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Abstract 

The importance and relevance of structural health monitoring (SHM) for highway bridges 
in the United States is highlighted by the bridges’ poor condition and the growing amount 
of resources for data-driven condition assessment in the feld of artifcial intelligence (AI), 
particularly, machine learning (ML). To tackle this issue, a human-machine collaboration (H-
MC) framework for highway bridge SHM is developed in this study to take advantage of the 
strengths of both AI and engineering domain expertise. The H-MC framework uses a physics-
based model (human) to conduct probability of exceedance (POE) analysis coupled with nov-
elty detection ML model (machine) to establish a damage detection and assessment algorithm. 
To produce the training data for the model, nonlinear time history analyses (NTHA) are per-
formed on analytical bridge model for vibration responses to many selected ground motions. 
Feature extraction and selection are performed using an Ordinal Fisher Score analysis with k-
fold cross-validation parameter tuning to produce the input for training the ML model. A com-
ponent capacity-based damage state model is used to produce the output for training the ML 
model. During model validation, the beneft of the H-MC is demonstrated through signifcant 
increase in the classifcation accuracy when the POE analysis is coupled with the ML model. 
Once the ML model is trained, it is tested on the seismic responses of two instrumented bridges, 
El Centro - Hwy8/Meloland Overpass and Parkfeld - Hwy46/Cholame Creek Bridge. The 
model accurately classifed all 14 undamaged events and one damaged event, including damage 
assessment consistent with reported visual inspection of the bridge after the damaging event. 

Introduction 

Structural health monitoring (SHM) of highway bridges is becoming essential as the 
civil infrastructures in the United States are aging. According to ASCE’s 2019 report card 
for California’s infrastructures, 7% of California’s bridges are structurally defcient and the 
largest percentage of bridges in “Poor” condition in the nation belongs to California. More-
over, approximately 50% of bridges in the state have exceeded their design life. The backlog 
of recommended maintenance, repair, and replacement continues to grow. Therefore, contin-
ued health monitoring of these bridges is essential for safe operation and for prioritizing re-
placement. The monitoring of these vulnerable structures becomes more critical after natu-
ral disasters such as earthquakes. The loss of accessibility due to damages and closures of the 
transportation network can greatly affect the rescue and recovery of a city after major seismic 
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events, turning them into disasters. Utilizing the advances in remote sensing, computing tech-
nologies, and data science is an effective and feasible way of structural monitoring of bridges. 

Data-driven SHM brings in the capability of machine learning (ML) and deep learning 
(DL) techniques in developing automated and online damage detection and/or assessment tools 
for civil infrastructures. With the recent advances in sensor technologies, wireless sensor net-
works, remote sensing, and computer vision, data science can now be used to develop SHM 
techniques to assess and quantify the conditions of structures in near-real-time utilizing ML 
and DL algorithms. ML gives computers the ability to learn about the trends and features of a 
process without being explicitly programmed (Samuel, 1959) for this process. Currently, ML is 
the core of artifcial intelligence (AI) which has excelled in classifcation and prediction capa-
bilities. However, ML still lacks contextual intelligence and minimal reasoning capability. The 
main problem with this approach to AI is that it requires thousands, if not millions, of data ex-
amples for training the ML algorithm to be able to function properly. Therefore, ML cannot 
be adopted in the current form for applications where data is limited. One such application is 
SHM of bridges to detect damage conditions and categories after seismic events. 

In order to enable widespread adoption, AI systems need to shift away from this data-
heavy approach and focus on methods that use a combination of different approaches, includ-
ing systems modelling based on domain expertise. Through such collaborative approaches, hu-
mans and AI will actively enhance each other’s complementary strengths. However, to fully 
extract the beneft of this collaboration, humans need to understand and trust the AI systems as 
they become more involved in making critical decisions alongside the humans. Transparency 
of the explainable AI (XAI) systems can foster this trust. One way to gain explainability in AI 
systems is to use ML algorithms that are inherently explainable. In this paper, such a ML tool 
and structural engineering expertise are utilized to develop the human-machine collaboration 
(H-MC) framework for highway bridge health monitoring. 

Proposed Framework 

Human-machine collaboration (H-MC) is a model in which humans co-work with ar-
tifcial intelligence to complete specifc tasks (National Research Council, 2012). The goal of 
an H-MC model is to utilize the forte of both types of intelligence and minimize the impact of 
their weaknesses. In this study, an algorithm is developed by following the basic principal of 
the H-MC model which is employed towards developing an SHM framework. The proposed 
algorithm leverages the advancements in the feld of ML and utilizes response data from un-
damaged bridge structures (more abundantly available than from damaged bridges) to develop 
a ML model for a specifc structure. Concurrently, an analytical model is developed by a do-
main expert, i.e., the structural engineer in this case, in order to simulate data of the damaged 
structure. This approach reduces the uncertainty associated with the computational model by 
using real data recorded from the structure and at the same time it provides a possible range 
of data (possibly unseen) from the damaged condition which is not usually available from in-
situ measurements of structures. This is because engineered structures are typically damaged 
due to rare (low occurrence probability) events of natural hazards with high consequences, e.g., 
earthquakes or hurricanes. 
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Figure 1: H-MC framework for SHM making use of ML and knowledge of human experts. 

Figure 1 illustrates the H-MC framework for bridge SHM. There are two distinct phases. 
The frst phase of the framework is completed before an earthquake occurs. In this phase, the 
task of feature selection is conducted, and both the analytical model and the ML model are 
developed1. The second phase of the framework takes place during and shortly following an 
earthquake, where the response of an instrumented bridge is measured and relayed to a remote 
location where damage sensitive features can be rapidly generated. Consequently, using the 
previously developed H-MC model, damage detection can be performed in real time within 
minutes after an earthquake. Detailed analytical models along with ML tools can provide fur-
ther information on damage levels and locations within minutes. However, if a detailed model 
is missing, the measured response data can be reviewed by a skilled human counterpart to pro-
vide a near real-time assessment within hours after an event. This can be followed up by a 
complete on-site investigation by a professional structural engineer as part of a feld inspec-
tion team if it is deemed necessary following the assessment phase. This complete assessment 
including feld inspection may take days after the event. Following the complete assessment 
process, the ML model can be updated using the annotated response data including the damage 
information. In the subsequent sections, this proposed H-MC framework is described in detail 
including several applications. 

