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Abstract 

 

We quantify the effects of dynamic soil-structure-interaction on building structures using 

system-identification techniques and finite element simulations. We develop analytic expressions 

for distributed spring and dashpot elements at the soil-foundation interface in terms of 

dimensionless variables. A system-identification approach based on Extended-Kalman-Filter is 

employed to estimate the true soil impedance as seen from the building-foundation system. The 

impedances estimated are next used to span the range of applicability of the proposed soil 

impedance model using nonlinear curve-fitting. We find good-agreement between the proposed 

flexible-based-model and the full finite element-model in period lengthening, radiation damping, 

time-history responses and their frequency contents. 

Introduction 

The accuracy of numerical models in civil engineering to predict the linear or nonlinear 

responses of structures depends among other phenomena on how well sources of energy 

dissipation and interaction processes are modeled. Energy dissipation mechanisms in the last 

decades has been considered through a series of simplified models: for instance, energy 

dissipation in buildings has been represented using mathematical models based on viscous 

damping. The basic idea is to combine all the sources of energy dissipation -- especially those 

which may be impractical, too complex, or not fully understood -- into a simple set of viscous 

parameters. Although it has been well established that some of the dissipation mechanisms do 

not behave in a viscous manner (Bernal 1994, Hall 2006), this inconsistency is frequently 

ignored in engineering practice because it simplifies the analysis (Jacobsen 1930) and produces 

reasonable results (Beck 1980). On the other hand, soil-structure-interaction (SSI) modeling is 

most of the time accounted in practice using fixed-base building models. In this approach 

modification of properties such as damping ratios is usually performed to account for 

mechanisms such as radiation damping. However, SSI effects can be considered in numerical 

analyses of building structures, more rigorously, using one of two methods: the direct method 

and the substructure method. In the direct method, the super-structure, the foundation, and the 

surrounding soil are explicitly taken into account, using for the most part the finite element 

method (Bathe 1996, and Hughes 2000); and since it is impossible to model the semi-infinite 

extent of the soil with finite number of the elements, appropriate boundary conditions have to be 

determined and applied to model the radiated energy (Lysmer 1969, and Basu 2003). Due to the 

computational time, memory constraints, and numerical modeling expertise involved in 

implementing the direct method, the state-of-the-practice has adopted the substructure method 
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(Wolf 1985, and NEHRP 2013). In this case, the problem is divided into two systems: the 

superstructure and the soil-foundation sub-systems. The soil-foundation system is first 

represented as force-deformation relationships in a representative frequency, known as 

impedance functions, which are then applied to the nodes along the soil-foundation interface to 

model the dynamic interaction between soil-foundation and superstructure. However, this 

approach presents two major difficulties: (i) the superposition method only works when the soil 

behaves elastically, and (ii) the representative frequency of the combined system at which the 

impedance functions respond is not clear. In order to address the issues presented in the 

substructure method, we propose an inference technique based on extended Kalman filtering 

(EKF) to estimate the values of the dynamic soil-spring and soil-dashpot elements to account for 

the dynamic response of the coupled building-foundation system. The identified soil-spring and 

soil-dashpot elements are employed to derive closed-form parametric expressions for the 

distributed soil-stiffness and soil-dashpot elements. Although the presented framework is here 

demonstrated to estimate the impedance functions of linear soil-structure problems, it is general 

enough that it can be extended to the case that both the structure and the surrounding soil are 

nonlinear.  

The remainder of the paper is organized as follows: in §2 and §3, we use dimensional 

analysis to derive analytic expressions of the soil spring and dashpot coefficients as seen from 

the building foundation. We calibrate these expressions using a Bayesian identification approach 

based on Extended-Kalman-Filter (EKF) formulated to minimize the error between the full-

finite-element-model (direct-method) and the flexible-base-model (substructure-method). In §4, 

we present analytical expressions for the period elongation and radiation damping of a flexible-

base system on distributed horizontal and vertical springs, expressed as a function of an 

equivalent fixed-base system. We also present the equations of motion of a planar building that 

explicitly account for the building and foundation geometry as well as the soil-stiffness and 

energy radiated away from the building. Finally, in §5, we provide some discussion and 

concluding remarks regarding this new framework for modeling SSI problems using the 

substructure method. 

