 
of resources for data-driven condition assessment in the feld of artifcial intelligence (AI), 
particularly, machine learning (ML). To tackle this issue, a human-machine collaboration (H-
MC) framework for highway bridge SHM is developed in this study to take advantage of the 
strengths of both AI and engineering domain expertise. The H-MC framework uses a physics-
based model (human) to conduct probability of exceedance (POE) analysis coupled with nov-
elty detection ML model (machine) to establish a damage detection and assessment algorithm. 
To produce the training data for the model, nonlinear time history analyses (NTHA) are per-
formed on analytical bridge model for vibration responses to many selected ground motions. 
Feature extraction and selection are performed using an Ordinal Fisher Score analysis with k-
fold cross-validation parameter tuning to produce the input for training the ML model. A com-
ponent capacity-based damage state model is used to produce the output for training the ML 
model. During model validation, the beneft of the H-MC is demonstrated through signifcant 
increase in the classifcation accuracy when the POE analysis is coupled with the ML model. 
Once the ML model is trained, it is tested on the seismic responses of two instrumented bridges, 
El Centro - Hwy8/Meloland Overpass and Parkfeld - Hwy46/Cholame Creek Bridge. The 
model accurately classifed all 14 undamaged events and one damaged event, including damage 
assessment consistent with reported visual inspection of the bridge after the damaging event. 

Introduction 

Structural health monitoring (SHM) of highway bridges is becoming essential as the 
civil infrastructures in the United States are aging. According to ASCE’s 2019 report card 
for California’s infrastructures, 7% of California’s bridges are structurally defcient and the 
largest percentage of bridges in “Poor” condition in the nation belongs to California. More-
over, approximately 50% of bridges in the state have exceeded their design life. The backlog 
of recommended maintenance, repair, and replacement continues to grow. Therefore, contin-
ued health monitoring of these bridges is essential for safe operation and for prioritizing re-
placement. The monitoring of these vulnerable structures becomes more critical after natu-
ral disasters such as earthquakes. The loss of accessibility due to damages and closures of the 
transportation network can greatly affect the rescue and recovery of a city after major seismic 

*Post-Doctoral Researcher, sifat.muin@berkeley.edu. 
†PhD Student, cchern@berkeley.edu. 
‡Corresponding author, Taisei Professor of Civil Engineering & PEER Director, mosalam@berkeley.edu. 
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events, turning them into disasters. Utilizing the advances in remote sensing, computing tech-
nologies, and data science is an effective and feasible way of structural monitoring of bridges. 

Data-driven SHM brings in the capability of machine learning (ML) and deep learning 
(DL) techniques in developing automated and online damage detection and/or assessment tools 
for civil infrastructures. With the recent advances in sensor technologies, wireless sensor net-
works, remote sensing, and computer vision, data science can now be used to develop SHM 
techniques to assess and quantify the conditions of structures in near-real-time utilizing ML 
and DL algorithms. ML gives computers the ability to learn about the trends and features of a 
process without being explicitly programmed (Samuel, 1959) for this process. Currently, ML is 
the core of artifcial intelligence (AI) which has excelled in classifcation and prediction capa-
bilities. However, ML still lacks contextual intelligence and minimal reasoning capability. The 
main problem with this approach to AI is that it requires thousands, if not millions, of data ex-
amples for training the ML algorithm to be able to function properly. Therefore, ML cannot 
be adopted in the current form for applications where data is limited. One such application is 
SHM of bridges to detect damage conditions and categories after seismic events. 

In order to enable widespread adoption, AI systems need to shift away from this data-
heavy approach and focus on methods that use a combination of different approaches, includ-
ing systems modelling based on domain expertise. Through such collaborative approaches, hu-
mans and AI will actively enhance each other’s complementary strengths. However, to fully 
extract the beneft of this collaboration, humans need to understand and trust the AI systems as 
they become more involved in making critical decisions alongside the humans. Transparency 
of the explainable AI (XAI) systems can foster this trust. One way to gain explainability in AI 
systems is to use ML algorithms that are inherently explainable. In this paper, such a ML tool 
and structural engineering expertise are utilized to develop the human-machine collaboration 
(H-MC) framework for highway bridge health monitoring. 

Proposed Framework 

Human-machine collaboration (H-MC) is a model in which humans co-work with ar-
tifcial intelligence to complete specifc tasks (National Research Council, 2012). The goal of 
an H-MC model is to utilize the forte of both types of intelligence and minimize the impact of 
their weaknesses. In this study, an algorithm is developed by following the basic principal of 
the H-MC model which is employed towards developing an SHM framework. The proposed 
algorithm leverages the advancements in the feld of ML and utilizes response data from un-
damaged bridge structures (more abundantly available than from damaged bridges) to develop 
a ML model for a specifc structure. Concurrently, an analytical model is developed by a do-
main expert, i.e., the structural engineer in this case, in order to simulate data of the damaged 
structure. This approach reduces the uncertainty associated with the computational model by 
using real data recorded from the structure and at the same time it provides a possible range 
of data (possibly unseen) from the damaged condition which is not usually available from in-
situ measurements of structures. This is because engineered structures are typically damaged 
due to rare (low occurrence probability) events of natural hazards with high consequences, e.g., 
earthquakes or hurricanes. 
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Figure 1: H-MC framework for SHM making use of ML and knowledge of human experts. 

Figure 1 illustrates the H-MC framework for bridge SHM. There are two distinct phases. 
The frst phase of the framework is completed before an earthquake occurs. In this phase, the 
task of feature selection is conducted, and both the analytical model and the ML model are 
developed1. The second phase of the framework takes place during and shortly following an 
earthquake, where the response of an instrumented bridge is measured and relayed to a remote 
location where damage sensitive features can be rapidly generated. Consequently, using the 
previously developed H-MC model, damage detection can be performed in real time within 
minutes after an earthquake. Detailed analytical models along with ML tools can provide fur-
ther information on damage levels and locations within minutes. However, if a detailed model 
is missing, the measured response data can be reviewed by a skilled human counterpart to pro-
vide a near real-time assessment within hours after an event. This can be followed up by a 
complete on-site investigation by a professional structural engineer as part of a feld inspec-
tion team if it is deemed necessary following the assessment phase. This complete assessment 
including feld inspection may take days after the event. Following the complete assessment 
process, the ML model can be updated using the annotated response data including the damage 
information. In the subsequent sections, this proposed H-MC framework is described in detail 
including several applications. 

ML Model 

The proposed framework uses the novelty detection method as the ML model. Novelty 
detection has gained much research attention in application domains of critical systems partic-
ularly with those involving large datasets. Conventional ML typically focuses on the classifca-

1This dual H-MC model is sometimes referred to in modern literature as a digital twin. 
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tion of two or more classes. The problem of novelty detection, however, is approached within 
the framework of one-class classifcation. It can be defned as the task of recognizing unseen 
data that differs in some respect from the training data. 

