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Abstract 

Post-earthquake damage assessment can be significantly expedited when machine 

learning (ML) algorithms are used. Recent earthquakes showed that even when a structure is 

operational and safe for occupancy, people chose to evacuate and not reoccupy it immediately. 

Such a behavior can be attributed to lack of knowledge about the structural conditions 

immediately following the event and the fear of being trapped in the building if aftershocks hit. 

Currently, there is a lack of rapid quantifiable methods to determine if buildings are safe for 

reoccupation after an extreme event. However, advances in remote sensing, computing 

technologies, and data science in the past few years paved the way to develop ML methods that 

can assess and quantify the conditions of structures in near-real time. This paper introduces a 

methodology to assess the severity of earthquake-induced damage using low dimensional, 

cumulative absolute velocity (CAV)-based feature and ML tools. The appropriate features and 

the ML tool are identified by analyzing a single degree of freedom (SDOF) model. The identified 

features are then applied to assess the severity and location of damage of two multi-degree of 

freedom (MDOF) systems and real structures instrumented by the California Strong Motion 

Instrumentation Program (CSMIP). Results show that the damage detection capability of the 

features is high. 

Introduction 

Structural Health Monitoring (SHM) is the process of developing automated and online 

damage detection and/or assessment capability for all types of engineered systems (aerospace, 

civil, mechanical, etc.). It has become an important field of engineering in the US as the civil 

infrastructure systems of the country are aging. According to ASCE infrastructure reports (ASCE 

2017), most US infrastructures are rated between mediocre or poor. Many of them are nearing 

the end of their design life and show signs of deteriorations. Since replacing all these structures 

is not feasible, SHM is necessary to monitor the structural integrity and assess deterioration for 

the safe and continuous operation of these infrastructures and also for prioritizing to the decision 

makers their retrofit or replacement actions. Advances in remote sensing, computing 

technologies, and data science in the past few years paved the way to develop SHM techniques 

that can assess and quantify the conditions of structures in near-real time utilizing machine 

learning (ML) techniques. 

Applications of ML in damage detection have been studied for a long time. One class 

classifier or novelty detection analysis is one of the most popular damage detection techniques 

among SHM researchers. Worden et al. (2000) applied such a technique to detect damage in a 
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three-degree of freedom spring system. They used Mahalanobis squared distance as the 

discordancy measure and detected outliers if the measure is greater than a threshold. Other 

researchers implemented auto-associative neural network (AANN) successfully to detect damage 

(Dua et al. 2001; Sohn et al. 2002). Cluster analysis has also been applied to detect damage in 

recent years (Kesavan and Kiremidjian 2012; Santos et al. 2014). However, this analysis 

technique is more frequently used by researchers to classify (rather than detect) damage 

(Tibaduiza et al. 2012; Palomino et al. 2012). 

The studies mentioned above were conducted with simulated or experimental data. The 

damage features used to detect or classify damage are high dimensional which require a large 

amount of training data that were available from the simulations or the experiments. However, 

existing structures have limited data when it comes to earthquake response and particularly 

damage under extreme events. In this paper, low dimensional, cumulative absolute velocity 

(CAV)-based features are proposed that can be used with a limited dataset for seismic SHM. 

Development of Single Dimensional Features 

The CAV has been used as an earthquake intensity measure since a study conducted by 

the Electric Power Research Institute (EPRI) that dates back to 1990 (Reed and Kassawara 

1990). In that study, it was found that ground motion CAV has a better correlation to damage 

than other intensity measures such as peak ground acceleration (PGA), spectral acceleration, 

effective durations, etc. However, CAV of floor accelerations has never been applied in SHM to 

assess damage. In a recent study by Muin and Mosalam (2017), CAV is introduced as a damage 

feature. CAV time series, its normalized version (NCAV), and other features extracted from it 

show distinct patterns in damaged structures which can be used to identify and locate damage. 