ML Model 

The proposed framework uses the novelty detection method as the ML model. Novelty 
detection has gained much research attention in application domains of critical systems partic-
ularly with those involving large datasets. Conventional ML typically focuses on the classifca-

1This dual H-MC model is sometimes referred to in modern literature as a digital twin. 
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tion of two or more classes. The problem of novelty detection, however, is approached within 
the framework of one-class classifcation. It can be defned as the task of recognizing unseen 
data that differs in some respect from the training data. 

In the novelty detection approach to classifcation, “normal” patterns are available for 
training, while “abnormal” ones are missing. A model of normality M(θ ), where θ represents 
the free parameters of the model, is inferred and used to assign novelty scores z(x) to previ-
ously unseen test data x. Larger z(x) corresponds to increased “abnormality” with respect to 
the model of normality. A threshold z(x) = k is defned to identify novelty as follows, 

If z(x) ≥ k → x is novelty. (1) 

Due to the practical importance and challenging nature of novelty detection, many ap-
proaches have been proposed to determine the model of normality M(θ ) and the threshold k. 
In this study, a distance-based approach has been conceived. The responses from undamaged 
structures are used to develop the M(θ ). Multiple features, selected following a feature engi-
neering process (described in a later section of this paper), are utilized. The distance of a point 
to the centroid of M(θ ) is computed using the Mahalanobis distance (Mahalanobis, 1936). 
Since M(θ ) is a multivariate model, not only distance but also the shape and size of the data 
need to be considered, quantifed by the covariance matrix. The Mahalanobis distance2 takes 
this covariance matrix into account. For a p-dimensional multivariate sample xi = {xi1, . . . ,xip}, 
the Mahalanobis distance is defned as follows, q 

MDi = (xi − T µ) C−1 (xi − µ) (2) 

where µ is the p-dimensional arithmetic mean vector consisting of the mean values of all the 
variables, and C is the covariance matrix. For multivariate normally distributed data, the values 
of the square of MDi are approximately chi-square distributed with p degrees of freedom, χ2

p . 
Conventionally, a certain quantile q (e.g., 0.95) of the χ2 

p distribution is set as the threshold 
k. In this study, q is considered as a parameter of the novelty model and estimated using the 
k-fold cross-validation technique. 

POE Envelope 

The human aspect of the framework is manifested in the probability of exceedance 
(POE) envelope where structural engineering domain expertise is applied. For this part of the 
analysis, a structure-specifc analytical model based on a single degree of freedom (SDOF) 
idealization, is developed. This idealization is selected herein for simplicity but more sophis-
ticated models can be equally utilized. The SDOF model properties are based on the structure 
under consideration and discussed in the “Numerical Example” Section. For this numerical ex-
ample, the SDOF properties are listed in Table 1. The SDOF model has a nonlinear (inelastic) 

¨ material that follows Ozdemir’s rate-independent force-displacement model ( ̈  Ozdemir, 1976). 

2It is a measure of the distance between a point x and a distribution D as a multi-dimensional generalization of 
measuring how many standard deviations away x is from the mean of D . 
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Table 1: Material and dynamic properties of the SDOF model representing Bridge-A. 

Yield stress 68 ksi 
Yield displacement 0.67 in 

Hardening ratio 0.01 
Period 0.6 sec 

Damping 5% 

Nonlinear time history analysis (NTHA) is performed on the model using a set of ground 
motions from the PEER3 NGA4-West2 database (PEER, 2020; Ancheta et al., 2014). At the 
time of writing this paper, this database has 21,539 records of shallow crustal earthquakes in 
active tectonic regions. Due to the possibility of anomalies from older data collection systems, 
only records from the past 30 years have been selected. Moreover, records with peak ground 
acceleration (PGA) less than 1% of the acceleration of gravity (g) may not produce enough 
excitation useful for this study. Therefore, only records with PGA more than 0.01g are consid-
ered. To avoid homogeneity in response, not more than 20 records from a single earthquake 
event are selected. Thus, n = 1,710 records matched these criteria. From the SDOF analysis, 
a damage feature vector X = {X1,X2, . . . ,Xm} is computed from the responses. Subsequently, a 
probability of exceedance (POE) envelope is developed as follows, 

P(DS ≥ 1,X = Xˆ i)Gi = P(DS ≥ 1|Xi) = 
P(X = Xi) 

1 (3)
∑

n
j=1[ (n I DS)KH (Xj − Xi)] ∑

n −j=1[I(DS)KH (Xj  Xi)] 
= = 1 

∑
n K n[ H (Xj − = [ −1  n j= Xi)] ∑ j 1 KH (Xj  Xi)] 

where Ĝi is the POE of damage at the ith sample (i.e., earthquake event) (i = 1,2, . . . ,n), DS 
is the damage state or the damage class with discrete values. Here, DS = 0 corresponds to 
undamaged state and DS = 1,2, . . . correspond to different levels of damage. Moreover, Xi 
corresponds to the m-dimensional feature vector, I(DS) is the indicator function (I = 0 for un-
damaged state, i.e., DS = 0, and I = 1 for the damaged state, i.e., DS ≥ 1), j = 1,2, . . . ,n refers 
to the observed data represented by the considered events, and KH is a multivariate Gaussian 
kernel.5 For any vector V, KH (V) is defned as follows, 

1 1
KH(V) = p √ (4)

(2π)m|H| eVT H−1V 

where the m × m bandwidth matrix H is analogous to the covariance matrix controlling the 
amount and orientation of the induced smoothing, |H| is the 2-norm of the matrix H, and su-
perscript T indicates transpose. The kernel assigns a different weight to each data point of Xi 

3Pacifc Earthquake Engineering Research Center. 
4Next Generation Attenuation Ground Motion Database. 
5Kernel density estimation is a nonparametric technique for the estimation of the probability density function. 