The Problem Statement and Dimensional Analysis 

The SSI continuum model we investigate in this study is composed of a building 

represented by its first-modal-height (ℎ). The building, at the same time, is supported on a 

foundation system whose geometry is characterized by its half-foundation-length (𝐵), and its 

foundation-depth (𝐷). Moreover, the foundation system rests on a homogeneous soil half-space 

characterized by its shear-wave velocity (𝑉𝑠). The response of the continuum model is 

approximated using the finite-element-method (Bathe 1996, and Hughes 2000). The material and 

elements are here considered to be isotropic linear and elastic, and no viscous damping is added 

so that the energy radiated away from the building comes only from radiation damping. Since, 

there are a large number of different SSI configurations that can be modeled, we employ 

dimensional-analysis to span the dimensional-parameter space, so that all possible cases or at 

least those in the range of applicability in civil engineering are covered. These parameters agrees 

with those proposed in Veletsos 1974, and they are listed below, 

a) Structure-to-soil stiffness ratio: 
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Π1 =
ℎ

𝑉𝑆 𝑇
 

b) Building-aspect ratio: 

 

Π2 =
ℎ

𝐵
 

 

c) Foundation-aspect ratio: 

 

Π3 =
𝐷

𝐵
 

 

Three different buildings with fixed-base-fundamental period 𝑇 ≈ (0.5, 1.0, 1.5) s, fixed-

first-modal height ℎ ≈ (15.0, 30.0, 40.0) m, foundation depth 𝐷 = (1.0, 2.5, 5.0) m, and 

supported on eleven distinct soils with shear wave velocities 𝑉𝑠 = (80, 100, 125, 150, 
175, 200, 225, 250, 300, 400, 500) m/s are considered. These values will generate the structure-

to-soil stiffness ratio to vary between Π1  ∈ [0.05 − 0.4], the building-aspect ratio to vary 

between Π2  ∈ [1.5 − 4.0], and the foundation aspect ratio to vary between Π3  ∈ [0.1 − 0.5]. 
The range of parameters Π1, Π2 and Π3, are chosen to be consistent with the range of 

applicability presented in Stewart 1999.  The buildings employed in the dimensional analysis are 

schematically shown in Figure 1.  

 

Figure 1. Building configurations employed in the dimensional analysis for the SSI problem. 

Model Inversion for Soil-Structure Interaction Parameters 

Once the dimensional-parameter space is defined, the system-identification can be 

applied to the SSI problems using the substructure method. The presented framework is thus 

performed in two stages: (i) as shown in Figure 2a, the direct method is employed from which a 

plane vertically-incident SV-wave is propagated upwards and the "true" building responses such 

as displacements or accelerations are recorded, then (ii) as shown in Figure 2b, the substructure 

method is employed in which the surrounding soil is replaced by a set of spring and dashpot 
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elements all over the foundation interface to emulate the soil inertia, stiffness and energy 

radiated away from the building. Such soil-spring and soil-dashpot elements are updated so that 

the error between the direct-method and the substructure-method is minimized. This approach 

ensures that information of the higher modes are implicitly considered in the estimation of the 

soil spring and dashpot elements. As part of this procedure, for the given set of spring and 

dashpot elements, we need to solve the semi-discrete Equation (1). 

𝐌 �̈�(�̂�) + 𝐂(�̂�) �̇�(�̂�) + 𝐊(�̂�) 𝒖(�̂�) = −𝑳𝒈�̈�𝐹𝐹𝑀(𝑡),  (1) 

where the variable �̈�𝐹𝐹𝑀(𝑡) 𝜖 ℝ represents the free-field ground motion signal at time 𝑡. The 

vector 𝑳𝒈 𝜖 ℝ𝑛 represents the earthquake influence vector that acts on the system, i.e., the vector 

that quantifies the inertial forces. The vectors 𝒖(�̂�) 𝜖 ℝ𝑛 , �̇�(�̂�) 𝜖 ℝ𝑛 and �̈�(�̂�) 𝜖 ℝ𝑛 are the 

outputs of the system - here the displacement, velocity and acceleration respectively. 

