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ESTIMATION OF SITE AMPLIFICATION FROM GEOTECHNICAL ARRAY DATA 
USING NEURAL NETWORKS 

Daniel Roten and Kim B. Olsen 

Department of Geological Sciences, San Diego State University 

Abstract 

We use deep learning to  predict  surface-to-borehole Fourier amplification functions (AFs)  
from discretized shear-wave velocity profiles. Specifically, we train a fully connected and a  
convolutional  neural  network  (NN)  using  observed  mean  AFs  observed  at  ∼ 600 KiK-net  and  
California Strong  Motion Instrument Program (CSMIP) vertical array sites. Compared to  
predictions  based on theoretical SH  1D amplifications, the NN results  in up to 50% reduction of  
the mean squared log error between predictions  and observations at sites  not used for  training. In 
the future, NNs may lead to a purely  data-driven prediction of site response that is  independent  
of proxies or simplifying assumptions.  
 

 

Introduction 

The densification of seismic networks, such as the CSMIP strong motion network in 
California and the KiK-net observatory in Japan, have vastly increased the number of earthquake 
records available for strong motion research. In addition, the deployment of borehole 
accelerometers at many locations has resulted in a large volume of vertical array data which has 
contributed to a better understanding of linear and nonlinear site response during strong shaking 
[e.g.1–4]. 

However, despite the increased amount of data, the standard deviations of intensity 
measures in ground motion prediction equations (GMPEs) have barely decreased over the past 
four decades [5, 6]. Standard deviations in GMPEs remain high because empirical methods use 
very simple models to approximate highly complex wave propagation phenomena [7]. Site 
conditions in most GMPEs are typically reduced to the average velocity in the top 30 meters, 
VS30and in some cases basement depth (e.g. the depth to a constant shear-wave velocity of 1 
km/s, Z1) [8]. Similarly, ground motions recorded on vertical arrays have demonstrated the 
shortcomings of current site response prediction techniques, in particular the assumption of a 
laterally constantmedium [2, 9, 10]. Three dimensional simulations with sophisticated structural 
models and nonlinear wave propagation codes are needed to study the response of such sites 
[e.g., 11, 12]. Although such case studies may shed light on the wave propagation effects behind 
the site response observed at a particular location, it is not clear how this approach can be 
generalized to sites for which no sophisticated 3D velocity models are available. Clearly, new 
methods are needed which harness the sheer volume of strong motion data (including data 
acquired on vertical arrays) to improve seismic hazard analysis. 

While seismology has always been a data intensive field, enormous amounts of data are 
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nowadays being collected in a broad spectrum of fields ranging from technology to finance to 
healthcare. Combined with increasingly powerful computers, the availability of these very large 
datasets has been driving progress in machine learning (ML) techniques, in particular deep 
learning applications which thrive under large amounts of data. 

An exciting aspect of deep neural networks (NNs) is their ability to detect patterns in the 
input data which allows them to make sense of labeled output data. In contrast to shallow 
learning algorithms, deep neural networks are less dependent on feature engineering, i.e., the 
process of transforming input data into features from which the output can be derived using a 
simple mathematical expression. In site response prediction, one could think of proxies such as 
VS30 or Z1 as engineered features needed to carry out regression analysis for calibration of 
traditional GMPEs (i.e., a shallow learning method). A deep learning algorithm would not 
depend on such engineered features, and could process the entire velocity information available 
for a site, without resorting to simplifications which discard valuable data. The idea is that the 
network will identify new features from the provided velocity profile, which guide a more 
accurate site response prediction compared to proxies such as VS30 or Z1. 

In this study, we propose to train a deep neural network to learn the observed site 
response at CSMIP and KiK-net sites based on the entire soil stratigraphy and potentially other 
parameters characterizing the incoming wavefield. The goal is to develop a method which 
predicts site response based entirely on observed vertical array data, without relying on 
simplifying assumptions, such as one-dimensionality or a vertically-incident wave field, made in 
traditional site response assessment. 