In this case the estimate of the density function with bandwidth (smoothing) characterized by H is expressed as 
f̂ 1
H(Xi) = n ( − )n ∑ j=1 KH Xj Xi .
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that is inversely related to the distance between the data point j and the point of interest i. The 
Gaussian kernel is centered at the event of interest, i.e., at Xi and the developed envelope is 
analogous to the fragility curves. Several studies have applied Gaussian kernel densities to de-
velop univariate fragility curves (Noh et al., 2012, 2015; Lallemant et al., 2015). However, in 
this study, multiple variables are used. 

Figure 2 shows an example POE envelope on a parallel coordinates plot. In this plot, 
each feature is represented by a vertical axis and individual samples (i.e., earthquake events) 
are displayed as a line connected across each axis. The colored areas show the POE envelope. 
The color represents the probability values of the distribution. Green and red represent undam-
aged and damaged zones, respectively. Moreover, probability of damage increases with shade 
of the zone, with red zone having the high probability of damage. In this fgure two example 
samples are shown. One falls in the undamaged zone and is hence labelled as undamaged. The 
other one falls in the red zone and is labelled as damaged. 

Figure 2: Parallel coordinate plot showing POE envelope with undamaged and damaged zones. 

Damage Detection 

In this section, the damage detection routine of the H-MC framework is described. For 
an instrumented bridge, data from previous earthquakes is used to develop the novelty model 
M(θ ). The POE envelope for the bridge is developed simultaneously using a SDOF model 
prior to the earthquakes. In this POE model, the threshold POE value (POEth) for undamaged 
events and the entries of the bandwidth matrix H are used as model parameters. The optimal 
values of these parameters are determined using a 5-fold cross-validation technique. 

When data becomes available from a new earthquake, the H-MC framework is acti-
vated. It frst calculates the features and runs the novelty model. If novelty is not detected, the 
bridge is identifed as undamaged. On the other hand, if novelty is detected, the second phase 
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of the framework is initiated where the POE value is computed as follows, 

∑
n [I(DS)K (Xcom − Xrec )] 

Ĝ j j =1 H
i = P(DS ≥ 1 rec i|X ) = i 

∑
n
j=1[KH(Xcom − Xrec (5)

)] j i 

where Xrec and Xcom are respectively the mi j -dimensional feature vectors of the recorded data 
and the computed data using the SDOF analysis where j = 1,2, . . . ,n. Subsequently, Ĝi is com-
pared against POE . When Ĝ t

th i ≤ POEth, the bridge response to the i h event is identifed as 
undamaged. On the other hand, when Ĝi > POEth, i.e., the data falls in the high probability 
region, the bridge response to the ith event is identifed as damaged. 

Damage Assessment 

The probability of different damage states for the ith sample is calculated as follows, 

∑
n −j 1[I(DSd)KH (Xcom  r

j X ec)] 
Ĝ i 

id = P(DS = d r|X ec) = =
i (6)

∑
n − Xrec 
j=1[KH(Xcom )] j i 

where Ĝid is the probability that the ith sample (i.e., earthquake event) belongs to the damage 
state d for different levels of damage, i.e., d = 1,2, . . . ,D where D is the number of considered 
damage (limit) states, and I(DSd) is the indicator function (I = 1 when DS = d, and I = 0 
otherwise). 

When data becomes available from a new earthquake, novelty analysis is conducted. 
When the data is detected as a novelty, frst the damage detection with the POE envelope is 
checked. The damage assessment follows the damage detection phase. This assessment step is 
conducted only on the samples for which damage has been detected in the previous step. Once 
the values of Ĝid ∀ d = 1,2 th , . . . ,D are computed for the i sample, the damage state with the 
highest probability value is assigned as the damage state of this sample. 

Numerical Example 

A fnite element (FE) model of a selected bridge is developed for the study to determine 
important damage features. A damage feature is some quantity extracted from the measured 
system response data that is used to indicate the presence of damage in a structure. The simu-
lated vibration response histories of the FE bridge model to a set of 400 selected ground mo-
tions is used to extract initial damage features, such as peak accelerations, and corresponding 
damage states, which range from no damage to extreme damage. The dataset of corresponding 
damage features and damage states is later used in a feature engineering process called feature 
selection to identify the best damage features for classifcation of the damage states. 

Analytical Bridge Model 

The selected bridge for the analytical model is the Jack Tone Road Overcrossing Bridge 
(referred to for simplicity as Bridge-A), which is a two-span reinforced concrete (RC) high-
way bridge located in San Joaquin County, California, spanning approximately 220 feet with a 
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total height of approximately 25 feet. As shown in the photograph of the structure and its orig-
inal design elevation drawings in Figure 3, the bridge is supported on a single column bent and 
on seat-type abutments. The FE model of the bridge includes 20 nodes along the deck length 
and a fber-section model of the column bent. NTHA of this bridge has been studied exten-
sively to determine the effect of abutment skew-angle on the probability of collapse (Kaviani 
et al., 2012), improve direct integration algorithms for nonlinear seismic response (Liang et al., 
2016), and select and modify bidirectional ground motions for bridge seismic behavior evalua-
tion (Liang and Mosalam, 2020). 

Figure 3: Photograph and design elevation of Jack Tone Road Overcrossing Bridge (Bridge-A). 

The superstructure and column bent of the Jack Tone Road Overcrossing Bridge both 
have concrete strength of 5 ksi. The column bent is reinforced with ASTM A706 steel, with 
44 #11 bundles of 2 longitudinal bars at a volumetric ratio of 2.00%, and #6 spiral transverse 
reinforcement at a spacing of 3.34 inches. The structural properties are summarized in Table 2. 

Table 2: Jack Tone Road Overcrossing Bridge (Bridge-A) properties (Liang et al., 2016). 

# of spans 2 
Column bent Single-column 

Column radius 33.1 in. 
Column height 22.0 ft. 

Abutment Seat type 
Seat length 33.85 in. 

Superstructure concrete fc 
0 = 5 ksi, Ec = 4030.5 ksi 

Column bent concrete & reinforcing materials Concrete: 5 ksi, Steel: ASTM A706 
Long.: 44 #11 (bundles of 2), ρl = 2.00%Reinf. details of column bent cross-section Trans.: Spiral, #6 @ 3.34 in. 