Since it is a waveform-based feature, this method does not contain any assumptions regarding 

the linear or nonlinear nature of the system that generates the waveform data. However, 

waveform-based damage features are high dimensional where the dimension is the number of 

scalar quantities that are necessary to describe the feature. The amount of training data required 

for accurate diagnostic grows explosively with the dimension of the feature (Farrar and Worden 

2012). This is a challenge for damage classification problems as the amount of available data 

from damaged cases is low. In this paper, several CAV-based damage features are further studied 

where these features are low dimensional and therefore appropriate to be used in a ML 

computing environment with a limited dataset. Four proposed damage features are discussed 

below. 

Proposed Features 

The CAV is mathematically defined as follows: 

𝐶𝐴𝑉 = ∫ |
𝑇

0
�̈� (𝑡)|𝑑𝑡      (1) 

where | �̈� (𝑡)| is the absolute value of acceleration at time 𝑡 and 𝑇 is the total duration of the 

recorded acceleration time history. For the CAV calculation, the considered acceleration is the 

floor accelerations of a building. Higher CAV value is expected in damaging events than in 

undamaged cases as damaging events are correlated to high amplitude motions (Wald et al. 

1999; Hancock and Bommer 2006). 
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The 𝑅𝐶𝐴𝑉 is mathematically defined as follows: 

𝑅𝐶𝐴𝑉 =
𝐶𝐴𝑉𝑠

𝐶𝐴𝑉𝑙
      (2) 

where 𝐶𝐴𝑉𝑠 is the CAV of the floor acceleration representing the structural response and 𝐶𝐴𝑉𝑙 is 

the CAV of the corresponding linear system excited by the same ground acceleration. For an 

undamaged case and accurate linear model, this value will be 1. With damage, acceleration 

amplitude will typically decrease compared to the linear case due to lengthening of the natural 

period. Therefore, 𝑅𝐶𝐴𝑉 is expected to decrease with increasing damage states. 

The definition of 𝑆𝐶𝐴𝑉 is as follows: 

𝑆𝐶𝐴𝑉 =
𝐷5−75,𝑠−𝐷5−75,𝑙

𝐷5−75,𝑙
× 100%    (3) 

It highlights the relative wave travel times between the actual structure (subscript s) and its linear 

counterpart (subscript l) providing insight into the change in the wave propagation behavior 

caused by damage. Higher 𝑆𝐶𝐴𝑉 means a slower rate of change due to damage. The parameter 

𝐷5−75 in Equation 3 is the effective duration of an earthquake defined by the time to achieve 

75% of the final CAV value starting from the 5% of that value (Bommer and Martinez-Pereira 

1999). For an undamaged case, this value will be zero. With damage, 𝑆𝐶𝐴𝑉 is expected to 

increase. 

The 𝛥𝐶𝐴𝑉 is calculated by taking the absolute value of the difference between the area 

under the CAV plots of an actual event and the corresponding linear state. The change of pattern 

in CAV time series and its linear counterpart provides useful information about the damage. 

However, comparison at each point of observation makes it a very high dimensional feature. 

Hence, the area is calculated as a compact (low dimension) feature. 

𝛥𝐶𝐴𝑉 = (
|𝐴𝑠−𝐴𝑙|

𝐴𝑙
) × 100    (4) 

where 𝐴𝑠 is the area under the CAV plot of structure and 𝐴𝑙 is the area under the CAV plot of the 

corresponding linear system. This value is expected to increase with damage, while for an 

undamaged case, it will be zero. 

Methodology 

A single degree of freedom (SDOF) system is utilized in this study. This model is used to 

select appropriate features and ML technique for the problem at hand. The SDOF model is 

developed in OpenSEES (McKenna 2010) using Steel01 material which has a bilinear behavior 

with strain hardening of 1% as shown in Figure 1. The base shear coefficient (𝜂), which is 

defined by the ratio of yield base shear (Vy) to the weight of the building (W), is assumed to be 

0.2. 



SMIP18 Seminar Proceedings 

 

102 

 

Figure 1 Story force-displacement relationship. 