𝐌 𝜖 ℝ𝑛 × 𝑛, 𝐂(�̂�) 𝜖 ℝ𝑛 × 𝑛 and 𝐊(�̂�) 𝜖 ℝ𝑛 × 𝑛are the mass, damping, and stiffness matrices of the 

dynamical system, �̂� 𝜖 ℝ𝑛𝜃 is the vector of system identifiable parameters, 𝑛 the number of 

degree-of-freedom of the system, and 𝑛𝜃 the number of identifiable parameters.  

 

Figure 2. System-identification framework applied to SSI (a) Direct method from which the true 

responses are computed, and (b) Substructure method from which the spring and dashpot 

coefficients are estimated. 

In the direct-method, the input-ground motion �̇�𝑔(𝑡) is prescribed as an effective force 

function at the base of the model at each soil node (Lysmer 1969, Asimaki 2004). For this 

purpose, a Ricker-wavelet (Ricker 1945) is selected and given in Equation (2), 

�̇�𝑔(𝑡) = (1 − 2𝛾(𝑡 − 𝑡0)
2)𝑒−𝛾(𝑡−𝑡0)2 ,  (2) 

where 𝛾 = (𝜋𝑓0)
2, 𝑓0 = 2 [Hz] is the characteristic frequency, 𝑡0 is the time position where the 

velocity will become maximum. On the other hand, the absorbing boundary conditions are 

implemented according to (Lysmer 1969, Asimaki 2004). Once the responses of the direct-

method are obtained, an estimation method based on Extended-Kalman-Filter (EKF) is applied 
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to identify the soil-spring and soil-dashpot elements. The estimation process assumes that soil-

spring and soil-dashpot coefficients are time-invariant, and therefore their evolution is modeled 

as a random walk process using a time invariant zero mean Gaussian noise with a known 

covariance matrix as it is given in Equation (5). We also assume that the error due to the misfit 

between the measured and predicted responses can be represented as a time invariant zero mean 

Gaussian noise with a known covariance matrix as it is given in Equation (6). Then, the 

parameter and measurement equations are given as follows: 

𝜽𝑘 = 𝜽𝑘−1 + 𝒒𝑘−1,  (3) 

𝒚𝑘 = ℎ𝑘(𝜽𝑘) + 𝒓𝑘,  (4) 

𝒒𝑘~(𝟎,𝑸𝑘),    (5) 

𝒓𝑘~(𝟎,𝑹𝑘),    (6) 

where 𝜽𝑘  𝜖 ℝ𝑛𝜃 is the parameter vector at the 𝑘 −th updated stage. The variable 𝒚𝑘 𝜖 ℝ
𝑛𝑦 is the 

response vector of the system. ℎ𝑘(𝜽𝑘) is the non-linear vector-value measurement function such 

that, ℎ: ℝ𝑛𝜃  → ℝ𝑛𝑦. 𝒒𝑘 𝜖 ℝ
𝑛𝜃 and 𝒓𝑘 𝜖 ℝ

𝑛𝑦 are the process and observation noises which are 

both assumed to be zero mean multivariate Gaussian noises with covariance 𝑸𝑘𝜖 ℝ
𝑛𝜃 × 𝑛𝜃 and 

𝑹𝑘𝜖 ℝ
𝑛𝑦 × 𝑛𝑦 respectively. 

The EKF algorithm is then employed in the substructure-method to update the values of 

the soil-spring and soil-dashpot elements. A total of 99 identifications are required to modestly 

span the dimensional-parameter space. Then, a non-linear curve-fitting is performed to this set 

of coefficients to find a relation. In the dimensional analysis we have not considered 𝜈 as the 

influencing parameter, however the normalizing factor is written in terms of the Poisson's ratio 

such that the structure of each non-linear impedance function resembles the well-known static 

stiffness of homogeneous soil in half-space in the three dimensional setting. In particular, these 

equations take the following form 

𝑘𝑥(�̂�, �̂�, �̂�) =
𝜌𝑠𝑉𝑠

2

1 − 𝜈
𝐵 

𝛽0

𝛽1 + (
𝐵
𝐵𝑟

)
𝛽2

 [𝛼0 + 𝛼1 (
ℎ

𝐵
)
𝛼2

(
𝐷

𝐵
)
𝛼3

(
ℎ

𝑉𝑆 𝑇
)
𝛼4

]   (7) 