We have arranged the content of our paper as follows. In section 2, we provide a quick 
overview of deep learning and elaborate on the design of the NN. We have tested the feasibility 
of the method by by calculating theoretical, one-dimensional SH transfer functions (SH1D) for 
662 real KiK-net soil profiles, and for training a fully connected neural network to predict the 
amplification functions (AFs) from the soil profiles. In second section 3, we describe the data 
preparation methods used in the calculation of transfer functions from CSMIP geotechnical 
arrays and KiK-net strong motion sites. Results of site response prediction using the deep 
learning are presented in section 4. 

Deep Learning and Design of Neural Networks 

Artificial neural networks (ANNs) are modeled after biological neural networks found in 
animal brains, and consist of a collection of artificial neurons interacting with each other. ANNs 
are typically organized in layers, and every ANN consists of an input layer accepting the input 
parameters and an output layer which produces the desired prediction. 

Overview of Neural Networks 

Deep neural networks feature at least one, but typically several hidden layers located 
between the input and output layers. In a fully connected ANN, also called multi-layer 
perceptron (MLP), each artificial neuron in each layer is connected to every other neuron of the 
previous and next layer. (Fig. 1). Therefore, each neuron receives an input signal from every 
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neuron in the previous layer, and redirects a modified signal to every neuron in the next layer. 
The input function z(x) into a neuron consists of a weighted sum of the inputs x = (x1, x2, x3, 
...xm) from the m individual neurons of the previous layer: 

z(x) = wx +b, 

where w is a vector describing the weights of each neural connection. The offset b is also called 
bias. If the current layer has n nodes and the previous layer has m nodes, there are n m 
connections from the current to the previous layer, and the weight matrix connecting the two 
nodes has shape n m. In addition, there are n offsets that must be trained. The weights w and 
offset b are trainable parameters. 

Activation functions allow the ANN to learn nonlinear functions. Without activation 
functions, the total output of the ANN would represent a linear function regardless of the depth 
of the networks (i.e., regardless of the number of hidden layers). Typical choices of activation 
functions include sigmoids, rectified linear units (ReLUs) or hyperbolic tangent functions (tanh) 
[13]. If the ANN is used for regression, the output node uses a linear activation, allowing the 
ANN to output any real number. 

The weights and biases are optimized by training the ANN. The goal of training is to 
minimize the loss function, which quantifies the difference between the desired output provided 
in the training data and the network’s actual output. Forward propagation in a feedforward ANN 
refers to the computation of the network’s output value based on the chosen input and the ANN’s 
current weights and biases, with information flowing from the input to the output layer. This 
order is reversed during backpropagation, where the gradient of the loss function with respect to 
the ANN’s weight is computed based on the input and desired output of one or several training 
examples. Training consists in minimizing the loss by performing gradient descent on the loss 
function. 

Because there are many trainable parameters in an ANN, and the number of training 
examples is often limited, deep neural networks are prone to overfitting [e.g. 13]. An overfitted 
model will perform very well on the input set but will generalize poorly to the test set, with low 
misfit error on the training set but high error on the test set (i.e., the model exhibits high 
variance). Overfitting also affects inversion problems encountered within different domains of 
seismology, such as seismic tomography [e.g. 14]. A common technique to reduce variance 
(overfitting) in such scenarios is to add L1 or L2 regularization, which penalizes large weights 
and thereby reduces the number of free parameters in the model. Although this type of 
regularization can also be applied to deep neural networks, it is more common to reduce variance 
using a technique called dropout [15]. In dropout regularization, a predefined fraction ofneurons 
is randomly eliminated during each training iteration. This prevents the network from relying on 
a single feature, and allows it to generalize better to data it has not encountered during training. 

FCNN Architecture 

In the fully connected ANN design used in this study, the input layer expected the shear-
wave velocities extracted at 100 predefined depths from the soil profile (Fig. 1a,c); the sampling 
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interval gradually increased from 1 m near the surface to 30 m at 1,500 m depth. The properties 
of the last layer were projected onto the remaining depth intervals at shallower sites. Thedesired 
frequency of site amplification was also provided to the ANN algorithm and represented the last 
value in the input layer. The output layer consisted of a single neuron with the siteamplification 
value at the specified frequency (Fig. 1b,c). Our design chosen for the fully connected neural 
network (FCNN, Fig. 1c) used a many-to-one layout, accepting many inputs but producing just a 
single output value. That is, the ANN only predicted the amplification at one frequency at a time. 
One could also design a similar network using a many-to-many configuration, and predict the 
amplification at several frequencies at the same time. We experimented with both many-to-one 
and many-to-many designs and found that the many-to-one configuration was superior for the 
FCNN. However, a many-to-many design was adopted for the convolutional neural network 
(CNN) described below. 