In the novelty detection approach to classifcation, “normal” patterns are available for 
training, while “abnormal” ones are missing. A model of normality M(θ ), where θ represents 
the free parameters of the model, is inferred and used to assign novelty scores z(x) to previ-
ously unseen test data x. Larger z(x) corresponds to increased “abnormality” with respect to 
the model of normality. A threshold z(x) = k is defned to identify novelty as follows, 

If z(x) ≥ k → x is novelty. (1) 

Due to the practical importance and challenging nature of novelty detection, many ap-
proaches have been proposed to determine the model of normality M(θ ) and the threshold k. 
In this study, a distance-based approach has been conceived. The responses from undamaged 
structures are used to develop the M(θ ). Multiple features, selected following a feature engi-
neering process (described in a later section of this paper), are utilized. The distance of a point 
to the centroid of M(θ ) is computed using the Mahalanobis distance (Mahalanobis, 1936). 
Since M(θ ) is a multivariate model, not only distance but also the shape and size of the data 
need to be considered, quantifed by the covariance matrix. The Mahalanobis distance2 takes 
this covariance matrix into account. For a p-dimensional multivariate sample xi = {xi1, . . . ,xip}, 
the Mahalanobis distance is defned as follows, q 

MDi = (xi − T µ) C−1 (xi − µ) (2) 

where µ is the p-dimensional arithmetic mean vector consisting of the mean values of all the 
variables, and C is the covariance matrix. For multivariate normally distributed data, the values 
of the square of MDi are approximately chi-square distributed with p degrees of freedom, χ2

p . 
Conventionally, a certain quantile q (e.g., 0.95) of the χ2 

p distribution is set as the threshold 
k. In this study, q is considered as a parameter of the novelty model and estimated using the 
k-fold cross-validation technique. 

POE Envelope 

The human aspect of the framework is manifested in the probability of exceedance 
(POE) envelope where structural engineering domain expertise is applied. For this part of the 
analysis, a structure-specifc analytical model based on a single degree of freedom (SDOF) 
idealization, is developed. This idealization is selected herein for simplicity but more sophis-
ticated models can be equally utilized. The SDOF model properties are based on the structure 
under consideration and discussed in the “Numerical Example” Section. For this numerical ex-
ample, the SDOF properties are listed in Table 1. The SDOF model has a nonlinear (inelastic) 

¨ material that follows Ozdemir’s rate-independent force-displacement model ( ̈  Ozdemir, 1976). 

2It is a measure of the distance between a point x and a distribution D as a multi-dimensional generalization of 
measuring how many standard deviations away x is from the mean of D . 
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Table 1: Material and dynamic properties of the SDOF model representing Bridge-A. 

Yield stress 68 ksi 
Yield displacement 0.67 in 

Hardening ratio 0.01 
Period 0.6 sec 

Damping 5% 

Nonlinear time history analysis (NTHA) is performed on the model using a set of ground 
motions from the PEER3 NGA4-West2 database (PEER, 2020; Ancheta et al., 2014). At the 
time of writing this paper, this database has 21,539 records of shallow crustal earthquakes in 
active tectonic regions. Due to the possibility of anomalies from older data collection systems, 
only records from the past 30 years have been selected. Moreover, records with peak ground 
acceleration (PGA) less than 1% of the acceleration of gravity (g) may not produce enough 
excitation useful for this study. Therefore, only records with PGA more than 0.01g are consid-
ered. To avoid homogeneity in response, not more than 20 records from a single earthquake 
event are selected. Thus, n = 1,710 records matched these criteria. From the SDOF analysis, 
a damage feature vector X = {X1,X2, . . . ,Xm} is computed from the responses. Subsequently, a 
probability of exceedance (POE) envelope is developed as follows, 

P(DS ≥ 1,X = Xˆ i)Gi = P(DS ≥ 1|Xi) = 
P(X = Xi) 

1 (3)
∑

n
j=1[ (n I DS)KH (Xj − Xi)] ∑

n −j=1[I(DS)KH (Xj  Xi)] 
= = 1 

∑
n K n[ H (Xj − = [ −1  n j= Xi)] ∑ j 1 KH (Xj  Xi)] 

where Ĝi is the POE of damage at the ith sample (i.e., earthquake event) (i = 1,2, . . . ,n), DS 
is the damage state or the damage class with discrete values. Here, DS = 0 corresponds to 
undamaged state and DS = 1,2, . . . correspond to different levels of damage. Moreover, Xi 
corresponds to the m-dimensional feature vector, I(DS) is the indicator function (I = 0 for un-
damaged state, i.e., DS = 0, and I = 1 for the damaged state, i.e., DS ≥ 1), j = 1,2, . . . ,n refers 
to the observed data represented by the considered events, and KH is a multivariate Gaussian 
kernel.5 For any vector V, KH (V) is defned as follows, 

1 1
KH(V) = p √ (4)

(2π)m|H| eVT H−1V 

where the m × m bandwidth matrix H is analogous to the covariance matrix controlling the 
amount and orientation of the induced smoothing, |H| is the 2-norm of the matrix H, and su-
perscript T indicates transpose. The kernel assigns a different weight to each data point of Xi 

3Pacifc Earthquake Engineering Research Center. 
4Next Generation Attenuation Ground Motion Database. 
5Kernel density estimation is a nonparametric technique for the estimation of the probability density function. 

In this case the estimate of the density function with bandwidth (smoothing) characterized by H is expressed as 
f̂ 1
H(Xi) = n ( − )n ∑ j=1 KH Xj Xi .
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that is inversely related to the distance between the data point j and the point of interest i. The 
Gaussian kernel is centered at the event of interest, i.e., at Xi and the developed envelope is 
analogous to the fragility curves. Several studies have applied Gaussian kernel densities to de-
velop univariate fragility curves (Noh et al., 2012, 2015; Lallemant et al., 2015). However, in 
this study, multiple variables are used. 

Figure 2 shows an example POE envelope on a parallel coordinates plot. In this plot, 
each feature is represented by a vertical axis and individual samples (i.e., earthquake events) 
are displayed as a line connected across each axis. The colored areas show the POE envelope. 
The color represents the probability values of the distribution. Green and red represent undam-
aged and damaged zones, respectively. Moreover, probability of damage increases with shade 
of the zone, with red zone having the high probability of damage. In this fgure two example 
samples are shown. One falls in the undamaged zone and is hence labelled as undamaged. The 
other one falls in the red zone and is labelled as damaged. 

Figure 2: Parallel coordinate plot showing POE envelope with undamaged and damaged zones. 

Damage Detection 

In this section, the damage detection routine of the H-MC framework is described. For 
an instrumented bridge, data from previous earthquakes is used to develop the novelty model 
M(θ ). The POE envelope for the bridge is developed simultaneously using a SDOF model 
prior to the earthquakes. In this POE model, the threshold POE value (POEth) for undamaged 
events and the entries of the bandwidth matrix H are used as model parameters. The optimal 
values of these parameters are determined using a 5-fold cross-validation technique. 

When data becomes available from a new earthquake, the H-MC framework is acti-
vated. It frst calculates the features and runs the novelty model. If novelty is not detected, the 
bridge is identifed as undamaged. On the other hand, if novelty is detected, the second phase 
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of the framework is initiated where the POE value is computed as follows, 

∑
n [I(DS)K (Xcom − Xrec )] 

Ĝ j j =1 H
i = P(DS ≥ 1 rec i|X ) = i 

∑
n
j=1[KH(Xcom − Xrec (5)

)] j i 

where Xrec and Xcom are respectively the mi j -dimensional feature vectors of the recorded data 
and the computed data using the SDOF analysis where j = 1,2, . . . ,n. Subsequently, Ĝi is com-
pared against POE . When Ĝ t

th i ≤ POEth, the bridge response to the i h event is identifed as 
undamaged. On the other hand, when Ĝi > POEth, i.e., the data falls in the high probability 
region, the bridge response to the ith event is identifed as damaged. 

Damage Assessment 

The probability of different damage states for the ith sample is calculated as follows, 

∑
n −j 1[I(DSd)KH (Xcom  r

j X ec)] 
Ĝ i 

id = P(DS = d r|X ec) = =
i (6)

∑
n − Xrec 
j=1[KH(Xcom )] j i 

where Ĝid is the probability that the ith sample (i.e., earthquake event) belongs to the damage 
state d for different levels of damage, i.e., d = 1,2, . . . ,D where D is the number of considered 
damage (limit) states, and I(DSd) is the indicator function (I = 1 when DS = d, and I = 0 
otherwise). 