𝑘𝑧(�̂�, �̂�, �̂�) =
𝜌𝑠𝑉𝑠

2

1 − 𝜈
𝐷 

𝛽0

𝛽1 + (
𝐵
𝐵𝑟

)
𝛽2

 [𝛼0 + 𝛼1𝑒𝑥𝑝 (𝛼2

ℎ

𝐵
)𝑒𝑥𝑝 (𝛼2

𝐷

𝐵
) (

ℎ

𝑉𝑆 𝑇
)
𝛼4

]   (8) 

𝑐𝑥(�̂�, �̂�, �̂�) =
𝜌𝑠𝑉𝑠

2

1 − 𝜈
𝑇𝐷 

𝛽0

𝛽1 + (
𝐵
𝐵𝑟

)
𝛽2

 [𝛼0 + 𝛼1 (
ℎ

𝐵
)
𝛼2

(
𝐷

𝐵
)

𝛼3

(
ℎ

𝑉𝑆 𝑇
)
𝛼4

]   (9) 

𝑐𝑧(�̂�, �̂�, �̂�) =
𝜌𝑠𝑉𝑠

2

1 − 𝜈
𝑇𝐷 

𝛽0

𝛽1 + (
𝐵
𝐵𝑟

)
𝛽2

 [𝛼0 + 𝛼1 (
ℎ

𝐵
)
𝛼2

(
𝐷

𝐵
)

𝛼3

(
ℎ

𝑉𝑆 𝑇
)
𝛼4

]   (10) 
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where �̂� 𝜖 ℝ𝑛𝑝 is the vector of dimensional parameters, �̂� 𝜖 ℝ5 is the vector of non-linear 

coefficient to be determined employing the data provided with the 99 analyses, and �̂� 𝜖 ℝ3 is the 

influence-foundation vector. Table I provides the estimated values that minimize the 

discrepancies between the data of the 99 configurations. The foundation influence coefficient 

vector is given as �̂� = (1.16142,0.05551,1.93470), and the reference foundation length is 

taken as 𝐵𝑟 = 10 [𝑚] in the presented analysis.  

 

Table I. Coefficients for the normalized soil-structure-interaction function for the soil 

coefficients provided in equations (7), (8), (9), and (10) respectively. 

Validation of Soil-Spring and Soil-Dashpot Elements 

A new set of fifteen more buildings with different topology are generated. The first-

modal building parameter as well as the soil impedances for the new candidates are summarized 

in Table II. Figure 3 represents the configurations represented in Table II in the dimensional-

parameter space Ω𝐷𝑆. The blue-rectangle represents the dimensional-analysis space Ω𝐷𝐴 for 

which the inversion was carried out, and the size of these dots represents the intensity or 

susceptibility of the building frame to the SSI effect. 

 

Figure 3. The validation cases represented in the dimension analysis domain. 

In figures 4 - 6 the time history responses at the first-modal height for the total-horizontal 

displacement Δ̂𝑋
ℎ  and the total-vertical displacement Δ̂𝑌

ℎ  are represented in solid-blue line and 

solid-red line for both the direct-method and the substructure-method respectively. In addition, 

the total-horizontal displacement of the roof Δ̂𝑋
𝑟  and the total-horizontal displacement of the 

ground level Δ̂𝑋
𝑔

 are displayed in a similar fashion. Moreover, the frequency contents of such 
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signals for the total displacement are represented in the same figures, along with the normalized 

representation of the evaluated frame so that the different topologies considered in these three 

cases become much clearer. It can be seen in these figures that a good-agreement is achieved in 

both the total displacements at different levels, and the frequency content of the corresponding 

signals.  