The bridge FE model simplifes the deck into two symmetric spans of 1100-300 each, 
with 20 nodes along the length of the deck. The column bent is modeled with three nodes at 
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the base of the column, the interface of the column-to-deck joint, and the center of the column-
to-deck joint. For the abutments, nonlinear springs connected in series to gap elements are 
used to model the passive backfll response and the expansion joint, and the shear key response 
is modeled using an elastic-perfectly-plastic backbone curve (Liang et al., 2016). The super-
structure FE modeling details are shown in Figure 4. In order to capture progressive column 
yielding and damage, the column bent is modeled as a nonlinear beam-column with nonlinear 
fber-based beam FE’s at 10 quadrature points (Kaviani et al., 2012); refer to Figure 5. 

Figure 4: Bridge-A superstructure FE modeling details (Liang et al., 2016). 

Figure 5: Bridge-A column FE modeling details (Kaviani et al., 2012). 

Ground Motion Selection 

To produce the vibration response histories from which damage features are extracted, 
NTHA is performed on the bridge model using 400 ground motions, selected and scaled from 
the PEER NGA-West2 (Bozorgnia et al., 2014) database, which has 21,539 records of shallow 
crustal earthquakes in active tectonic regions. Before selecting and modifying the records, they 
are restricted to the 1,710 ground motions mentioned in “POE Envelope” Section. 

Unconditional Selection (US), a spectrum shape matching ground motion selection and 
modifcation method, is used to select and scale the ground motions. In the US method, the 
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median+1.5 standard deviation, σ , spectrum is used as the target spectrum. First, a Monte 
Carlo simulation is used to probabilistically generate multiple response spectra from a mul-
tivariate normal distribution with the logarithmic spectral acceleration means and variances. 
Then, ground motion records, whose response spectra match the simulated spectra, are se-
lected. Finally, a greedy optimization algorithm is applied to improve the match between the 
target and the sample means and variances. In each iteration of the optimization, one previ-
ously selected record is replaced with a record from the database that generates the best im-
provement in the match (Jayaram et al., 2011). 

Out of four common ground motion selection and modifcation methods, the US method 
was shown in (Liang and Mosalam, 2020) to produce the best prediction for the covariances of 
the probability distributions of the seismic demands (PDSD), and the most conservative esti-
mates for the probability of collapse for RC highway bridges with nonlinear responses due to 
large bidirectional ground motions. Thus, the US method was used to select ground motions 
for three ground motion scenarios, each with site soil shear wave velocity Vs30 of 222.95 m/s, 
strike-slip fault type, and target spectrum of 1.5σ above the median spectrum (for all periods) 
using the attenuation model in (Campbell and Bozorgnia, 2008). Each ground motion scenario 
is summarized in Table 3 with 100, 50, and 50 ground motions for the M7d23, M5d50, and 
M8d23 ground motion scenarios, respectively. These ground motions were each rotated by 90° 
for a total of 400 ground motions. The results of the US method are summarized in Table 4, 
which lists the PEER NGA-West2 earthquake ID numbers, earthquake names, and the number 
of ground motions per earthquake event for the selected set of ground motions with the corre-
sponding response spectra shown in Figure 6. 

Damage State Defnition 

During the NTHA of the bridge model response to the selected ground motions, the 
stress and strain response histories are recorded at the base and top of the bridge column in 
order to determine the resulting damage state of the bridge. This study employs a component 
capacity-based damage state model. In this model, the damage states are defned in seven lev-
els. The damage state criteria are based on Caltrans and PEER visual inspection criteria for 
levels of column fexural capacity for RC highway bridges. The capacity levels are translated 
into strain-based limit states at different locations of the cover concrete, core concrete, and lon-
gitudinal reinforcing bars, as listed in Table 5. The pushover curve for the bridge model is la-
beled with each component capacity-based damage state in Figure 7. For the analytical bridge 
model used in this study, limit states 2, 3, and 4 lie in close proximity to each other on the 
pushover curve because of the large size of the column, which results in the cover thickness 

Table 3: Ground motion scenario summary. 

Ground Motion 
Scenario Magnitude (M) Distance (R) [km] # Records 

Selected 
# Rotated (90°) 

Records Total # Records 

M7d23 7.0 23 100 100 200 
M5d50 5.0 50 50 50 100 
M8d23 8.0 23 50 50 100 

Total 400 
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Table 4: Description of selected ground motions. 

Number of ground motions per PEER NGA-West2 earthquake ID number Earthquake name earthquake event 
163 Anza-02 2 
170 Big Bear City 1 
123 Cape Mendocino 1 
173 Chi-Chi (aftershock 3), Taiwan 1 
174 Chi-Chi (aftershock 4), Taiwan 1 
137 Chi-Chi, Taiwan 34 
171 Chi-Chi, Taiwan-02 4 
172 Chi-Chi, Taiwan-03 5 
173 Chi-Chi, Taiwan-04 6 
174 Chi-Chi, Taiwan-05 5 
175 Chi-Chi, Taiwan-06 2 
346 Christchurch, New Zealand 5 
278 Chuetsu-oki 7 
281 Darfeld, New Zealand 11 
169 Denali, Alaska 5 
138 Duzce, Turkey 1 
280 El Mayor-Cucapah 15 
166 Gilroy 1 
164 Gulf of California 1 
158 Hector Mine 8 
279 Iwate 12 
129 Kobe, Japan 2 
136 Kocaeli, Turkey 3 
125 Landers 14 
275 L’Aquila (aftershock 1), Italy 2 
274 L’Aquila, Italy 1 
152 Little Skull Mtn,NV 1 
162 Mohawk Val, Portola 1 
180 Niigata, Japan 3 
127 Northridge-01 5 
150 Northridge-05 1 
151 Northridge-06 1 
179 Parkfeld-02, CA 2 
176 Tottori, Japan 2 
250 Umbria Marche (aftershock 16), Italy 1 
277 Wenchuan, China 8 
283 Wenchuan, China-02 1 
284 Wenchuan, China-03 1 
285 Wenchuan, China-04 1 
292 Wenchuan, China-11 1 
295 Wenchuan, China-14 1 
297 Wenchuan, China-16 1 
320 Wenchuan, China-39 1 
167 Yorba Linda 1 

1015 9753485 2 
1018 10370141 1 
1011 10410337 5 
1014 14138080 1 
1003 14151344 1 
1002 14383980 3 
1049 21266207 2 
1001 40204628 2 