When data becomes available from a new earthquake, novelty analysis is conducted. 
When the data is detected as a novelty, frst the damage detection with the POE envelope is 
checked. The damage assessment follows the damage detection phase. This assessment step is 
conducted only on the samples for which damage has been detected in the previous step. Once 
the values of Ĝid ∀ d = 1,2 th , . . . ,D are computed for the i sample, the damage state with the 
highest probability value is assigned as the damage state of this sample. 

Numerical Example 

A fnite element (FE) model of a selected bridge is developed for the study to determine 
important damage features. A damage feature is some quantity extracted from the measured 
system response data that is used to indicate the presence of damage in a structure. The simu-
lated vibration response histories of the FE bridge model to a set of 400 selected ground mo-
tions is used to extract initial damage features, such as peak accelerations, and corresponding 
damage states, which range from no damage to extreme damage. The dataset of corresponding 
damage features and damage states is later used in a feature engineering process called feature 
selection to identify the best damage features for classifcation of the damage states. 

Analytical Bridge Model 

The selected bridge for the analytical model is the Jack Tone Road Overcrossing Bridge 
(referred to for simplicity as Bridge-A), which is a two-span reinforced concrete (RC) high-
way bridge located in San Joaquin County, California, spanning approximately 220 feet with a 
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total height of approximately 25 feet. As shown in the photograph of the structure and its orig-
inal design elevation drawings in Figure 3, the bridge is supported on a single column bent and 
on seat-type abutments. The FE model of the bridge includes 20 nodes along the deck length 
and a fber-section model of the column bent. NTHA of this bridge has been studied exten-
sively to determine the effect of abutment skew-angle on the probability of collapse (Kaviani 
et al., 2012), improve direct integration algorithms for nonlinear seismic response (Liang et al., 
2016), and select and modify bidirectional ground motions for bridge seismic behavior evalua-
tion (Liang and Mosalam, 2020). 

Figure 3: Photograph and design elevation of Jack Tone Road Overcrossing Bridge (Bridge-A). 

The superstructure and column bent of the Jack Tone Road Overcrossing Bridge both 
have concrete strength of 5 ksi. The column bent is reinforced with ASTM A706 steel, with 
44 #11 bundles of 2 longitudinal bars at a volumetric ratio of 2.00%, and #6 spiral transverse 
reinforcement at a spacing of 3.34 inches. The structural properties are summarized in Table 2. 

Table 2: Jack Tone Road Overcrossing Bridge (Bridge-A) properties (Liang et al., 2016). 

# of spans 2 
Column bent Single-column 

Column radius 33.1 in. 
Column height 22.0 ft. 

Abutment Seat type 
Seat length 33.85 in. 

Superstructure concrete fc 
0 = 5 ksi, Ec = 4030.5 ksi 

Column bent concrete & reinforcing materials Concrete: 5 ksi, Steel: ASTM A706 
Long.: 44 #11 (bundles of 2), ρl = 2.00%Reinf. details of column bent cross-section Trans.: Spiral, #6 @ 3.34 in. 

The bridge FE model simplifes the deck into two symmetric spans of 1100-300 each, 
with 20 nodes along the length of the deck. The column bent is modeled with three nodes at 
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the base of the column, the interface of the column-to-deck joint, and the center of the column-
to-deck joint. For the abutments, nonlinear springs connected in series to gap elements are 
used to model the passive backfll response and the expansion joint, and the shear key response 
is modeled using an elastic-perfectly-plastic backbone curve (Liang et al., 2016). The super-
structure FE modeling details are shown in Figure 4. In order to capture progressive column 
yielding and damage, the column bent is modeled as a nonlinear beam-column with nonlinear 
fber-based beam FE’s at 10 quadrature points (Kaviani et al., 2012); refer to Figure 5. 

Figure 4: Bridge-A superstructure FE modeling details (Liang et al., 2016). 

Figure 5: Bridge-A column FE modeling details (Kaviani et al., 2012). 

Ground Motion Selection 

To produce the vibration response histories from which damage features are extracted, 
NTHA is performed on the bridge model using 400 ground motions, selected and scaled from 
the PEER NGA-West2 (Bozorgnia et al., 2014) database, which has 21,539 records of shallow 
crustal earthquakes in active tectonic regions. Before selecting and modifying the records, they 
are restricted to the 1,710 ground motions mentioned in “POE Envelope” Section. 

Unconditional Selection (US), a spectrum shape matching ground motion selection and 
modifcation method, is used to select and scale the ground motions. In the US method, the 
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median+1.5 standard deviation, σ , spectrum is used as the target spectrum. First, a Monte 
Carlo simulation is used to probabilistically generate multiple response spectra from a mul-
tivariate normal distribution with the logarithmic spectral acceleration means and variances. 
Then, ground motion records, whose response spectra match the simulated spectra, are se-
lected. Finally, a greedy optimization algorithm is applied to improve the match between the 
target and the sample means and variances. In each iteration of the optimization, one previ-
ously selected record is replaced with a record from the database that generates the best im-
provement in the match (Jayaram et al., 2011). 

Out of four common ground motion selection and modifcation methods, the US method 
was shown in (Liang and Mosalam, 2020) to produce the best prediction for the covariances of 
the probability distributions of the seismic demands (PDSD), and the most conservative esti-
mates for the probability of collapse for RC highway bridges with nonlinear responses due to 
large bidirectional ground motions. Thus, the US method was used to select ground motions 
for three ground motion scenarios, each with site soil shear wave velocity Vs30 of 222.95 m/s, 
strike-slip fault type, and target spectrum of 1.5σ above the median spectrum (for all periods) 
using the attenuation model in (Campbell and Bozorgnia, 2008). Each ground motion scenario 
is summarized in Table 3 with 100, 50, and 50 ground motions for the M7d23, M5d50, and 
M8d23 ground motion scenarios, respectively. These ground motions were each rotated by 90° 
for a total of 400 ground motions. The results of the US method are summarized in Table 4, 
which lists the PEER NGA-West2 earthquake ID numbers, earthquake names, and the number 
of ground motions per earthquake event for the selected set of ground motions with the corre-
sponding response spectra shown in Figure 6. 

Damage State Defnition 

During the NTHA of the bridge model response to the selected ground motions, the 
stress and strain response histories are recorded at the base and top of the bridge column in 
order to determine the resulting damage state of the bridge. This study employs a component 
capacity-based damage state model. In this model, the damage states are defned in seven lev-
els. The damage state criteria are based on Caltrans and PEER visual inspection criteria for 
levels of column fexural capacity for RC highway bridges. The capacity levels are translated 
into strain-based limit states at different locations of the cover concrete, core concrete, and lon-
gitudinal reinforcing bars, as listed in Table 5. The pushover curve for the bridge model is la-
beled with each component capacity-based damage state in Figure 7. For the analytical bridge 
model used in this study, limit states 2, 3, and 4 lie in close proximity to each other on the 
pushover curve because of the large size of the column, which results in the cover thickness 

Table 3: Ground motion scenario summary. 

Ground Motion 
Scenario Magnitude (M) Distance (R) [km] # Records 

Selected 
# Rotated (90°) 

Records Total # Records 

M7d23 7.0 23 100 100 200 
M5d50 5.0 50 50 50 100 
M8d23 8.0 23 50 50 100 

Total 400 
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Table 4: Description of selected ground motions. 