Two different sets of data have been used in this study. Set-1 includes responses of 

ground motions from the PEER NGA-West2 (Bozorgnia et al. 2014) database. This database has 

21,539 records of shallow crustal earthquakes in active tectonic regions. Due to the possibility of 

anomalies from older data collection systems, only records from past 30 years have been 

selected. Moreover, records with PGA less than 1% g will not produce enough excitation useful 

for this study. Therefore, only records with PGA more than 1% g are considered. Lastly, to avoid 

homogeneity in response, not more than 20 records from a single event are selected. A total of 

1,710 records matched these criteria. Set-2 comprises responses to site-specific ground motions 

that are used by Baker et al. (2011). These ground motions are selected by matching the uniform 

hazard spectrum and associated causal events for a site in Oakland, California. Set-2 consists of 

120 ground motions representing three hazard levels, namely 2%, 10% and 50% probabilities of 

exceedance in 50 years. For the purpose of this study, damage states are defined based on 

displacement ductility, which is the most commonly used index to quantify structural damage. It 

is defined as the ratio of the maximum displacement sustained by the structure to its yield 

displacement as follows. 

𝜇 =
𝑑𝑠

𝑑𝑦
      (5) 

where 𝑑𝑠 is the maximum absolute displacement of the structure and 𝑑𝑦 is the yield 

displacement. If the displacement does not exceed this yield displacement, i.e. 𝜇 ≤ 1, then the 

structure is considered undamaged. The damage states are divided into three categories 

according to guidelines from FEMA P-58 (FEMA 2012) with 1 < 𝜇 ≤ 2 as minor damage, 2 <
𝜇 ≤ 6 as moderate damage, and 𝜇 > 6 as major damage. 

Nonlinear time history analysis (NTHA) is performed on the SDOF model with set-1 and 

set-2 ground motions. In the analysis, acceleration of the model is computed and the force-

displacement of the spring is documented. Damage state is assigned by determining the 

maximum absolute displacement and consequently calculating 𝜇 according to Equation 5. For 

set-1, the structure remains undamaged for 1,215 (71%) records while 308 (18%) records cause 

minor damage, 143 (8%) records cause moderate damage, and 45 (3%) records cause major 

damage. This is representative of a database that collects data from real instrumented structures 
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where the majority of the collected data will be coming from undamaged structures and very few 

from severely damaged structures. For set-2, 5% causes minor damage, 29% moderate damage, 

and 66% major damage. 

Results 

 

Figure 2 Plots showing relationship of proposed features and displacement ductility for four 

different damage states. 

To identify suitable features, the relationship between each feature and the different 

damage states are observed. A good feature will demonstrate a certain pattern with increasing 

damage. Figure 2 shows the relationship of each of the four considered features with that of 

displacement ductility for the entire datasets (i.e. set-1 and set-2). Three of these features show 

trends with damage. The 𝐶𝐴𝑉 value shows an increasing trend with the increase of displacement 

ductility. The 𝑅𝐶𝐴𝑉 can distinguish minor damaged and undamaged cases as the 𝑅𝐶𝐴𝑉 values 

other than 1 are damaged cases. Although for significant damage, acceleration of the structure 

and subsequently 𝑅𝐶𝐴𝑉 will decrease, for certain ground motions, small damage may lead to an 

increase in acceleration and subsequently increase in the 𝑅𝐶𝐴𝑉. These are the motions for which 

the undamaged structure lies on the initial ascending part of the spectra.The 𝛥𝐶𝐴𝑉 also shows a 

trend with displacement ductility. The 𝑆𝐶𝐴𝑉 does not show any specific trend with displacement 

ductility. Therefore, 𝑆𝐶𝐴𝑉 is not suitable as a damage feature. 