Our FCNN used 7 hidden layers, and the number of neurons decreased gradually from 
256 nodes in the first hidden layer towards the single-node output layer. Following DeVries et al. 
[16], the activation function assigned to the hidden layers alternated between hyperbolic tanh and 
ReLUs; and a linear activation function was applied at the output layer (Fig. 1). 
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Figure1: PrototypeofANN forpredictionofsimulated transfer functions. (a) Shear-wave 
velocities(vs, rednodes)werediscretizedatn =100discretedepthsand(c)fedintotheinput 
layer along with the frequency f of amplification (green node). Hidden layers in (c) are shown 
by blue neurons. Where not all nodes are shown, the true number of nodes are given at the top of 
the layer. The output node contains the amplificationAf at the specified frequency (b). 
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CNN Architecture 

In a convolutional layer, nodes are not directly connected to nodes in the next layer. 
Instead, the data in the layer are convolved using a series of filters. The dimensions of the 
convolutional layer’s output depend on the type of convolution (overlap and stepping size) and 
the number of filters, with each filter creating a new representation of the input data. However, 
as most convolutional layers use many filters, the output is typically large, and downsampled in a 
pooling layer following the convolutional layer. A set of convolutional and pooling layers may 
either be followed by another set of convolutional and pooling layers, or the data is flattened and 
directed into a fully connected layer. 

CNNs are especially effective for image recognition or classification problems, as they 
are able to extract information from the spatial arrangement of the pixels. Although predefined 
filters have long been used in image processing, the effectiveness of CNN derives from the 
network’s ability to optimize the filters depending on the training data. In other words, the filter 
parameters are optimized during back-propagation such that the features extracted by the 
different filters are effective at carrying out the CNN’s task. 

In our case, we applied a CNN to take advantage of the spatial information in the velocity 
profile. We used vs and the P-wave velocity vp as different image ’channels’, analogous to the 
red, green and blue channels used in image recognition. In contrast to image recognition, where 
the input image is three-dimensional (two spatial dimensions plus three channels), our input was 
only two-dimensional (vs and vp at different depths). We did not use densities as they were not 
provided for KiK-net profiles. 

In our CNN design, we used a single  convolutional layer with 16 filters of dimensions  5 2 
(Fig. 2) right after the input layer (dimension 1002, with  vs  and vp  at 100 predefined depths). The  
output of  the convolutional layer consisted of 100 16 values, which we reduced to 25 16 values  
using a pooling layer.  The output of the pooling layer was flattened and fed into a  fully 
connected layer of 512 nodes. Two  more hidden layers with 256 and 128 nodes followed. The  
output layer  contained 50 nodes, which represented the desired amplification function at 50 
predefined frequencies (Fig. 2). A ReLU function was used for activation right  after the pooling 
layer,  and  we  alternated  between  ReLU  and  tanh  functions  in  the  three  fully  connected  layers.  As  
in the FCNN, a linear activation was used in the output  layer. Dropout  regularization was applied 
after each  layer.  Batch normalization (Fig. 2) was carried out before  each  activation  to improve   
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Figure 2: Architecture of convolutional neural network (CNN) for prediction of site response. 

convergence (this was also done in the FCNN). Both the FCNN and the CNN were implemented 
with the Keras library for Python [17] using the TensorFlow[18] backend. 

Data Preparation 

Because data from CSMIP and KiK-net are stored in different formats, separate 
workflows were developed to extract transfer functions from CSMIP and KiK-net data, 
respectively. 