Number of ground motions per PEER NGA-West2 earthquake ID number Earthquake name earthquake event 
163 Anza-02 2 
170 Big Bear City 1 
123 Cape Mendocino 1 
173 Chi-Chi (aftershock 3), Taiwan 1 
174 Chi-Chi (aftershock 4), Taiwan 1 
137 Chi-Chi, Taiwan 34 
171 Chi-Chi, Taiwan-02 4 
172 Chi-Chi, Taiwan-03 5 
173 Chi-Chi, Taiwan-04 6 
174 Chi-Chi, Taiwan-05 5 
175 Chi-Chi, Taiwan-06 2 
346 Christchurch, New Zealand 5 
278 Chuetsu-oki 7 
281 Darfeld, New Zealand 11 
169 Denali, Alaska 5 
138 Duzce, Turkey 1 
280 El Mayor-Cucapah 15 
166 Gilroy 1 
164 Gulf of California 1 
158 Hector Mine 8 
279 Iwate 12 
129 Kobe, Japan 2 
136 Kocaeli, Turkey 3 
125 Landers 14 
275 L’Aquila (aftershock 1), Italy 2 
274 L’Aquila, Italy 1 
152 Little Skull Mtn,NV 1 
162 Mohawk Val, Portola 1 
180 Niigata, Japan 3 
127 Northridge-01 5 
150 Northridge-05 1 
151 Northridge-06 1 
179 Parkfeld-02, CA 2 
176 Tottori, Japan 2 
250 Umbria Marche (aftershock 16), Italy 1 
277 Wenchuan, China 8 
283 Wenchuan, China-02 1 
284 Wenchuan, China-03 1 
285 Wenchuan, China-04 1 
292 Wenchuan, China-11 1 
295 Wenchuan, China-14 1 
297 Wenchuan, China-16 1 
320 Wenchuan, China-39 1 
167 Yorba Linda 1 

1015 9753485 2 
1018 10370141 1 
1011 10410337 5 
1014 14138080 1 
1003 14151344 1 
1002 14383980 3 
1049 21266207 2 
1001 40204628 2 

Total (before rotation) 200 
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(a) Response Spectra of M7d23 ground motions (b) Response Spectra of M5d50 ground motions 

(c) Response Spectra of M8d23 ground motions 

Figure 6: Response spectra plots for each of the three ground motion scenarios: (a) M7d23, (b) 
M5d50, and (c) M8d23, including median and 2.5 & 97.5 percentiles. 

constituting a small percentage (i.e., ∼6%) of the column depth. Using the assumption of a 
linear strain profle throughout the column section (i.e., the assumption made by the Bernoulli-
Euler beam theory that “plane sections remain plane”), small changes in the curvature result 
in the inner cover fbers reach the spalling strain quickly after the outer cover fbers reach the 
spalling strain. The defnitions of limit states 2, 3, and 4 are highly dependent on the model 
discretization of the cover due to fber mesh sensitivity. Such sensitivity to model discretization 
in the nonlinear response of RC beam-columns is discussed in (Kenawy et al., 2020). 

Feature Engineering 

Feature Extraction 

Feature extraction refers to the process of transforming the measured data into some al-
ternative form where the correlation with the damage is more readily observed. After NTHA 
is performed on the bridge model with the details shown in Figure 4 and using the selected 
ground motions from the “Ground Motion Selection” Section, damage features are extracted 
from the resulting vibration response histories. The vibration response at the top of the col-

111 



SMIP20 Seminar Proceedings 

Table 5: Damage state criteria for component capacity-based model. 

Limit State Caltrans-PEER Description Criteria Used to Defne 
Strain-Based Limit State 

Strain-Based Limit State 

Fiber Location Compression or 
Tension Strain 

0 No damage – – – – 

1 EQ-related tight cracking of 
cover 

Cover cracking: the cover 
surface reaches tensile 

strength 

Any outermost 
cover fber 

Tension εt = 1.32 × 10−4 

2 
Moderate cracking (mixed 

orientations) & minor 
spalling/faking 

Minor spalling: the cover 
surface reaches compressive 

strength 

Any outermost 
cover fber 

Compression εsp = 0.005 

3 
Open cracking or major 

spalling (exterior to 
confnement) 

Major spalling: a signifcant 
depth of the cover reaches 

compressive strength 

Any cover fber 
at 1/2-3/4 of the 

cover depth 
Compression εsp = 0.005 

4 Exposed core (interior of 
confnement) 

Exposed core: the entire 
depth of the cover reaches 

compressive strength 

Any innermost 
cover fber 

Compression εsp = 0.005 

5 

Visible bar buckling; 
confnement loss or core 

shedding 

Core shedding: the outer 
surface of the core begins to 

fail 

Any outermost 
core fber 

Compression εcu = 0.025 

Multi-bar rupture or 
buckling; large drift; or core 

crushing 

Bar rupture: longitudinal 
bars reach ultimate tensile 

strength 

Any longitudinal 
bar 

Tension εsu = 0.10 

6 Column collapse (Near-total 
loss of axial capacity) 

Loss of axial capacity: 
approximately 1/2 of the core 

fails 

All core fbers at 
1/4 of the core 

depth 
Compression εcu = 0.025 

umn bent (Node 110 in Figure 4) is used because the top of the bridge piers are commonly 
instrumented locations, allowing direct future comparisons to instrumented bridges. The dam-
age features extracted from the vibration response histories include one-dimensional vibra-
tion characteristics that have been studied as structural damage indicators by researchers in 
the past (Farrar and Worden, 2012). In addition to indicating damage on a global level, these 
features can also be measured at specifc locations on the structure, as in the case of this study, 
to identify the local damage. Other examples of features which have been studied as structural 
damage indicators include cumulative absolute velocity (CAV ) (Muin and Mosalam, 2018), 
higher exponentiations of the acceleration intensity (Sajedi and Liang, 2019), standardized CAV 
(CAVST D) (Campbell and Bozorgnia, 2012), and instantaneous power (IP) (Zengin and Abra-
hamson, 2020). Sixteen damage features, Table 6, are extracted herein in two directions, longi-
tudinal and transverse, for a total of 32 damage features. After the features are extracted, fea-
ture selection is performed to identify the best features for the intended damage classifcation. 

Fisher Score Analysis 

Feature selection is the process of identifying a subset of the original feature set which 
increases the learning effciency while minimizing the reduction in the classifcation perfor-
mance. It is performed to determine the best feature vector for this study. Moreover, a flter-
based feature selection method, or one in which a score is assigned to each feature in order to 
compute its expected contribution to solving the classifcation task, is chosen as a computation-
ally inexpensive approach that allows feature selection before the learning phase (Baccianella 
et al., 2014). One such method is the Fisher score, which determines the relative ability of fea-
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Figure 7: Bridge-A model pushover curve labeled with component capacity-based damage states. 

tures to discriminate between categorical classes in a classifcation model. The Fisher Score is 
also known in statistical modeling as Fisher ratio, Fisher method, Fisher combined probabil-
ity score, or information score. The Fisher score for a given feature is defned as the average 
distance between classes, normalized by the average spread of each class, and a larger Fisher 
score indicates that the feature is more discriminative. A visualization of the discriminatory 
power concept used to develop the Fisher score is shown in Figure 8, where 8a shows two fea-
tures showing a clear distinction among classes, and thus a high Fisher score, and 8b shows 
two features not ideal for detecting damage, and thus a low Fisher score. Although the Fisher 
score is known to have limitations in that it considers each feature separately and therefore 
cannot reveal mutual information between features, it is widely used as a heuristic algorithm 
for feature selection (Gu et al., 2012). 

In this study, the goal of the classifcation model is to determine which class of dam-
age state is indicated by the feature vector. Due to the ordering of the classes in this model 
(e.g., the 5th damage (limit) state is more severe, and thus ordered higher than the 3rd damage 
(limit) state, refer to Table 5), feature selection which considers ordinality is required. Thus, an 
ordinal variant of the Fisher score, termed here as the Ordinal Fisher Score, is used for feature 
selection in this study. The Ordinal Fisher Score is shown to perform better for feature selec-
tion in an ordinal classifcation model than the original Fisher score (Pérez-Ortiz et al., 2016). 