A comparative analysis of four ML tools is performed using the three CAV-based 

features, namely 𝐶𝐴𝑉, 𝑅𝐶𝐴𝑉, and 𝛥𝐶𝐴𝑉, to determine the ideal feature and ML tool. The 

considered ML tools are logistic regression (LR), ordinal logistic regression (OLR), artificial 

neural network (ANN)  with 10 (ANN10) and 100 (ANN100) neurons, and support vector machine 

(SVM). Two different training set and test set combinations are used for this purpose. The first 
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training set (TR-1) comprises of randomly sampled 85% of set-1 data as training set and the 

remaining 15% as the first test set (TE-1), i.e. both training and testing are performed with data 

from the same distribution. This is the usual practice in the ML field. The second training set 

(TR-2) comprises of the entire set-1 and second test set (TE-2) is set-2. The second combination 

is chosen in order to test the robustness of the features when tested against extreme values. 

Table 1 Accuracy (%) achieved by ML models with different feature combinations with training 

and test sets from set-1. 

Input Feature OLR LR ANN10 ANN100 SVM 

𝐶𝐴𝑉 80.54 82.88 80.54 81.71 79.38 

𝑅𝐶𝐴𝑉 87.16 86.72 88.72 89.49 88.33 

𝛥𝐶𝐴𝑉 75.10 75.10 75.10 77.04 75.10 

𝐶𝐴𝑉, 𝑅𝐶𝐴𝑉 90.27 89.44 88.72 90.66 91.05 

𝑅𝐶𝐴𝑉, 𝛥𝐶𝐴𝑉 86.77 84.72 89.11 87.94 87.94 

𝐶𝐴𝑉, 𝛥𝐶𝐴𝑉 80.54 83.27 80.54 81.32 79.38 

𝐶𝐴𝑉, 𝑅𝐶𝐴𝑉 , 𝛥𝐶𝐴𝑉 90.27 89.05 90.27 90.66 89.88 

 

Table 2 Accuracy (%) achieved by ML models with different feature combinations for set-1 as 

training set and set-2 as test set. 

Input Feature OLR LR ANN10 ANN100 SVM 

𝐶𝐴𝑉 36.67 12.50 18.33 15.83 8.33 

𝑅𝐶𝐴𝑉 60.00 42.50 30.83 37.50 20.83 

𝛥𝐶𝐴𝑉 61.67 45.00 42.50 40.00 21.67 

𝐶𝐴𝑉, 𝑅𝐶𝐴𝑉 74.14 61.67 18.33 40.00 25.00 

𝑅𝐶𝐴𝑉 , 𝛥𝐶𝐴𝑉 65.83 45.00 60.00 40.00 22.50 

𝐶𝐴𝑉, 𝛥𝐶𝐴𝑉 70.00 60.00 51.67 36.67 24.17 

𝐶𝐴𝑉, 𝑅𝐶𝐴𝑉 , 𝛥𝐶𝐴𝑉 70.00 61.67 38.33 54.17 25.00 

 

Tables 1 and 2 report the accuracy achieved by each model for the two combinations, 

respectively. Table 1 shows that the highest accuracy of 91.05% is achieved by the SVM model 

with 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉 as features. ANN100 and OLR achieve comparable accuracies of 90.66% and 

90.27%, respectively, with the same features. As expected, when the dataset is big enough in size 

and the data are representative of the population (i.e. training and test sets come from the same 

target unknown distribution), the results are not affected significantly by the choice of the ML 

algorithm. On the other hand, when the ML algorithms are tested over a different set of data, 

their predictive capabilities are significantly reduced (Table 2). For this case, the accuracy 

reduces for each model, where OLR achieves the highest accuracy of 74.14%, also with 𝐶𝐴𝑉 and 

𝑅𝐶𝐴𝑉 features. This is due to the fact that ANN and SVM overfit the data of the training set and 

have poor generalization capabilities over the response of completely different ground motions. 

On the other hand, the simpler models LR and OLR have better generalization capabilities. From 

Table 2, it is seen that the OLR appears to be the most robust algorithm for making predictions 
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about events not available in the training set. For this reason, along with the fact that the 

computational demand of OLR is significantly smaller than ANN or SVM, OLR is used as the 

ML tool for the multi-degree of freedom (MDOF) analysis, as described in the next section. 

Moreover, it is seen that satisfactory performances are obtained using 𝑅𝐶𝐴𝑉, while the best ones 

are achieved using both 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉 as features. 