CSMIP Data 

Records from vertical arrays in the CSMIP network were downloaded from the Center 
for Engineering Strong Motion Data website [19]. In a first step, all earthquakes which resulted 
in peak ground accelerations (PGA) > 0.01g on geotechnical arrays within the CSMIP network 
were identified and retrieved from the network’s website. We were able to download these 
records directly from the web interface as the amount of data was relatively small. The search 
resulted in a total of 209 suitable records pertaining to 99 different local and regional 
earthquakes with magnitudes between 3.1 and 7.3 (Fig. 3). The retrieved records include 4 
records of the M7.1 Ridgecrest earthquake of July 5, 2019 that were acquired on geotechnical 
arrays in Palmdale, Oxnard and Los Angeles. 41 out of the total 44 CSMIP geotechnical arrays 
are represented in these records. 
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Figure 3: Location of CSMIP geotechnical arrays (triangles) and selected earthquakes (circles). 

Figure 4: Surface and borehole accelerograms recorded at the La Cienega (Los Angeles) 
geotechnical array during the 2019 M 7.1 Ridgecrest earthquake. 

A workflow was developed which parses the CSMIP ASCII files [20] to  extract ground  
motions,  performed  Fast  Fourier  Transform,  smoothing  with  a  Konno-Ohmachi  filter  [21]  and  the  
computation of the  AF.  Figure 4 shows an example of surface and downhole accelerograms used 
to  train  the  NN,  namely  records  from  the  La  Cienega  (Los  Angeles)  geotechnical  array  during  the  
M 7.1 Ridgecrest  earthquake (rupture  distance 205 km). Although the incoming wavefield is  
dominated by long-period ground motions  (period  T  10 s≈  ) ground motions  (Fig. 5a), the 
amplification by the deep alluvium can clearly be observed at  frequencies  between 1 and 10 Hz  
(Fig. 5b). The observed  Fourier amplification at different frequencies obtained from the chosen  
records represents the output that the NN is trained to predict. Shear-wave velocities at different 
depths, along with selected earthquake parameters (e.g., magnitude, rupture distance) represent 
the input layer of the  NN.  
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Figure 5: (a) Fourier amplitude and (b) AF (amplification function) from La Cienega records of 
M 7.1 Ridgecrest earthquake. 

KiK-net Data 

Although the KiK-net data website provides the option to search for earthquake records 
based on different parameters, we found that the interface was not suitable to select and 
download the relatively large amount of records that we wanted to use for this project. Instead, 
we developed a script that downloads all the earthquake records from the KiK-net website and 
stores them locally. This ’data scraper’ was programmed in Python using the requestslibrary 
[22]. 

Acceleration time series from all earthquakes recorded by KiK-net stations between 
January 1997 and August 2020 were downloaded from the Kyoshin web site [23]. Five parallel 
download sessions were executed to retrieve the records, which amount to about 105 Gb in total. 
Records of acceleration time series in K-NET ASCII format were kept in event tar archives for all 
KiK-net sites which recorded the event. Earthquake and station metadata were extracted from 
event files and stored in a local database. Three separate tables with station information (i.e., 
station code, location, elevation, sensor depth), event information (event ID, date, magnitude, 
hypocenter) and record informations (event ID, station code, peak ground acceleration, distance) 
were generated and stored in Python Pandasdataframes. 

Based on the record’s PGA (peak ground acceleration), we selected 20 representative 
events for each station. Two different selection strategies were used to generate training datasets 
for prediction of mean amplifications or event-specific amplifications, described below. 

For the prediction of mean site amplifications, we only used records with surface PGAs 
below 0.2g to exclude nonlinear effects. Where available, we randomly picked 20 events with 
PGAs within 0.05 and 0.2g. If less than 20 events with 0.05g < PGA < 0.2g were available, we 
selected the 20 events with the highest PGA. The number of 20 events per site was chosen 
because all except 4 sites (KNMH18, FKOH02, SOYH3, AICH23) recorded more than 20 events 
until August 2020, and no site recorded less than 10 events. Using more events per site would be 
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possible, but would require the introduction of training weights to give all sites equal 
consideration; otherwise the neural network would tend to automatically give more weight to 
stations that are represented by more entries in the training dataset. 

For the prediction of event-specific site amplification, events were selected such that their 
PGAs were roughly uniformly distributed between a minimum PGA of 0.05g and the maximum 
PGA recorded at that site. If less than 20 events with PGA > 0.05g were available at a site, we 
picked the 20 events with the highest PGAs. This approach was chosen to ensure sufficient 
representation of events with high PGAs for the prediction of nonlinear effects. However, results 
presented in this paper are focused on the prediction of mean AFs, which do not include 
nonlinearity. 