Frame Fixed Found. Shear

Name Period Mass Velocity

s 10
5
 kg m m m

A 0.25 0.125 5.0 0.5 10.270 250 0.162 2.05 0.10

B 0.35 0.250 5.0 1.0 5.820 80 0.208 1.16 0.20

C 0.40 0.500 5.0 3.0 14.940 150 0.248 2.99 0.60

D 0.90 0.500 5.0 5.0 29.320 120 0.272 5.86 1.00

E 0.25 0.500 10.0 1.0 5.890 130 0.181 0.59 0.10

F 0.28 0.500 10.0 3.0 5.900 100 0.214 0.59 0.30

G 0.60 0.500 10.0 4.0 10.670 75 0.237 1.07 0.40

H 0.48 0.500 10.0 5.0 14.980 115 0.274 1.50 0.50

J 1.08 0.500 15.0 3.0 35.380 190 0.172 2.36 0.20

K 0.65 0.500 15.0 4.0 19.350 150 0.198 1.29 0.27

L 0.49 0.500 15.0 5.0 14.830 120 0.253 0.99 0.33

M 0.85 0.500 15.0 5.0 28.510 125 0.268 1.90 0.33

N 0.53 0.500 5.0 3.0 19.650 150 0.247 3.93 0.60

P 1.75 0.500 10.0 4.0 45.100 150 0.172 4.51 0.40

R 2.13 0.500 15.0 5.0 63.440 150 0.198 4.23 0.33

Building Dimensions Dimensional

Parameters𝐵 𝐷 ℎ

𝑉𝑠 m/s Π1 Π2 Π3

 

Table II. Building parameters employed in the validation process. 

 

Figure 4. (Frame C): The parameters considered in the analysis are for the building a fixed-

fundamental period T = 0.40 s, and a fixed-first modal height h = 14.94 m. The foundation 

dimensions are a half-length B = 5 m, and a foundation depth D = 3.0 m. The soil shear velocity 

is Vs = 150 m/s. 
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Figure 5. (Frame H): The parameters considered in the analysis are for the building a fixed-

fundamental period T = 0.48 s, and a fixed-first modal height h = 14.98 m. The foundation 

dimensions are a half-length B = 10 m, and a foundation depth D = 5.0 m. The soil shear velocity 

is Vs = 115 m/s. 

 

Figure 6. (Frame R): The parameters considered in the analysis are for the building a fixed-

fundamental period T = 2.13 s, and a fixed-first modal height h = 63.44 m. The foundation 

dimensions are a half-length B = 15 m, and a foundation depth D = 5.0 m. The soil shear velocity 

is Vs = 150 m/s. 

Table III quantifies the discrepancies between the direct-method and the substructure-

method. In particular, the error associated to maximum displacement in the complete model is 

evaluated. The period elongation as well as the radiation damping error are also computed. 
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Finally the slope as well as the correlation of the time-series between the full-finite-element 

model and the substructure-finite-element model are computed at each node, and the maximum 

discrepancy between them is reported in Table III. The slope of such correlation measures how-

well the simulated signal scales from the true response, and the Pearson's coefficient measures 

how-similar the signals are. It can be noted in Table III that the response signals of building 

frames 𝑀 and 𝐽 are very identical to the ones obtained using the full-finite-element model, when 

absolute quantities such as maximum displacement responses, period elongation, and global 

damping of the signal are compared. These results are consistent since these frames are inside the 

dimensional-design space, and we expect a good-agreement in this area. On the contrary, one 

should give special consideration to frame 𝐷, in which the signals, even though capture the 

maximum amplitude and the period elongation, fail in capturing the signal's pattern. This 

validation point is placed on purpose far from the design space, and therefore it was expected not 

to have a good-agreement since the extrapolation process becomes inaccurate. However, as it 

was pointed out earlier for all those frames that are near the dimensional-design space the results 

in displacements and frequency contents are quite accurate. Another important point to highlight 

is that for those buildings which are flexible, i.e., frame 𝐽,𝑀, 𝑃  and 𝑅, the higher mode 

responses are well-captured employing the substructure-method and the soil-spring and soil-

dashpot elements presented here.    

Model Reduction for Soil-Structure Interaction Parameters 

We next present analytic expressions for the period elongation and radiation damping of 

an equivalent fixed-base system, as a function of the soil-stiffness (𝑘𝑥, 𝑘𝑧) and soil-dashpot 

(𝑐𝑥, 𝑐𝑧) elements which are distributed along the soil-foundation interface. In this analysis, we 

assume that the distributed soil-stiffness and soil-dashpot coefficients are known, moreover, the 

expressions derived hereafter can be considered as an extension of the ones proposed in Givens 

2016, Stewart 1999 since we generate the coupling restoring moment term in a consistent 

manner by using both horizontal and vertical spring elements, as it is shown in Figure 7.  