The Ordinal Fisher Score for the ith feature, FOR(xi), is computed following a procedure 
discussed below. First, the class discrimination term, FO(xi) is defned as follows, 

∑
K
k=1 ∑

K |j=1 k − j| · di(Ck,C j)
FO(xi) = (7)

(K − 1)∑
K 2 
k= (σ i

1 )k

where the class Ck indicates data from one of the K classes, k ∈ 1, 2, . . . ,K, σ i 
k indicates the 

variance of the ith feature in class k, and di(Ck,C j) indicates the distance between classes 
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Table 6: Description of initial damage features extracted from NTHA for later feature selection. 

Feature Defnition or Equation 

Peak acceleration 

Peak displacement 

Peak velocity 

Arias Intensity 

max(| ̈u(t)|)
t 

max(|u(t)|)
t 

max(| ̇u(t)|)
tR TIa = 0 [ ̈u(t)]2dt 

Signifcant Duration 

Cubed Absolute Acceleration Intensity (Sajedi and Liang, 2019) 

time between 5% & 95% of the total Arias energy = t0.95 − t0.05 R T 
0 [ ̈u(t)]3dt 

Spectral Acceleration at 0.6 s Sa(0.6) 

Spectral Acceleration at 1.0 s Sa(1.0) 

Spectral Acceleration at 2.0 s Sa(2.0) 

Spectral Acceleration at 5.0 s 

CAV 

RCAV 

Sum of absolute displacements 

Sum of absolute velocities 

CAVST D (Campbell and Bozorgnia, 2012) 

Sa(5.0) R TCAV = 0 | ̈u(t)|dt 
CAVsRCAV = CAVlR T 

0 |u(t)|dt R T 
0 | ̇u(t)|dt � �R iCAVST D = ∑N H(PGAi − 0.025) u(t)|dt i=1 i−1 | ̈

H(x): Heaviside function (= 0 if x < 0 & = 1 otherwise) 

Instantaneous Power (Zengin and Abrahamson, 2020) 

N: # non-overlapping 1 sec. time intervals R t+ΔtIP(T1) = max( 1 V 2 
Δt t f iltered(t)dt)

t 

Vf iltered = band pass( ̈u(t), [0.2T1,3T1]) 

iCk and C j. Next, an ordinality term, OR(x ), which incorporates the relative distance between 
classes, is defned as follows, 

∑
K−2  

∑
K−1  

∑
K  i[[(di(Ck,Ch)− (k=1 , )) > ]] 

i j=k  +1 h= j+1 d Ck C j 0
OR(x ) = (8)

∑
K−1 (  j= K − j)2 

where [[·]] is a Boolean test which is 1 if the inner condition is true, and 0 otherwise. This 
OR(xi) score measures the number of ordinal requirements fulflled for a specifc feature i. 
Finally, the two terms FO(xi) and OR(xi) are combined in a weighted sum to determine the 
Ordinal Fisher Score for the ith feature, FOR(xi) as follows, 

FOR(xi) = α · FO(xi)+(1 − α i) · OR(x ), α ∈ (0,1). (9) 

The distance between classes, di(Cz,C j), can be computed in several ways, and this 
study uses the Hausdorff distance, dh

i (Cz,C j), formulated to allow for use of nonlinear, multi-
modal, or non-normal data, and shown in (Pérez-Ortiz et al., 2016) to perform best for ordinal 
classifcation. The Hausdorff distance is defned as follows, ( ) 

di i i
h(Cz,C j) = max maxΔm(xh,C j), maxΔm(xv,Cz) (10)

xi xi∈Ch z ∈v C j 

114 



SMIP20 Seminar Proceedings 

(a) Features with higher discriminatory power (b) Features with lower discriminatory power 

Figure 8: Visualization of discriminatory power using a 2D feature class comparison. (a) Features 
with a clear distinction among different classes have higher discriminatory power and are more 
useful for classifcation. (b) Features without clear distinction are not useful in classifcation. 

where Δ i
m(x ,h C j) is the minimum Euclidean distance between a point xi

h and the points in 
class C j, expressed as follows, q

Δ
i i i

m(xh,C j) = min d(xh,x v) = min i(x − h xi )2 
v . (11)

xi ∈Cj xi ∈v v Cj

Starting with the 32 initial damage features extracted from the NTHA (Table 6), the 
Ordinal Fisher Score with weighting factor set to α = 0.5 is used to identify which features 
best discriminate between the different classes of the damage states. The scores of each feature 
are compared in Figure 9. The results of the Ordinal Fisher Score analysis show that the best 
features for classifcation are: 1) peak acceleration in X (longitudinal) direction, 2) spectral ac-
celeration at 0.6 seconds, Sa(0.6), in X direction, 3) sum of absolute velocities in X direction, 
4) CAVST D in X direction, 5) CAVST D in Y (transverse) direction, 6) CAV in X direction, and 
7) and CAV in Y direction. The results indicate that these features discriminate well between 
classes of the damage states. The best features for classifcation based on the Ordinal Fisher 
Score analysis, Table 7, form a reduced feature vector which allows for greater computational 
effciency and are next evaluated in the H-MC analysis for classifcation accuracy. 

k-fold Cross-Validation Analysis 

k-fold cross-validation is a resampling procedure used to evaluate ML models where k 
is the number of groups a given data sample is split into. The general procedure is as follows: 

1. Shuffe the dataset randomly. 

2. Split the dataset into k groups. 
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Figure 9: Comparison of Ordinal Fisher Scores for the extracted 32 damage features for the com-
ponent capacity-based damage state model of Bridge A. X & Y denote the bridge longitudinal 
and transverse directions, respectively. 

3. For each unique group: 

• Take the group as the validation data set; 

• Take the remaining groups as a training data set; and 

• Fit a model on the training set and evaluate the accuracy on the validation set. 

4. Summarize the skill6 of the model using the average accuracy. 

This validation phase gives an opportunity to tune the complexity of the ML model to perform 
better. In this study, this technique is utilized to fnalize the number of features. The frst seven 
selected features from the Ordinal Fisher Score analysis are used to develop a POE model with 
the SDOF response data. At frst, the 5-fold cross-validation technique is applied to the model 
with one feature (feature with the highest FOR). For each training-validation group, the accu-
racy is computed as follows, 

# of correct prediction in the validation set 
Accuracy = × 100%. (12)

Total # of samples in the validation set 

6Prediction skill is a measure of the accuracy and/or degree of association of prediction to an observation or 
estimate of the actual value of what is being predicted. An example of a skill calculation is based on the error metric 
“Mean Squared Error (MSE)”. 
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Table 7: Ordinal Fisher Score analysis results for component capacity-based damage state model. 
X & Y denote the bridge longitudinal and transverse directions, respectively. 

Features with highest Ordinal Fisher Scores 
Peak acceleration in X (Feature 1) 

Sa(0.6) in X (Feature 2) 
Sum of absolute velocities in X (Feature 3) 

CAVST D in X (Campbell and Bozorgnia, 2012) (Feature 4) 
CAVST D in Y (Campbell and Bozorgnia, 2012) (Feature 5) 

CAV in X (Feature 6) 
CAV in Y (Feature 7) 

Figure 10: Model complexity (number of features) vs. validation accuracy (skill). 

At the end of the 5th groups’ analysis, the average accuracy is calculated for the model with 
one feature. Subsequently, average accuracy is calculated for increasing model complexity (i.e., 
number of features). Figure 10 shows that the accuracy improves when feature number 2 is in-
troduced in the model but it drops once feature number 3 is added. For the rest of the features, 
the accuracy remains stable. Therefore, feature number 3 (the sum of absolute velocities in the 
X direction) is removed as a feature. The fnal features utilized in the model development are 
listed in Table 8. 