Total (before rotation) 200 
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(a) Response Spectra of M7d23 ground motions (b) Response Spectra of M5d50 ground motions 

(c) Response Spectra of M8d23 ground motions 

Figure 6: Response spectra plots for each of the three ground motion scenarios: (a) M7d23, (b) 
M5d50, and (c) M8d23, including median and 2.5 & 97.5 percentiles. 

constituting a small percentage (i.e., ∼6%) of the column depth. Using the assumption of a 
linear strain profle throughout the column section (i.e., the assumption made by the Bernoulli-
Euler beam theory that “plane sections remain plane”), small changes in the curvature result 
in the inner cover fbers reach the spalling strain quickly after the outer cover fbers reach the 
spalling strain. The defnitions of limit states 2, 3, and 4 are highly dependent on the model 
discretization of the cover due to fber mesh sensitivity. Such sensitivity to model discretization 
in the nonlinear response of RC beam-columns is discussed in (Kenawy et al., 2020). 

Feature Engineering 

Feature Extraction 

Feature extraction refers to the process of transforming the measured data into some al-
ternative form where the correlation with the damage is more readily observed. After NTHA 
is performed on the bridge model with the details shown in Figure 4 and using the selected 
ground motions from the “Ground Motion Selection” Section, damage features are extracted 
from the resulting vibration response histories. The vibration response at the top of the col-
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Table 5: Damage state criteria for component capacity-based model. 

Limit State Caltrans-PEER Description Criteria Used to Defne 
Strain-Based Limit State 

Strain-Based Limit State 

Fiber Location Compression or 
Tension Strain 

0 No damage – – – – 

1 EQ-related tight cracking of 
cover 

Cover cracking: the cover 
surface reaches tensile 

strength 

Any outermost 
cover fber 

Tension εt = 1.32 × 10−4 

2 
Moderate cracking (mixed 

orientations) & minor 
spalling/faking 

Minor spalling: the cover 
surface reaches compressive 

strength 

Any outermost 
cover fber 

Compression εsp = 0.005 

3 
Open cracking or major 

spalling (exterior to 
confnement) 

Major spalling: a signifcant 
depth of the cover reaches 

compressive strength 

Any cover fber 
at 1/2-3/4 of the 

cover depth 
Compression εsp = 0.005 

4 Exposed core (interior of 
confnement) 

Exposed core: the entire 
depth of the cover reaches 

compressive strength 

Any innermost 
cover fber 

Compression εsp = 0.005 

5 

Visible bar buckling; 
confnement loss or core 

shedding 

Core shedding: the outer 
surface of the core begins to 

fail 

Any outermost 
core fber 

Compression εcu = 0.025 

Multi-bar rupture or 
buckling; large drift; or core 

crushing 

Bar rupture: longitudinal 
bars reach ultimate tensile 

strength 

Any longitudinal 
bar 

Tension εsu = 0.10 

6 Column collapse (Near-total 
loss of axial capacity) 

Loss of axial capacity: 
approximately 1/2 of the core 

fails 

All core fbers at 
1/4 of the core 

depth 
Compression εcu = 0.025 

umn bent (Node 110 in Figure 4) is used because the top of the bridge piers are commonly 
instrumented locations, allowing direct future comparisons to instrumented bridges. The dam-
age features extracted from the vibration response histories include one-dimensional vibra-
tion characteristics that have been studied as structural damage indicators by researchers in 
the past (Farrar and Worden, 2012). In addition to indicating damage on a global level, these 
features can also be measured at specifc locations on the structure, as in the case of this study, 
to identify the local damage. Other examples of features which have been studied as structural 
damage indicators include cumulative absolute velocity (CAV ) (Muin and Mosalam, 2018), 
higher exponentiations of the acceleration intensity (Sajedi and Liang, 2019), standardized CAV 
(CAVST D) (Campbell and Bozorgnia, 2012), and instantaneous power (IP) (Zengin and Abra-
hamson, 2020). Sixteen damage features, Table 6, are extracted herein in two directions, longi-
tudinal and transverse, for a total of 32 damage features. After the features are extracted, fea-
ture selection is performed to identify the best features for the intended damage classifcation. 

Fisher Score Analysis 

Feature selection is the process of identifying a subset of the original feature set which 
increases the learning effciency while minimizing the reduction in the classifcation perfor-
mance. It is performed to determine the best feature vector for this study. Moreover, a flter-
based feature selection method, or one in which a score is assigned to each feature in order to 
compute its expected contribution to solving the classifcation task, is chosen as a computation-
ally inexpensive approach that allows feature selection before the learning phase (Baccianella 
et al., 2014). One such method is the Fisher score, which determines the relative ability of fea-
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Figure 7: Bridge-A model pushover curve labeled with component capacity-based damage states. 

tures to discriminate between categorical classes in a classifcation model. The Fisher Score is 
also known in statistical modeling as Fisher ratio, Fisher method, Fisher combined probabil-
ity score, or information score. The Fisher score for a given feature is defned as the average 
distance between classes, normalized by the average spread of each class, and a larger Fisher 
score indicates that the feature is more discriminative. A visualization of the discriminatory 
power concept used to develop the Fisher score is shown in Figure 8, where 8a shows two fea-
tures showing a clear distinction among classes, and thus a high Fisher score, and 8b shows 
two features not ideal for detecting damage, and thus a low Fisher score. Although the Fisher 
score is known to have limitations in that it considers each feature separately and therefore 
cannot reveal mutual information between features, it is widely used as a heuristic algorithm 
for feature selection (Gu et al., 2012). 

In this study, the goal of the classifcation model is to determine which class of dam-
age state is indicated by the feature vector. Due to the ordering of the classes in this model 
(e.g., the 5th damage (limit) state is more severe, and thus ordered higher than the 3rd damage 
(limit) state, refer to Table 5), feature selection which considers ordinality is required. Thus, an 
ordinal variant of the Fisher score, termed here as the Ordinal Fisher Score, is used for feature 
selection in this study. The Ordinal Fisher Score is shown to perform better for feature selec-
tion in an ordinal classifcation model than the original Fisher score (Pérez-Ortiz et al., 2016). 