The next step in the KiK-net data processing workflow consisted in the extraction of time 
series data from the selected observations. We used the ObsPyFramework for Python [24] to read 
the data. Surface-to-borehole transfer functions were computed for both horizontal components, 
smoothed using a Konno-Ohmachi filter (bandwith w = 10) and the geometric mean of both 
horizontals was computed. We then interpolated the amplification at 50frequencies of interest, 
which are logarithmically spaced between 0.3 and 20 Hz. This procedure was carried out for a 
total of 13,210 events. Computationally, the data preparation was expensive because two Fast 
Fourier Transforms and Konno-Ohmachi filtering operations were executed for each record. In 
order to accelerate the process, the web scraper and data processing workflow were deployed on 
the commodity cluster Rhea at the Oakride Leadership Computation Facility (OLCF). We used 
the Apache Spark Engine [25] to distribute the data processing on up to 5 nodes and 80 CPU 
cores. This approach resulted in a wall-clock time of less than two hours for the computation and 
smoothing of the amplification functions for all the 13,210records. 

Training and test datasets were created as follows: First we randomly selected 95% of the 
sites to contribute to the training set, while the remaining sites were assigned to the test set. 
Figure 6 shows the distribution of training and test sites among the KiK-net stations. We used the 
same selection of training and test sites for all different neural network layouts and 
hyperparameter choices shown in this paper, in order to allow for a one-by-one comparison of 
network performances. We created training and test datasets by iterating over all the records 
pertaining to each given training and test site. In the many-to-many layout used in the 
convolutional neural network for the prediction of mean AFs, the training and test sets contained 
just one data point per site. In the many-to-one design of the fully connected network, one data 
point for training / testing was created for each site and frequency for the prediction of mean 
amplification. The number of datapoints per site equals the number of events at the site times the 
number of frequencies in the prediction of event-specific amplifications using the many-to-one 
NN layout. 

The training and test sets for the prediction of event-specific amplifications using the 
many-to-one NN layout contain one data point for each frequency and each observation per site. 
The many-to-many design in the CNN requires just one data point per observation and site in the 
training and test sets. 
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NN Training and Prediction  Results  

We initially trained a network to predict event-specific site amplifications. As this turned 
out to be quite difficult and computationally expensive, we reverted to working with mean site 

Figure 6: Locations of KiK-net sites assigned to training and test sets in this study. 

amplification in a first step. 

We trained the fully connected NN and convolutional NN with the mean AFs for 596  
KiK-net sites assigned  to the test test. Mini-batch  gradient descent using the Adam optimizer 
[26] was carried out to  minimize the  mean square logarithmic error  (MSLE) between observed 
and predicted theoretical AFs. We chose the MSLE as our loss function to incorporate  the large  
range of  amplifications  observed between different sites and frequencies. A low MSLE is  
consistent  with good visual agreements if AFs are plotted in  logarithmic space as is 
conventionally done. We also report the mean absolute  error  (MAE) between predicted and 
observed amplification functions. The batch size  was set to 2048 for the  FCNN and to 50 for the  
CNN. We trained the ANNs for 1,000 epochs using the default learning rate of 10−3.  

Prediction of Mean Amplification Functions using the FCNN 

Figure  7  shows  the  learning  curve  obtained  during  training  of  the  fully  connected  neural  
network (FCNN) with mean amplification  functions. The training loss  (MSLE) is reduced from 
an initial value of 1.36 to 0.015 (Table  1). Input features  (i.e.,  vs  and frequency of amplification)  
were  standardized  by  removing  the  mean  and  scaling  to  unit  variance  using  ‘StandardScaler’ from  
the  scikit-learn   library [27] before training. To  control the amount of overfitting to  the training  
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data, we used dropout regularization in the  first five hidden layers. The dropout rate was adjusted  
to a value of 0.15 by trial and error. Lower values  resulted in  a higher validation error,  while  
higher values increased  the training error without further reducing the validation error. Figure 8  

Figure 7: Learning curve with mean absolute training and validation errors during Adam 
optimization of the fully connected neural network (FCNN) for prediction of mean site response 

MSLE (train) MAE (train) MSLE (test) MAE (test) 
Baseline∗ 0.216 2.005 
FC 0.015 0.521 0.140 1.593 
CNN 0.021 0.595 0.104 1.307 

Table 1: MAE and MSLE (loss) between observed amplifications and amplifications predicted 
from the preferred fully connected (FC) and convolutional (CNN) neural networks. 