Damage Assessment of a MDOF Structure 

Methodology 

The identified features and the ML tool in the previous section are applied to MDOF 

systems representing a 5 story structure to evaluate the damage assessment performance. These 

models are also developed in OpenSEES (McKenna 2010) using the same bilinear steel model as 

the previously discussed SDOF system. The mass, stiffness, and damping of each story of the 

MDOF system are based on pushover and eigenvalue analyses reported by Mahin et al. (2015) 

and Günay and Mosalam (2017). The base shear coefficient (Figure 1) is taken as 𝜂 = 0.2 which 

is representative of the value recommended by the code (ICC 2012) for regular structures 

designed for seismic risk category D. 

 

 Figure 3: (a) MDOF model used in the study, (b) Story shear distribution along the height for 

the two models. 

Figure 3a shows the MDOF representation of the 5 story structure and Figure 3b shows 

the story shear distribution of two different systems. One of the MDOF systems (MDOF-US) has 

uniform shear capacity along the height of the system which is equal to the calculated base shear 

(𝑉𝑦𝑏𝑎𝑠𝑒). The other MDOF system (MDOF-NS) is designed to have non-uniform shear capacity 

distribution along the height of the structure. Designs of both systems are code conforming. 

However, MDOF-NS marginally meets the code and may be considered as the code minimum 
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design. Whereas MDOF-US has significantly higher value throughout the height and can be 

considered as the more conservative design which is often observed in low to medium rise 

structures. NTHA is performed on the models using both set-1 and set-2 ground motions, 

previously discussed. The acceleration is recorded at each degree of freedom along with force 

and displacement for each spring element. The worst damage states among the five stories are 

assigned as the damage state of the entire structure and its location as the worst damage location. 

However, for the cases when the worst damage state occurs simultaneously at several locations, 

the lowest story is identified as the damage location. 

 

 Figure 4: Worst damage state and its location distributions of the MDOF-US and MDOF-NS 

models. 

For the MDOF-US model, out of the 1,710 cases of set-1, 1,376 (80%), 150 (9%), 133 

(8%), and 51 (3%) cases are respectively undamaged, minor damaged, moderate damaged, and 

major damaged (Figure 4). For the MDOF-NS model, 1,382 (81%), 55 (3%), 86 (5%), and 187 

(11%) cases are respectively undamaged, minor damaged, moderate damaged, and major 

damaged. For MDOF-US model, the worst damaged state of all 334 damage cases occurred at 

the first story. For MDOF-NS, 328 damaged incidents are distributed primarily between the first 

and third stories mainly due to the increased demand in the first story and reduced capacity of the 

third story. 

The 𝐶𝐴𝑉 of the first floor and the 𝑅𝐶𝐴𝑉 of the top floor are used in this study. OLR is 

trained with set-1 and tested against TE-1 and TE-2 for both MDOF-US and MDOF-NS with 

damage categories defined similar to the case of the SDOF system. Using the damage state and 

location information obtained from the training set, the probability of the location of damage for 

a given damage state 𝑃(𝑛|𝑦) is calculated where 𝑛 is the story number, i.e. 𝑛 =1 to 5 and 𝑦 is 

the damage state, i.e. 𝑦 =1, 2, and 3 for minor, moderate, and major, respectively. The 

probability of the worst damage location is subsequently determined using Equation 6 where the 

location with the highest probability is selected as that for the worst damage occurrence. 