H-MC Analysis 

H-MC analysis is performed on the analytical bridge model of Bridge-A using the six 
selected features (Table 8) and the 400 (Table 4) event responses mentioned earlier. The nov-
elty model is trained on the undamaged responses only. For this purpose, the undamaged re-
sponses are separated out of the 400 responses. Three different training and test sets (Set-1, 
Set-2, and Set-3) are used in the study to evaluate the performance of the model. For each set, 
80% of the undamaged sample is randomly selected to train the novelty model. The rest of the 
undamaged sample is combined with randomly selected damaged events to make up the test 
set (150 samples). 
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Table 8: Final feature set after k-fold cross-validation tuning for optimal model complexity; X & 
Y denote the bridge longitudinal and transverse directions, respectively. 

Final Feature Set 
Peak acceleration, X (Feature 1) 

Sa(0.6), X (Feature 2) 
CAVST D (Campbell and Bozorgnia, 2012), X & Y (Features 3 & 4) 

CAV , X & Y (Features 5 & 6) 

Table 9 presents the accuracy values of the analysis for the three test sets indicating that 
an average accuracy of 90.2% is achieved when novelty detection alone is used. In contrast, 
when coupled with the POE analysis for the complete H-MC framework, the average accuracy 
improves signifcantly to 98.7%. Therefore, it is evident that the H-MC model is very success-
ful in detecting damage. However, when it comes to assessing damage, the model does a good 
job with an average accuracy of 82.0%. Figure 11 shows visually the performance of the nov-
elty detection alone and the H-MC method on a tSNE7 plot. It shows that the novelty detec-
tion successfully detects the majority of the damaged events but also misclassifes some of the 
undamaged events as damaged ones, hence, the accuracy decreases. However, when combined 
with POE analysis in the H-MC framework, these misclassifed events are correctly classifed 
as undamaged ones. 

Although accuracy is an important evaluation measure, it does not present the whole 
picture. Figure 12 presents the confusion matrices for damage detection using novelty only and 
H-MC. It shows that novelty detection alone misclassifes a signifcant portion of the undam-
aged cases as damaged (58% for Set-1 and Set-2 and 38% for Set-3). In contrast, the H-MC 
analysis has misclassifcation rate in all three sets of less than 4% for both the undamaged and 
damaged states, which further shows the effectiveness of the H-MC framework in damage de-
tection. H-MC classifes a very small fraction of the damaged samples as undamaged which 
could be a problem for SHM. However, this can be improved by a better model for POE be-
yond the SDOF.Figure 13 shows the confusion matrices for damage assessment which shows 
DS1 (Damage (Limit) States (DS) are shown in Table 5) as the dominant class, i.e., most of 
the test samples are classifed as DS1. This can be attributed to the fact that both datasets 
(60% of the Bridge-A data and 57% of the SDOF data) are governed by the DS1 limit state. 
Furthermore, none of the 400 samples (corresponding to the simulations using the 400 ground 
motions of the selected 200 records augmented by their 90° rotations, Table 4) belonged to 
DS2 and only one sample belonged to DS3. In contrast, DS1 and DS4 had 240 and 57 sam-
ples, respectively. This disproportionate distribution of samples occurred due to the close prox-
imity of DS2, DS3, & DS4, which was also refected on the SDOF training dataset. There-
fore, it is expected that the damage assessment performance will be improved when limit states 
are well-separated and data from all the damage states are equally represented in the SDOF 
dataset. 

7t-Distributed Stochastic Neighbor Embedding (tSNE) is a nonlinear technique for dimensionality reduction that 
is particularly well suited for the visualization of high-dimensional datasets. It is extensively utilized in ML appli-
cations. The axes of the tSNE plots, herein labeled tSNE1 and tSNE2, have non-physical meaning due to mappings 
through iterative nonlinear transformations. 
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Table 9: Accuracy of the novelty and H-MC model for the three test sets. 

Test 
Accuracy 

Novelty 
Detection 

H-MC: Damage 
Detection 

H-MC: Damage 
Assessment-POE 

Set-1 90.7% 100% 82.7% 
Set-2 90.7% 97.3% 81.3% 
Set-3 89.3% 98.7% 82.0% 

Average 90.23% 98.7% 82.0% 

Figure 11: tSNE visualization of the actual and predicted damage states for test sets: (a) Set-1, 
(b) Set-2, and (c) Set-3. 
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Figure 12: Confusion matrices for damage detection of the three test sets for: (a) Novelty detec-
tion model, and (b) H-MC framework (novelty + POE). 

Figure 13: Confusion matrices for damage assessment using H-MC for test sets: (a) Set-1; (b) 
Set-2; (c) Set-3. 
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Applications 

El Centro - Hwy8/Meloland Overpass 

The Meloland Road Overpass which is located near El Centro, California is a non-
skewed bridge. It is approximately 208 ft long and 34 ft wide with each span measuring 104 
ft. The depth of the deck is 5.5 ft. The height of its 5 ft-diameter column is approximately 21 
ft, which is supported on 25 timber piles with a square concrete cap. The monolithic abutment 
backwalls have a height of approximately 13 ft. The bridge is instrumented with 29 sensors. 
Figure 14 shows the sensor locations of the bridge. The average feature values of the sensors 
from 13 recorded earthquake events are utilized in this study. 

Figure 14: Sensor locations of the Meloland Road Overpass. 

For the novelty model, 7 randomly selected events were used to train the model. All 13 
events are utilized as the test set. In order to develop the POE envelope, the period reported 
in (Shamsabadi et al., 2011) is used to develop the SDOF model. Figure 15 shows the actual 
and predicted tSNE plots for the 13 events. It shows that all the undamaged events have been 
correctly detected as undamaged. Figure 16 compares the events with the POE envelope. Here, 
the POE envelope for Feature 1 (peak acceleration, X) spans a smaller distribution than the 
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(a) Actual damage states (b) Predicted damage states 

Figure 15: tSNE plots for the 13 events of Meloland Overpass Bridge. 

other features, which results in white space at the top left corner of the plot. In addition, over-
lapping regions between POE values result in variations in darkness of the shaded regions. The 
order of features from left to right corresponds to Ordinal Fisher Scores of these features from 
highest to lowest. Figure 16 shows that the bridge experienced a higher level of shaking for 
one event (Calexico Earthquake on April 4, 2010). However, this event in 2010 was not strong 
enough to cause any damage. 

Figure 16: Normalized features and POE envelope of the Meloland Overpass Bridge. 

Parkfeld - Hwy46/Cholame Creek Bridge 

The Cholame Creek Bridge located near Parkfeld, California is a slightly-skewed RC 
slab bridge with fve spans and supported by piles. The bridge spans Cholame Creek and is 
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130 ft long and 44 ft wide, widened in 1979 from its original width of 33 ft. The west end of 
the bridge is supported by a monolithic diaphragm abutment and the east end is supported on 
a seat abutment at the original portion and a diaphragm abutment at the widened portion. The 
bridge is instrumented with six sensors, and Figure 17 shows the sensor locations. The average 
feature values of the sensors from 2 recorded earthquakes are utilized in this study. In particu-
lar, one of these recorded earthquakes, the 2004 Mw 

8 6.0 Parkfeld Earthquake, induced a peak 
structural horizontal acceleration of 1.047g measured by the bridge sensors, and signs of mi-
nor damage were observed during inspection after the event. With only 2 recorded events, it 
was not possible to develop the novelty model using recorded data. In this case, the novelty 
model for Bridge-A was utilized. The two recorded events are used as the test set. In order to 
develop the POE envelope, the period reported in (Boardman et al., 2006) is used to develop 
the SDOF model. 