Theoretical SH1D amplification compares observed and predicted mean amplification functions 
for 9 randomly selected training sites. The low training error is reflected in the good match 
between observed and predicted mean amplification functions. 

We used the trained FCNN to predict mean site amplifications at the 66 test sites and 
obtained a MSLE of 0.014 (Table 1). Figure 9 compares the observed and predicted mean 
amplifications at 9 randomly selected test sites. The MSLE at the displayed test sites ranges from 
about 0.040 for sites where the predicted AF is close to the observations (e.g., ISKH04, MIEH06, 
KOCH13) to values above 0.150 for sites where the predicted AF does not reproduce the 
observation (e.g., YMNH14, SRCH01, YMTH07) well. However, predicting the site response 
from a soil profile is generally difficult due to multi-dimensional effects, modeling inaccuracies 
and uncertainties in soil property estimates [e.g. 9, 10]. In order to put the quality of the AFs 
predicted by the NN into perspective, we compare them with a more conventional method for site 
response prediction. We computed theoretical SH1D AFs for a vertically incident plane wave, 
with densities and quality factors derived from the shear-wave velocity profiles using an 
empirical relation [28]. 

Theoretical AFs were smoothed in the same way as observed mean AFs. The MSLE 
between theoretical and observed AFs is listed for each site in Figure 9 (as well as Fig. 8 for 
reference, although we note that is makes little sense to compare training losses to theoretical 
predictions). With the exceptions of sites GIFH25 and SRCH01, the theoretical model results in 
a larger prediction error than the NN. The MSLE of 0.22 between theoretical and observed AFs 
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for the 66 test sites (Table 1) is used as a baseline to assess the NN’s performance, and shows 
that the NN is generally predicting mean AFs more accurately than the theoretical model. 

Figure 8: Comparison between observed mean amplification functions (blue) and amplification 
functions predicted by the FCNN (orange) for 9 randomly selected training sites. Solid green 
lines show theoretical 1D site amplification functions. Numbers in brackets next to the site name 
give the training loss (MSLE) for the site. Green numbers in the upper left corner show the 
baseline loss (based on the theoretical SH1D amplification function) for the site. 
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Figure 9: Same as Figure 8, but showing mean and predicted mean amplifications for 9 randomly 
selected test sites. 
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Prediction of mean amplification functions using a CNN 

The convolutional CNN was trained using observed mean site amplifications for the same 
596 training sites as for the FCNN. As with the FCNN, we adjusted drop-out rates for the CNN 
by trial and error to minimize the trade-off between high model bias (in case of poor 
performance for training sites) and high variance (in case of overfitting). For the CNN we tuned 
to drop-out rates to different values for each layer. A drop-out rate of 0.5 was used after the 
pooling layer (Fig. 2), while drop-out rates of 0.3, 0.15 and 0.10, respectively, were used for the 
three subsequent, fully connected hidden layers. 

The CNN was trained for 2,000 epochs using a batch size of 50 sites. The loss was 
reduced from an initial value of 1.45 to a minimum of 0.043. We used the trained model to 
predict AFs for training and test sites and obtained a MSLE values of 0.021 and 0.104, 
respectively (Table 1). Note that the MSLE for predicted AFs at training sites (0.021, Table 1) is 
lower than the lowest minimum value obtained during optimization (0.043). This discrepancy is 
caused by drop-out regularization. Drop-out regularization randomly eliminates neurons during 
training, resulting in a relatively high training error. However, all neurons are enabled during 
prediction (drop-out rate is set to zero), which results in a lower prediction error than training 
error. 