SMIP18 Seminar Proceedings 

 

107 

𝑃(𝑛) = 𝑃(𝑛|𝑦) × 𝑃(𝑦)     (6) 

Results 

Results reveal that MODF-US achieves damage state detection accuracy of 90.67% when 

tested with TE-1 and 84.00% when tested with TE-2. The higher accuracy with TE-1 is expected 

since the test set comes from the same distribution as the training set. Detection accuracy of 

damaged states for MDOF-NS (90.67%) is the same as that of the MDOF-US (90.67%) when 

tested with TE-1. However, the accuracy improves significantly to 96.67% when tested with TE-

2. Table 3 presents the class-specific recall (i.e. fraction of relevant instances that have been 

retrieved over the total amount of relevant instances) values for the two MDOF systems for the 

two test sets TE-1 and TE-2. From this table, it is evident that for MDOF-US, the model predicts 

very well the undamaged class (99.3%) and the major damage class (92.2%). For moderate 

damage, it does fairly with 78.1% recall values. However, minor damage is mostly misclassified 

(28.6%). This is mainly due to the definition of the damage states. Since minor damage is 

defined as 1 ≤ 𝜇 ≤ 2, with this narrow range, the model performed poorly in detecting minor 

damages which was further worsened by the lack of data from minor damage states. Similar 

performance of the model is also observed for MDOF-NS where major damage class has high 

recall value (96.6%) together with the undamaged cases (99.3%). As the test cases for MDOF-

NS has more data coming from the major damage and undamaged states, the results showed 

better overall accuracy for MDOF-NS than that of the MDOF-US. 

Table 3: Class-specific recall values for the two MDOF models. 

Class MDOF-US MDOF-NS 

Undamaged 99.3 99.3 

Minor 28.6 00.0 

Moderate 78.1 46.3 

Major 92.2 96.6 

 

Damage locations are detected with 97.5% accuracy for MDOF-US with both TE-1 and 

TE-2. It is noted that three inaccurate cases are detected where the worst damage took place in 

both first and second stories, i.e. first story is labeled as the correct location per the definition 

stated above, but the model only identified second story as the worst damage location. The 

damage locations are detected with 93.0% accuracy and 95.0% accuracy with TE-1 and TE-2 for 

MDOF-NS. Damage location detection for this model is more critical since the non-uniformity 

of strength introduces significant uncertainty on the damage location. Thus, the results show that 

the location of damage can be identified with high confidence even for non-uniform structural 

properties by using this approach, i.e. using 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉 as features with the OLR method. 

Damage Detection of CSMIP Instrumented Buildings 

In this section, damage assessment is conducted for real structures that are instrumented 

under the California Strong Motion Instrumentation Program (CSMIP). CSMIP was established 

in 1972 by California Legislation to obtain vital earthquake data for the scientific and the 

engineering communities through a statewide network of strong motion instruments. Although 
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the majority of instrumentations are installed at ground response stations, CSMIP also 

instrumented structures such as buildings, hospitals, bridges, dams, utilities, and industrial 

facilities. This study is focused primarily on buildings. 

Building Portfolio 

There is a significant number of CSMIP instrumented buildings studied in the literature, 

e.g. 151 instrumented CSMIP buildings studied by Fathali and Lizundia (2011), 64 instrumented 

CSMIP steel and reinforced concrete (RC) buildings in (Harris et al. 2015) and more than 40 

CSMIP instrumented buildings in (Naeim et al. 2006), where data were collected from a 

significant number of earthquakes. Some of the previously studied buildings and the 

corresponding recorded strong motions are considered in this study. Moreover, buildings that 

captured responses of multiple earthquakes are ideal for this study. Several buildings selected 

from this large pool are investigated for the modeling of undamaged conditions. Table 4 provides 

a list of buildings selected in this study covering a wide range of primary lateral force resisting 

systems (PLFRS) and a variety of heights. The selection is influenced by having a reasonable 

number of earthquake data sets for each building. 

Table 4 List of studied CSMIP instrumented buildings. 