The Ordinal Fisher Score for the ith feature, FOR(xi), is computed following a procedure 
discussed below. First, the class discrimination term, FO(xi) is defned as follows, 

∑
K
k=1 ∑

K |j=1 k − j| · di(Ck,C j)
FO(xi) = (7)

(K − 1)∑
K 2 
k= (σ i

1 )k

where the class Ck indicates data from one of the K classes, k ∈ 1, 2, . . . ,K, σ i 
k indicates the 

variance of the ith feature in class k, and di(Ck,C j) indicates the distance between classes 
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Table 6: Description of initial damage features extracted from NTHA for later feature selection. 

Feature Defnition or Equation 

Peak acceleration 

Peak displacement 

Peak velocity 

Arias Intensity 

max(| ̈u(t)|)
t 

max(|u(t)|)
t 

max(| ̇u(t)|)
tR TIa = 0 [ ̈u(t)]2dt 

Signifcant Duration 

Cubed Absolute Acceleration Intensity (Sajedi and Liang, 2019) 

time between 5% & 95% of the total Arias energy = t0.95 − t0.05 R T 
0 [ ̈u(t)]3dt 

Spectral Acceleration at 0.6 s Sa(0.6) 

Spectral Acceleration at 1.0 s Sa(1.0) 

Spectral Acceleration at 2.0 s Sa(2.0) 

Spectral Acceleration at 5.0 s 

CAV 

RCAV 

Sum of absolute displacements 

Sum of absolute velocities 

CAVST D (Campbell and Bozorgnia, 2012) 

Sa(5.0) R TCAV = 0 | ̈u(t)|dt 
CAVsRCAV = CAVlR T 

0 |u(t)|dt R T 
0 | ̇u(t)|dt � �R iCAVST D = ∑N H(PGAi − 0.025) u(t)|dt i=1 i−1 | ̈

H(x): Heaviside function (= 0 if x < 0 & = 1 otherwise) 

Instantaneous Power (Zengin and Abrahamson, 2020) 

N: # non-overlapping 1 sec. time intervals R t+ΔtIP(T1) = max( 1 V 2 
Δt t f iltered(t)dt)

t 

Vf iltered = band pass( ̈u(t), [0.2T1,3T1]) 

iCk and C j. Next, an ordinality term, OR(x ), which incorporates the relative distance between 
classes, is defned as follows, 

∑
K−2  

∑
K−1  

∑
K  i[[(di(Ck,Ch)− (k=1 , )) > ]] 

i j=k  +1 h= j+1 d Ck C j 0
OR(x ) = (8)

∑
K−1 (  j= K − j)2 

where [[·]] is a Boolean test which is 1 if the inner condition is true, and 0 otherwise. This 
OR(xi) score measures the number of ordinal requirements fulflled for a specifc feature i. 
Finally, the two terms FO(xi) and OR(xi) are combined in a weighted sum to determine the 
Ordinal Fisher Score for the ith feature, FOR(xi) as follows, 

FOR(xi) = α · FO(xi)+(1 − α i) · OR(x ), α ∈ (0,1). (9) 

The distance between classes, di(Cz,C j), can be computed in several ways, and this 
study uses the Hausdorff distance, dh

i (Cz,C j), formulated to allow for use of nonlinear, multi-
modal, or non-normal data, and shown in (Pérez-Ortiz et al., 2016) to perform best for ordinal 
classifcation. The Hausdorff distance is defned as follows, ( ) 

di i i
h(Cz,C j) = max maxΔm(xh,C j), maxΔm(xv,Cz) (10)

xi xi∈Ch z ∈v C j 
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(a) Features with higher discriminatory power (b) Features with lower discriminatory power 

Figure 8: Visualization of discriminatory power using a 2D feature class comparison. (a) Features 
with a clear distinction among different classes have higher discriminatory power and are more 
useful for classifcation. (b) Features without clear distinction are not useful in classifcation. 

where Δ i
m(x ,h C j) is the minimum Euclidean distance between a point xi

h and the points in 
class C j, expressed as follows, q

Δ
i i i

m(xh,C j) = min d(xh,x v) = min i(x − h xi )2 
v . (11)

xi ∈Cj xi ∈v v Cj

Starting with the 32 initial damage features extracted from the NTHA (Table 6), the 
Ordinal Fisher Score with weighting factor set to α = 0.5 is used to identify which features 
best discriminate between the different classes of the damage states. The scores of each feature 
are compared in Figure 9. The results of the Ordinal Fisher Score analysis show that the best 
features for classifcation are: 1) peak acceleration in X (longitudinal) direction, 2) spectral ac-
celeration at 0.6 seconds, Sa(0.6), in X direction, 3) sum of absolute velocities in X direction, 
4) CAVST D in X direction, 5) CAVST D in Y (transverse) direction, 6) CAV in X direction, and 
7) and CAV in Y direction. The results indicate that these features discriminate well between 
classes of the damage states. The best features for classifcation based on the Ordinal Fisher 
Score analysis, Table 7, form a reduced feature vector which allows for greater computational 
effciency and are next evaluated in the H-MC analysis for classifcation accuracy. 

k-fold Cross-Validation Analysis 

k-fold cross-validation is a resampling procedure used to evaluate ML models where k 
is the number of groups a given data sample is split into. The general procedure is as follows: 

1. Shuffe the dataset randomly. 

2. Split the dataset into k groups. 
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Figure 9: Comparison of Ordinal Fisher Scores for the extracted 32 damage features for the com-
ponent capacity-based damage state model of Bridge A. X & Y denote the bridge longitudinal 
and transverse directions, respectively. 

3. For each unique group: 

• Take the group as the validation data set; 

• Take the remaining groups as a training data set; and 

• Fit a model on the training set and evaluate the accuracy on the validation set. 

4. Summarize the skill6 of the model using the average accuracy. 

This validation phase gives an opportunity to tune the complexity of the ML model to perform 
better. In this study, this technique is utilized to fnalize the number of features. The frst seven 
selected features from the Ordinal Fisher Score analysis are used to develop a POE model with 
the SDOF response data. At frst, the 5-fold cross-validation technique is applied to the model 
with one feature (feature with the highest FOR). For each training-validation group, the accu-
racy is computed as follows, 

# of correct prediction in the validation set 
Accuracy = × 100%. (12)

Total # of samples in the validation set 

6Prediction skill is a measure of the accuracy and/or degree of association of prediction to an observation or 
estimate of the actual value of what is being predicted. An example of a skill calculation is based on the error metric 
“Mean Squared Error (MSE)”. 
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Table 7: Ordinal Fisher Score analysis results for component capacity-based damage state model. 
X & Y denote the bridge longitudinal and transverse directions, respectively. 