Figure 18 shows the actual and predicted tSNE plots for the 2 events. It is noted that 
the novelty model labelled both events as novelty. However, the H-MC method correctly de-
tected the undamaged and damaged cases. Figure 19 compares the events with the POE enve-
lope. It shows that San-Simeon earthquake (December 22, 2003) produced low levels of shak-
ing for which the bridge falls in the green (undamaged) zone. For the Parkfeld earthquake 
(September 28, 2004), however, the frst two features fall in the red (damaged) zone. The dam-
age assessment algorithm indicated the damage level to be DS1 in this case, consistent with 
the observed minor damage upon inspection following the 2004 earthquake. 

Discussion and Conclusion 

This study establishes an H-MC framework for bridge structural health monitoring. The 
framework uses a novelty detection ML model and a feature engineering procedure including 
feature selection using the Ordinal Fisher Score and model parameter tuning using k-fold cross-
validation. First, the response of an analytical bridge model from nonlinear time history anal-
ysis with 400 ground motions is used to extract 32 one-dimensional damage features and dam-
age states. The damage features are based on vibration characteristics with potential to indicate 
structural damage, and the damage states are based on levels of strain response according to a 
component capacity-based model. Next, an Ordinal Fisher Score feature selection analysis is 
used to determine the features with highest discriminatory power between classes of damage 
state. Using the seven highest-scoring features, k-fold cross-validation with k = 5 is performed 
with a POE analysis to determine the set of features which achieves optimal model complexity. 

Following the feature engineering process, a ML model is trained using the selected 
feature set and the 400 ground motion responses to form the H-MC analysis, which is used to 
perform binary damage detection and multiclass damage assessment. Coupling the novelty de-
tection model with a POE analysis is shown to increase average damage detection accuracy to 
98.7%, an 8% increase from the novelty detection model alone. Furthermore, misclassifcation 
within the undamaged test set decreased by 34-58% when the POE analysis is applied together 
with the novelty detection. For multiclass damage assessment, the H-MC analysis achieved an 

8The moment magnitude scale is a measure of an earthquake’s magnitude (“size” or strength) based on its seis-
mic moment (a measure of the work done by the earthquake). 
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Figure 17: Sensor locations of the Cholame Creek Bridge. 

(a) Actual damage states (b) Predicted damage states 

Figure 18: tSNE plots for the 2 events of the Parkfeld Cholame Creek Bridge. 
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Figure 19: Normalized features and POE envelope of the Parkfeld Cholame Creek Bridge. 

average accuracy of 82%, which is judged to be reasonable and can be improved further in the 
future by using a more sophisticated analytical model than the SDOF for the POE analysis. 

The application of the H-MC framework on two CSMIP9-instrumented bridges, namely 
El Centro-Hwy8/Meloland Overpass and Parkfeld-Hwy46/Cholame Creek bridge, resulted in 
accurate classifcation of all fourteen undamaged events as undamaged and the one damaged 
event as damaged. In addition, the one damaged event was classifed as DS1, which is consis-
tent with the reported minor cracking observed during visual inspection after the event. Over-
all, the proposed framework will facilitate a rapid and effcient decision-making process re-
garding emergency response and immediate use/closure of bridges. These lifelines are essential 
transportation infrastructure that should remain functioning for community resiliency, before, 
during and after major earthquake events. 
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RECENT DEVELOPMENTS IN STRUCTURAL HEALTH MONITORING 
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Abstract 
 

The process of implementing a damage detection strategy for aerospace, civil and 
mechanical engineering infrastructure is referred to as structural health monitoring (SHM).  The 
SHM process compliments traditional nondestructive evaluation by extending these concepts to 
online, in situ system monitoring on a more global scale.   For long term SHM, the output of this 
process is periodically updated information regarding the ability of the structure to perform its 
intended function in light of the inevitable aging and degradation resulting from operational 
environments.  After extreme events, such as earthquakes or blast loading, SHM is used for rapid 
condition screening and aims to provide, in near real time, reliable information regarding the 
integrity of the structure. 

 
This presentation will briefly summarize the historical developments of SHM technology, 

which have been primarily driven by four applications: rotating machinery, offshore oil 
platforms, civil infrastructure, and aerospace structures.  Next, the current state of the art is 
summarized where the SHM problem is described in terms of a statistical pattern recognition 
paradigm. In this paradigm, the SHM process can be broken down into four parts: (1) 
Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction and Data 
Compression, and (4) Statistical Model Development for Feature Discrimination.  This talk will 
then focus on recent developments related to both the sensing hardware and data analysis aspects 
of SHM.  Some final comments will be made on outstanding technology development and 
validation needs that are necessary for more widespread adoption of SHM. 
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Abstract 
 

Advancements in sensor technologies and communication networks are creating new 
opportunities for advanced methods of measuring earthquake response and damage in critical 
infrastructure systems. Based on applied R&D sponsored by the U.S. Department of Energy 
(DOE), new optically-based sensor systems have been developed that provide for continuous 
measurement and rapid transmission of key infrastructure response observables immediately 
after an earthquake. The short latency of the underlying physics of optical sensors, and the ability 
to perform high resolution measurements across a broad frequency bandwidth are attributes that 
make optical-based measurement systems particularly attractive for applications in earthquake 
response measurement. Concurrently, transformational progress underway in wireless 
communications and the Internet of Things (IOT) are enabling new paradigms for expedient 
deployment of sensor systems and rapid extraction and analysis of time-critical data. 
 

Building interstory drift is a key earthquake response observable that is broadly utilized 
as a design parameter in many engineering standards to define performance-based limit states, 
maximum allowable story deformations, and quantification of damage in post-earthquake 
assessments. Historically, drift measurement has been obtained through signal processing and 
double integration of accelerometer data, which is challenging particularly if inelastic, permanent 
drifts occur. To date, there has been no widely accepted methodology or technology for reliable 
and accurate direct measurement of building drift. 
 