Index 
Station 

PLFRS Condition 
# of 

EQs 
# of 

sensors Number Name 

1 12267 Hemet – 4 story hospital RCSW U 10 10 

2 58483 Oakland – 24 story residential building RCSW U 12 16 

3 24579 Los Angeles – 9 story office building RCMRF U 4 18 

4 24463 Los Angeles – 5 story warehouse RCMRF U 6 13 

5 24322 
Sherman Oaks – 13 story commercial 

building 
RCMRF U(R) 6 15 

6 23634 San Bernardino – 5 story hospital SMRF U 5 12 

7 57357 
San Jose – 13 story government office 

building 
SMRF U(R) 3 22 

8 24629 Los Angeles – 54 story office building SMRF U 7 20 

9 3603 
San Diego – 19 story commercial 

building 
SEBF U 3 16 

10 58019 Stanford – 4 story residential building WF U 3 10 

11 89494 Eureka – 5 story residential building RM U 7 13 

12 58196 Berkeley- 5 Story parking structure SCBF U(R) 8 16 

13 24386 Van Nuys- 7story hotel RCMRF D(R) 8 16 

14 58354 Hayward - 13-story CSUH Admin Bld RCMRF Demo 2 16 

15 01260 El Centro - Imperial Co Srvcs Bld RCMRF Demo 1 13 
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Among the selected fifteen buildings, nine of them are undamaged (U) and in operation 

at present, four are retrofitted (R) and currently in operation, and two have been demolished 

(Demo). One of the four retrofitted structures (station 24386) suffered severe damage during the 

1994 Northridge earthquake while the other three were voluntarily retrofitted to seismically 

strengthen them. Out of the two demolished structures, one suffered from damage beyond repair 

(station 01260) and the other was found to be seismically unsafe (station 58354) by the 

California State University Seismic Review Board. The buildings have different occupancy types 

and PLFRS. Six of these structures have RC moment resisting frames (RCMRF), two have RC 

shear walls (RCSW), three have steel moment resisting frames (SMRF), two have steel braced 

frames (SBF), one has a wood frame (WF), and one has a reinforced masonry (RM) as the 

PLFRS. Each of these structures has at least 10 sensors installed at multiple floors. 

H-MC framework for damage detection 

The conventional post-earthquake damage assessment is a time consuming process. 

When relying on qualified inspectors alone, inspecting structures at the scale of a city can take 

weeks, if not months (Goulet et al. 2015). An alternative to using inspections alone is to use 

response data of the structure and ML tools to expedite the assessment process. However, a 

typical ML tool has some limitations when it comes to seismic damage detection due to the lack 

of data from damaged classes which may result in uncertainty in the detection. Human 

knowledge, domain expertise, and analytical skills can help to minimize these uncertainties. 

Therefore, an SHM framework called the human-machine collaboration (H-MC) is proposed 

herein which attempts to use advantages provided by ML in conjunction with the knowledge of 

humans. According to the National Research Council (2012), the H-MC is a framework in which 

humans co-work with artificial intelligence to complete specific tasks. The purpose of this 

framework is to use the particular strengths of both types of intelligence, and even physical 

capabilities, to fill in the weakness of one (e.g. the machine) by the intelligence of the other (e.g. 

the human). 

 

 Figure 5  Human-machine collaboration (H-MC) framework for damage detection used in this 

study. 
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Figure 5 presents the H-MC framework for damage detection, which uses the responses 

from an undamaged structure and applies novelty detection as the ML tool for new data. Novelty 

detection is the identification of new or unknown data that a ML system is not aware of during 

training. It is similar to outlier detection, however, in the case of outlier detection the training 

dataset consists of outlier observations. The novelty model in this study develops non-parametric 

distribution using the training data and a distance measure of 1.5 times the interquartile range 

(IQR) to identify novelty, i.e. the new data is a novelty if it exists more than 1.5 interquartile 

range above the upper quartile or below the lower quartile. In the ideal case, where a large 

amount of data from the undamaged structure is available, considering data from low, moderate, 

and strong earthquakes, novelty detection alone could have indicated damage. However, for the 

buildings under considerations, data from strong but undamaging earthquakes are not available. 

Therefore, for these buildings, novelty detection may result in false positive detection for strong 

but undamaging events. 

To overcome this limitation, the human aspect of this framework is introduced. A 

response envelope is developed by a domain expert representing the probability of exceedance 

(POE) of damage. This is performed by using a structure-specific SDOF model. NTHA is 

conducted using the 1,710 ground motions specified in set-1, and discussed above, having base 

shear coefficient recommended for the site of the building. Subsequently, the 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉 of 

the damaging events are used to develop a joint cumulative distribution representing the POE of 

damage which is analogous to fragility curves but with two variables. Damage is identified when 

novelty is detected by the ML tool and the POE shows high probability values, as shown in 

Figure 5. 