Features with highest Ordinal Fisher Scores 
Peak acceleration in X (Feature 1) 

Sa(0.6) in X (Feature 2) 
Sum of absolute velocities in X (Feature 3) 

CAVST D in X (Campbell and Bozorgnia, 2012) (Feature 4) 
CAVST D in Y (Campbell and Bozorgnia, 2012) (Feature 5) 

CAV in X (Feature 6) 
CAV in Y (Feature 7) 

Figure 10: Model complexity (number of features) vs. validation accuracy (skill). 

At the end of the 5th groups’ analysis, the average accuracy is calculated for the model with 
one feature. Subsequently, average accuracy is calculated for increasing model complexity (i.e., 
number of features). Figure 10 shows that the accuracy improves when feature number 2 is in-
troduced in the model but it drops once feature number 3 is added. For the rest of the features, 
the accuracy remains stable. Therefore, feature number 3 (the sum of absolute velocities in the 
X direction) is removed as a feature. The fnal features utilized in the model development are 
listed in Table 8. 

H-MC Analysis 

H-MC analysis is performed on the analytical bridge model of Bridge-A using the six 
selected features (Table 8) and the 400 (Table 4) event responses mentioned earlier. The nov-
elty model is trained on the undamaged responses only. For this purpose, the undamaged re-
sponses are separated out of the 400 responses. Three different training and test sets (Set-1, 
Set-2, and Set-3) are used in the study to evaluate the performance of the model. For each set, 
80% of the undamaged sample is randomly selected to train the novelty model. The rest of the 
undamaged sample is combined with randomly selected damaged events to make up the test 
set (150 samples). 
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Table 8: Final feature set after k-fold cross-validation tuning for optimal model complexity; X & 
Y denote the bridge longitudinal and transverse directions, respectively. 

Final Feature Set 
Peak acceleration, X (Feature 1) 

Sa(0.6), X (Feature 2) 
CAVST D (Campbell and Bozorgnia, 2012), X & Y (Features 3 & 4) 

CAV , X & Y (Features 5 & 6) 

Table 9 presents the accuracy values of the analysis for the three test sets indicating that 
an average accuracy of 90.2% is achieved when novelty detection alone is used. In contrast, 
when coupled with the POE analysis for the complete H-MC framework, the average accuracy 
improves signifcantly to 98.7%. Therefore, it is evident that the H-MC model is very success-
ful in detecting damage. However, when it comes to assessing damage, the model does a good 
job with an average accuracy of 82.0%. Figure 11 shows visually the performance of the nov-
elty detection alone and the H-MC method on a tSNE7 plot. It shows that the novelty detec-
tion successfully detects the majority of the damaged events but also misclassifes some of the 
undamaged events as damaged ones, hence, the accuracy decreases. However, when combined 
with POE analysis in the H-MC framework, these misclassifed events are correctly classifed 
as undamaged ones. 

Although accuracy is an important evaluation measure, it does not present the whole 
picture. Figure 12 presents the confusion matrices for damage detection using novelty only and 
H-MC. It shows that novelty detection alone misclassifes a signifcant portion of the undam-
aged cases as damaged (58% for Set-1 and Set-2 and 38% for Set-3). In contrast, the H-MC 
analysis has misclassifcation rate in all three sets of less than 4% for both the undamaged and 
damaged states, which further shows the effectiveness of the H-MC framework in damage de-
tection. H-MC classifes a very small fraction of the damaged samples as undamaged which 
could be a problem for SHM. However, this can be improved by a better model for POE be-
yond the SDOF.Figure 13 shows the confusion matrices for damage assessment which shows 
DS1 (Damage (Limit) States (DS) are shown in Table 5) as the dominant class, i.e., most of 
the test samples are classifed as DS1. This can be attributed to the fact that both datasets 
(60% of the Bridge-A data and 57% of the SDOF data) are governed by the DS1 limit state. 
Furthermore, none of the 400 samples (corresponding to the simulations using the 400 ground 
motions of the selected 200 records augmented by their 90° rotations, Table 4) belonged to 
DS2 and only one sample belonged to DS3. In contrast, DS1 and DS4 had 240 and 57 sam-
ples, respectively. This disproportionate distribution of samples occurred due to the close prox-
imity of DS2, DS3, & DS4, which was also refected on the SDOF training dataset. There-
fore, it is expected that the damage assessment performance will be improved when limit states 
are well-separated and data from all the damage states are equally represented in the SDOF 
dataset. 

7t-Distributed Stochastic Neighbor Embedding (tSNE) is a nonlinear technique for dimensionality reduction that 
is particularly well suited for the visualization of high-dimensional datasets. It is extensively utilized in ML appli-
cations. The axes of the tSNE plots, herein labeled tSNE1 and tSNE2, have non-physical meaning due to mappings 
through iterative nonlinear transformations. 
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Table 9: Accuracy of the novelty and H-MC model for the three test sets. 

Test 
Accuracy 

Novelty 
Detection 

H-MC: Damage 
Detection 

H-MC: Damage 
Assessment-POE 

Set-1 90.7% 100% 82.7% 
Set-2 90.7% 97.3% 81.3% 
Set-3 89.3% 98.7% 82.0% 

Average 90.23% 98.7% 82.0% 

Figure 11: tSNE visualization of the actual and predicted damage states for test sets: (a) Set-1, 
(b) Set-2, and (c) Set-3. 
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Figure 12: Confusion matrices for damage detection of the three test sets for: (a) Novelty detec-
tion model, and (b) H-MC framework (novelty + POE). 