Both MSLEs and MAEs at test sites sites are lower for the CNN than for the FCNN. 
Moreover, the CNN achieves a test MSLE that is 50% lower than baseline (Table 1). Figure 10 
compares observed, predicted and theoretical (baseline) AFs for the same 9 test sites as shown for 
the FCNN (Fig. 9). The CNN results in more accurate predictions especially for sites YMNH14 
(MSLE reduction from 0.146 to 0.028), MIEH08 (0.043 to 0.020) and GIFH25 (0.064 to0.030). 

Figure  11a  shows  the  distribution  of  the  MSLE  obtained by   the  baseline,  FCNN  and  CNN  
at the 66 test sites. The  CNN clearly represents an improvement with respect to both the FCNN  
and baseline. For example, the CNN distribution peaks at an MSLE of 0.05, with a median  
MSLE  of  0.073. Baseline (SH1D) errors are  more uniformly distributed with a  median MSLE of  
0.181. Compared to the  FCNN, the CNN achieves an MSLE below 0.075 for  more  sites, and less  
sites with errors above  0.225. We  also computed the change in MSLE between the two NN  
designs and the baseline  for each site and plotted up the  distribution of the change of  error  (Fig. 
11b). With respect to baseline, the NNs results in an improvement at most sites; the CNN also  
outperforms the FCNN in terms of number of sites where an  improvement is observed.  
 

Summary and Outlook 

We have calculated mean observed AFs for 662 KiK-net sites and 41 CSMIP 
geotechnical arrays. 95% of the sites were assigned as training sites, with the remaining 5% 
withheld as test sites. A FCNN and a CNN were trained to predict the observed amplification 
functions from a discretized representation of the velocity profiles. 

Both NN designs converged to a solution with minimal loss, and accurately reproduced 
the observed AFs at the training sites. While the quality of the prediction at the test sites varied, 
both the FCNN and the CNN outperformed predictions based on the theoretical SH1D site 
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response in terms of MSLE (mean squared logarithmic error) between observed and predicted 
AFs. 

Predictions made by the CNN resulted in an MSLE that was 50% lower than the SH1D 
baseline, and 25% lower than the predictions by the FCNN. Proper regularization and fine fine-
tuning of the drop-out rate was found to be essential to obtain good predictions at test sites not 
used for training. 

Figure 10: Same as Figure 9, but showing predictions by the convolutional neural network 
(CNN) at the same test sites. 
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Figure 11: (a) Distribution of site-specific MSLE obtained from baseline, FCNN and CNN 
results. (b) Distribution of change in MSLE achieved by use of FCNN and CNN with respect to 
the baseline (’Base’). 

These results show that artificial NNs have the potential to take advantage of the full 
velocity profile information for more accurate predictions of observed AFs. Although a simple 
SH1D amplification function does not represent the state of the art for site-specific seismic 
hazard analysis in engineering seismology, it serves as a useful benchmark that demonstrates the 
limits of commonly made assumptions (in particular a horizontal, 1D layered structure and a 
vertically incident plane wave). A NN which learns to predict AFs purely from data is not bound 
by such assumptions, and we have demonstrated the level of improved accuracy with respect to 
the baseline that can be learned from data. 

In future work,  we will also evaluate the accuracy of the NN-predicted AFs against  
empirical site amplification functions, which are  typically based on the  VS30. While our efforts  in  
this  paper  were  focused  on  the  prediction  of  mean  AFs,  future  work  should  address  the  prediction 
event-specific amplification. Here, effects of incident wavefield characteristics, scattering and  
nonlinearity would be captured by feeding the network with earthquake magnitude, hypocentral  
distance, and input signal metrics (e.g. PGA, spectral  accelerations at  different frequencies,  
duration). In case of  a CNN, this requires a  slightly more complicated design with mixed data  
inputs. We also recommend for future work to explore  the use of information on  the  
multi-dimensionality of a site structure.  

The best-performing network design will be re-trained using all the extracted AFs and 
made available to the community for data-informed site response prediction using the full soil 
profile. 
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Disclaimer 

The contents of this report were developed under Contract No. 1019-014 from the 
California Department of Conservation, California Geological Survey, Strong Motion 
Instrumentation Program. However, these contents do not necessarily represent the policy of that 
agency or endorsement by the State Government. 
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