Results 

Figures 6 to 8 show the damage detection results by the H-MC algorithm. In these 

figures, the colored contour plot is the POE envelope with higher probability shown with darker 

color. The dots are responses from all sensors installed at the roof level. When the dot is blue in 

color, it is detected as an undamaged event. When the dot consists of a red cross mark, it 

indicates damage has been identified. The damaged events will have a POE value greater than 

0.5, i.e. they will be located in the darker region of the envelope. Figures 6 and 7 show that the 

undamaged buildings are correctly detected by the algorithm where all the responses are blue 

dots for these buildings. In some cases (such as station 58483, 24322, 58354, 57357, and 89494), 

novelty detection or POE envelope alone will result in false positive detection but when used 

together in the H-MC framework, the false positive results are successfully eliminated. Figure 8 

shows the algorithm accurately detecting damage for station 24386 after the damaging event 

occurred. For station 01260, records are available from only the damaging earthquake. 

Therefore, the ML part of the framework is not possible to be applied for this building. However, 

by using the POE envelope alone, damage is detected for this case. In summary, the results show 

that the proposed H-MC framework uses two simple features, i.e. 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉, and able to 

obtain accurate detection although very limited dataset is used. This opens up the opportunity of 

rapid screening of existing structures after earthquakes with minimal computing time. 
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Figure 6 Plots generated by the damage detection algorithm showing accurate undamaged 

condition detection of the RC buildings. 
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 Figure 7 Plots generated by the damage detection algorithm showing accurate undamaged 

condition detection of steel, wood frame, and masonry buildings. 
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 Figure 8 Plots generated by the damage detection algorithm showing accurate damaged 

condition detection of the two damaged buildings. 

 

Conclusions 

In this paper, a machine learning approach with single dimension features is presented to 

assess earthquake-induced damage in structures. Four cumulative absolute velocity (CAV)-based 

features are considered. A comparative study on a single degree of freedom (SDOF) system 

using these features and four separate machine learning tools reveals that 𝐶𝐴𝑉 and 𝑅𝐶𝐴𝑉 are the 

ideal features. These identified features are applied to assess the severity of damage of two multi-

degree of freedom (MDOF) systems representing a five-story building with uniform (MDOF-

US) and non-uniform (MDOF-NS) story shear capacity. Results show that this approach 

correctly detects the worst damage state with about 90.0% accuracy for both MDOF models 

when tested with NGA-West2 data. Moreover, this approach achieves damage state and location 

accuracies of 84.0% and 97.5%, respectively, for MDOF-US and damage state and location 

accuracies of 96.0% and 95.0%, respectively, for MDOF-NS for a test set significantly different 

from the training set.  

Subsequently, the features are used in a human-machine collaboration (H-MC) 

framework to detect damage in selected fifteen California Strong Motion Instrumentation 

Program (CSMIP) instrumented buildings. The results showed that the H-MC algorithm 

correctly labeled the undamaged and damaged cases. This simple, low dimensional, and 

computationally efficient model can be reliably applied in structural health monitoring (SHM) 

scenarios with limited data. It opens up the opportunity to automate the process of damage 

detection and assess and notify the risk associated with each structure immediately after an 

earthquake. This is especially important for the residents of buildings in terms of having an idea 

about the condition of structures before conducting a formal tagging process which may take up 

to several weeks. Furthermore, such rapid damage assessment can be helpful for the immediate 

actions that need to be taken, such as deciding between leaving the building or staying in place 

and following the drop, cover and hold procedure. Overall, the model and corresponding results 

of the study can facilitate an efficient decision-making process regarding re-occupancy, 

emergency response, and future use of the structures following an earthquake event. This will, in 

turn, highlight the importance of building monitoring and encourage future building 

instrumentation efforts. 
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