Figure 13: Confusion matrices for damage assessment using H-MC for test sets: (a) Set-1; (b) 
Set-2; (c) Set-3. 
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Applications 

El Centro - Hwy8/Meloland Overpass 

The Meloland Road Overpass which is located near El Centro, California is a non-
skewed bridge. It is approximately 208 ft long and 34 ft wide with each span measuring 104 
ft. The depth of the deck is 5.5 ft. The height of its 5 ft-diameter column is approximately 21 
ft, which is supported on 25 timber piles with a square concrete cap. The monolithic abutment 
backwalls have a height of approximately 13 ft. The bridge is instrumented with 29 sensors. 
Figure 14 shows the sensor locations of the bridge. The average feature values of the sensors 
from 13 recorded earthquake events are utilized in this study. 

Figure 14: Sensor locations of the Meloland Road Overpass. 

For the novelty model, 7 randomly selected events were used to train the model. All 13 
events are utilized as the test set. In order to develop the POE envelope, the period reported 
in (Shamsabadi et al., 2011) is used to develop the SDOF model. Figure 15 shows the actual 
and predicted tSNE plots for the 13 events. It shows that all the undamaged events have been 
correctly detected as undamaged. Figure 16 compares the events with the POE envelope. Here, 
the POE envelope for Feature 1 (peak acceleration, X) spans a smaller distribution than the 
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(a) Actual damage states (b) Predicted damage states 

Figure 15: tSNE plots for the 13 events of Meloland Overpass Bridge. 

other features, which results in white space at the top left corner of the plot. In addition, over-
lapping regions between POE values result in variations in darkness of the shaded regions. The 
order of features from left to right corresponds to Ordinal Fisher Scores of these features from 
highest to lowest. Figure 16 shows that the bridge experienced a higher level of shaking for 
one event (Calexico Earthquake on April 4, 2010). However, this event in 2010 was not strong 
enough to cause any damage. 

Figure 16: Normalized features and POE envelope of the Meloland Overpass Bridge. 

Parkfeld - Hwy46/Cholame Creek Bridge 

The Cholame Creek Bridge located near Parkfeld, California is a slightly-skewed RC 
slab bridge with fve spans and supported by piles. The bridge spans Cholame Creek and is 
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130 ft long and 44 ft wide, widened in 1979 from its original width of 33 ft. The west end of 
the bridge is supported by a monolithic diaphragm abutment and the east end is supported on 
a seat abutment at the original portion and a diaphragm abutment at the widened portion. The 
bridge is instrumented with six sensors, and Figure 17 shows the sensor locations. The average 
feature values of the sensors from 2 recorded earthquakes are utilized in this study. In particu-
lar, one of these recorded earthquakes, the 2004 Mw 

8 6.0 Parkfeld Earthquake, induced a peak 
structural horizontal acceleration of 1.047g measured by the bridge sensors, and signs of mi-
nor damage were observed during inspection after the event. With only 2 recorded events, it 
was not possible to develop the novelty model using recorded data. In this case, the novelty 
model for Bridge-A was utilized. The two recorded events are used as the test set. In order to 
develop the POE envelope, the period reported in (Boardman et al., 2006) is used to develop 
the SDOF model. 

Figure 18 shows the actual and predicted tSNE plots for the 2 events. It is noted that 
the novelty model labelled both events as novelty. However, the H-MC method correctly de-
tected the undamaged and damaged cases. Figure 19 compares the events with the POE enve-
lope. It shows that San-Simeon earthquake (December 22, 2003) produced low levels of shak-
ing for which the bridge falls in the green (undamaged) zone. For the Parkfeld earthquake 
(September 28, 2004), however, the frst two features fall in the red (damaged) zone. The dam-
age assessment algorithm indicated the damage level to be DS1 in this case, consistent with 
the observed minor damage upon inspection following the 2004 earthquake. 

Discussion and Conclusion 

This study establishes an H-MC framework for bridge structural health monitoring. The 
framework uses a novelty detection ML model and a feature engineering procedure including 
feature selection using the Ordinal Fisher Score and model parameter tuning using k-fold cross-
validation. First, the response of an analytical bridge model from nonlinear time history anal-
ysis with 400 ground motions is used to extract 32 one-dimensional damage features and dam-
age states. The damage features are based on vibration characteristics with potential to indicate 
structural damage, and the damage states are based on levels of strain response according to a 
component capacity-based model. Next, an Ordinal Fisher Score feature selection analysis is 
used to determine the features with highest discriminatory power between classes of damage 
state. Using the seven highest-scoring features, k-fold cross-validation with k = 5 is performed 
with a POE analysis to determine the set of features which achieves optimal model complexity. 

Following the feature engineering process, a ML model is trained using the selected 
feature set and the 400 ground motion responses to form the H-MC analysis, which is used to 
perform binary damage detection and multiclass damage assessment. Coupling the novelty de-
tection model with a POE analysis is shown to increase average damage detection accuracy to 
98.7%, an 8% increase from the novelty detection model alone. Furthermore, misclassifcation 
within the undamaged test set decreased by 34-58% when the POE analysis is applied together 
with the novelty detection. For multiclass damage assessment, the H-MC analysis achieved an 

8The moment magnitude scale is a measure of an earthquake’s magnitude (“size” or strength) based on its seis-
mic moment (a measure of the work done by the earthquake). 
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Figure 17: Sensor locations of the Cholame Creek Bridge. 

(a) Actual damage states (b) Predicted damage states 

Figure 18: tSNE plots for the 2 events of the Parkfeld Cholame Creek Bridge. 
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Figure 19: Normalized features and POE envelope of the Parkfeld Cholame Creek Bridge. 

average accuracy of 82%, which is judged to be reasonable and can be improved further in the 
future by using a more sophisticated analytical model than the SDOF for the POE analysis. 

The application of the H-MC framework on two CSMIP9-instrumented bridges, namely 
El Centro-Hwy8/Meloland Overpass and Parkfeld-Hwy46/Cholame Creek bridge, resulted in 
accurate classifcation of all fourteen undamaged events as undamaged and the one damaged 
event as damaged. In addition, the one damaged event was classifed as DS1, which is consis-
tent with the reported minor cracking observed during visual inspection after the event. Over-
all, the proposed framework will facilitate a rapid and effcient decision-making process re-
garding emergency response and immediate use/closure of bridges. These lifelines are essential 
transportation infrastructure that should remain functioning for community resiliency, before, 
during and after major earthquake events. 
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