This presentation will describe recent advancements in a new optically-based sensor 
system for direct measurement of interstory drift. The third generation of a Discrete Diode 
Position Sensor (DDPS), which utilizes laser light to directly measure drift, is described and data 
from experimental laboratory tests illustrating high-resolution sensor performance are presented. 
The ability to measure both Transient Interstory Drift (TID(t)) and Residual Interstory Drift 
(RID) is demonstrated. To facilitate efficient deployment of the optical sensor systems, a 
practical, wireless mesh network for reliable, rapid extraction of building data has been 
developed. The mesh network is based on a system of dedicated low-power radio-frequency (RF) 
nodes that can self-configure and form a dynamic network throughout a building structure.  
Experience from the first field deployment of the optical sensor and mesh communication 
network are described for a DOE mission-critical facility in the San Francisco Bay Area. 
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	Table 1. Available instrumented data for selected building 
	(PGA) were selected to calibrate the simulation model: Landers (1992) and San Bernardino  (2009). 
	Calibration of Non-Structural Stiffness 
	Given the general symmetry of the building plan and the fact that torsional motions were not evident in the profile of the recorded floor displacement histories, the analyses were carried out on a two-dimensional model (Fig. 4) of the perimeter moment frame in the east-west direction.  
	Modeling and Validation 
	Beams are modeled using elastic beam-column elements with inelastic springs  (constructed with zero-length elements) at the ends as shown in Figure 4. All inelastic action (for nonlinear procedures) is lumped into these concentrated springs whose cyclic response is  represented using the Modified Ibarra-Medina-Krawinkler deterioration model (Ibarra et al. 2005). In order to capture the axial load-moment interaction, columns were modeled as force- based elements with  five Lobatto integration points and the Voce-Chaboche material model was  used to represent the inelastic cyclic behavior of steel. Center-line dimensions are used for beams and columns to indirectly account for the flexibility of the panel zones. The building has  embedded column bases connected to spread footings and grade beams and therefore the base was assumed to be fully restrained – an assumption that was shown to be reasonable for such a  base connection (Falborski et al. 2020). An additional leaning column is attached to the moment frame using rigid links with pinned connections at each end to account for P-Delta effects and contributing gravity loads from the interior frames are applied at each level. A set of diagonal braces were also added at each level to represent the stiffness contribution of non-structural elements – the process by which the brace stiffness was determined is described in the following section. 
	In the above equation, 
	are the story shears from the non-structural and structural components, respectively, 
	are the story shears from the non-structural and structural components, respectively, 
	In order to add the nonstructural stiffness, braces were introduced in two bays at each floor through the use of truss elements as shown previously in Fig. 4. The properties of the braces were adjusted until the total story stiffness matched the calculated values shown in Table 2. This was accomplished iteratively by updating the areas of the braces, applying static lateral loading to the model and determining the total story stiffness. The addition of the braces to the model as well as incorporating the additional stiffness of the joist floor system altered the fundamental period of the frame to 0.54 sec, consistent with the estimated building period in the east-west direction from the FFT analysis (Fig. 5). 
	data and/or assumption about the free vibration phase. Hence, an additional method was utilized to estimate damping – the analysis model (with nonstructural stiffness already calibrated) was subjected to both the Landers and San Bernardino base motions and the response spectra, based  on the roof accelerations, was compared to that obtained with the actual recorded motions.  Results are presented in Fig. 8 which suggest that a damping of 10% (assigned to both the 1st and  2nd mode) produced a reasonable match. Hence the time history simulations presented in this paper are based on Rayleigh damping with coefficients corresponding to 10% of critical damping in the 1st and 2nd mode. 
	Figure 8.  Comparison of acceleration spectra using data from the roof response:  
	(a) Landers; (b) San Bernardino 
	A seismic performance assessment of the building was carried out by analyzing the validated computer model of the perimeter frame and using both linear and nonlinear analysis procedures prescribed in ASCE 41. Note that in all procedures described hereafter, the lateral load application is preceded by the application of the sustained gravity loads on the frame.  The seismicity considered in the assessment is based on the BSE-2E hazard level, which represents a 50% probability of occurrence in 50 years. The resulting response spectrum for the site is shown in Fig. 10 with the following key parameters: 
	= 1.25 g; 
	Building Assessment using ASCE 41 Guidelines 
	= 1.25 g; 
	Figure 9. Comparison of recorded vs. simulated roof displacement histories:  

	For the Linear Dynamic Procedure (LDP), the assessment was based on the response  spectrum method. Considering the first three modes was sufficient to capture at least 90% of the participating mass of the frame. The equivalent static lateral load vector was then determined from: 
	Figure 10. Response spectrum for site  
	Linear Procedures 

	Figure 11. Demand-to-capacity ratios for beams:  
	Figure 12. Demand-to-capacity ratios for columns:  
	In order to select ground motions that are representative of the seismic hazard at the site, the United States Geological Survey (2017) Unified Hazard Tool was used for the site deaggreation. The hazard at the site is controlled primarily by the San Jacinto fault with expected magnitude 8.0 and fault distances less than 1 km and the San Andreas fault with magnitude range 7.0 – 8.0 and fault distances between 7 – 12 km. A total of 51 ground motions were downloaded from the PEER NGA ground motion database (ngawest2.berkeley.edu) with the following filters:  fault type: strike slip; magnitude: 6 to 8; distance to rupture: 0 to 12; and shear wave velocity Vs30: 180 to 360 m/s. Ground motions with spectral shapes signficantly different from the target spectrum were discarded. The final 11 sets of ground motion (pairs) were selected such that the average maximum direction spectra (RotD100) was at or above 90% of the target response  spectrum in the period range 0.2T1 – 1.5T1.  Given that the site is classified as near-fault, the  horizontal components of each selected set was rotated to the fault-normal and fault-parallel directions of the causative fault. The fault closest to the site is the San Jacinto fault, hence this fault angle was used as the reference for rotating the ground motions. ASCE 41-17 does not  provide specific guidance on ground motion selection for 2D analysis. Therefore, the following  procedure was implemented: for each ground motion set already rotated in the fault parallel and  normal orientations, the base motions and their spectra in each direction were compared; the 
	The modification factors that accounts for the multi to single degree-of-freedom transformation,  inelastic behavior, and hysteretic characteristics, respectively, were determined to be: C0 = 1.3, C1 = 1.034 and C2 = 1.0.  
	In order to select ground motions that are representative of the seismic hazard at the site, the United States Geological Survey (2017) Unified Hazard Tool was used for the site deaggreation. The hazard at the site is controlled primarily by the San Jacinto fault with expected magnitude 8.0 and fault distances less than 1 km and the San Andreas fault with magnitude range 7.0 – 8.0 and fault distances between 7 – 12 km. A total of 51 ground motions were downloaded from the PEER NGA ground motion database (ngawest2.berkeley.edu) with the following filters:  fault type: strike slip; magnitude: 6 to 8; distance to rupture: 0 to 12; and shear wave velocity Vs30: 180 to 360 m/s. Ground motions with spectral shapes signficantly different from the target spectrum were discarded. The final 11 sets of ground motion (pairs) were selected such that the average maximum direction spectra (RotD100) was at or above 90% of the target response  spectrum in the period range 0.2T1 – 1.5T1.  Given that the site is classified as near-fault, the  horizontal components of each selected set was rotated to the fault-normal and fault-parallel directions of the causative fault. The fault closest to the site is the San Jacinto fault, hence this fault angle was used as the reference for rotating the ground motions. ASCE 41-17 does not  provide specific guidance on ground motion selection for 2D analysis. Therefore, the following  procedure was implemented: for each ground motion set already rotated in the fault parallel and  normal orientations, the base motions and their spectra in each direction were compared; the 
	motion with a larger evident pulse in the time history or a larger spectral value within the target period range was selected. A additional scale factor of 1.1 was necessary to ensure that the actually applied ground motions had a mean spectra that was equal to or above the target spetrum in the required period range. Figure 14 shows the final ground motion spectra and Table 3 summarizes essential details of the selected records. 
	Conclusions  
	Nonlinear simulations of the calibrated numerical model were carried out using OpenSees for each of the eleven ground motions, and mean values of the plastic rotations in the beams and columns at each end of the element were determined. The maximum plastic rotation among all eleven motions was also recorded. Results are presented in Fig. 15 (b) and Fig. 16 (b) alongside the estimates from NSP. Two beams at the first floor level fail the Collapse Prevention (CP) limit when using NSP but pass Immediate Occupancy (IO) under NDP when considering  the average rotation for the eleven motions. If the peak rotation among all motions are considered, the LS limit was exceeded in two beams and the CP limit was exceeded in one beam at the first floor level. Column demands in general were small and meet or slightly exceeded the criteria for IO performance level at all levels for both NSP and NDP. 
	Conclusions  
	Figure 15. Ductility demands for beams:  
	Results of the simulations indicate that both linear procedures resulted in consistent  DCRs for both beams and columns at all floor levels. The nonlinear static procedure resulted in the most severe demands at the first floor with two beams failing the CP limit state. Simulations using NDP resulted in the lowest demands when considering the mean demands for all eleven ground motions. However, when the response to individual motions are examined, beams on the first floor failed LS performance in two cases and CP performance level in one event. This highlights the importance of ground motion selection and scaling when using NDP. 
	outlined in ASCE-41. Significant effort was directed towards identifying the nonstructural stiffness of the system, estimating damping and validating the computer model of the perimeter frame used in the assessment of the building. 
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