 

Figure 7. The soil-foundation system. (a) Geometry of the foundation system, (b) Modeling of 

the soil continuum as distributed springs, and (c) Free-body diagram of the foundation. 

In Figure 7a, the external forces applied to the system are an axial force 𝑁, a shear 

force 𝑉, and a moment 𝑀. These forces are such that 𝑁, 𝑉,𝑀: 𝑓(𝒖(𝑥, 𝑧)) → ℝ, where 𝒖(𝑥, 𝑧)  

represents the displacement field. The restoring forces exerted by the soil are represented as 

springs acting over the foundation perimeter as shown in Figure 7b. Moreover, the foundation is 

assumed to be rigid so that the displacement field can be described with three degrees-of-
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freedom as shown in Figure 7c. Next, and without loss of generality, we assume that the 

distributed horizontal springs 𝑘𝑥 and vertical springs 𝑘𝑧 are constant over the soil-foundation 

interface, this is basically to assume that 𝑘𝑥(𝑥, 𝑧) =  𝑘𝑥, and 𝑘𝑧(𝑥, 𝑧) =  𝑘𝑧. It should be noted 

that we used the same assumption for model inversion, as elaborated before. Satisfying 

equilibrium of forces and moment for the system presented in Figure 7c results in the lumped 

stiffness and damping matrices written in the following compact form. 

𝚲 = [
𝛬𝑧𝑧 0 0
0 𝛬𝑥𝑥 𝛬𝑥𝜃

0 𝛬𝑥𝜃 𝛬𝜃𝜃

] =

[
 
 
 
2 𝜆𝑧(𝐷 + 𝐵) 0 0

0 2 𝜆𝑥(𝐷 + 𝐵) 𝜆𝑥𝐷
2

0 𝜆𝑥𝐷
2

2

3
𝜆𝑥𝐷

3 +
2

3
𝜆𝑧𝐵

3 + 2 𝜆𝑧𝐵
2𝐷]

 
 
 
, (11) 

where the matrix 𝚲 represents either the stiffness or damping matrix of the foundation system, 

and λ the distributed spring or dashpot coefficient. A dynamic analysis can now be performed to 

the simplified flexible-base system as the one shown in Figure 8b, in which the surrounding soil 

is replaced by uniform distributed horizontal and vertical springs 𝑘𝑥, 𝑘𝑧 and dashpots 𝑐𝑥, 𝑐𝑧. 

Equation (11) allows us to compute the reduced reactive soil forces that must be added to the 

foundation so that the dynamic equilibrium using Dalambert's principle can be carried out.  

 

Figure 8. Reduced soil-structure-interaction model for dynamic analysis. 

In this regard, the equation of motion is written as 

[
 
 
 
 

𝑚 𝑚 𝑚(ℎ + 𝐷)

𝑚 𝑚 + 𝑚𝑓 𝑚(ℎ + 𝐷) + 𝑚𝑓

𝐷

2

𝑚(ℎ + 𝐷) 𝑚(ℎ + 𝐷) + 𝑚𝑓

𝐷

2
𝑚(ℎ + 𝐷)2 + 𝑚𝑓

𝐷2

4
+ 𝐼0]

 
 
 
 

[
�̈�
�̈�
�̈�
] + [

𝑐 0 0
0 𝑐𝑥𝑥 𝑐𝑥𝜃

0 𝑐𝑥𝜃 𝑐𝜃𝜃

] [
�̇�
�̇�
�̇�
]

+ [
𝑘 0 0
0 𝑘𝑥𝑥 𝑘𝑥𝜃

0 𝑘𝑥𝜃 𝑘𝜃𝜃

] [
𝑢
𝑣
𝜃
] = −[

𝑚
𝑚 + 𝑚𝑓

𝑚(ℎ + 𝐷) + 𝑚𝑓

𝐷

2

] �̈�𝑔(𝑡), (12) 

where the variables 𝑢, 𝑣, and 𝜃 are the relative displacement of the foundation, the relative 

displacement of the mass and the total rotation of the foundation respectively. The variables �̇�, �̇�, 
and �̇� are the velocities, and �̈�, �̈� and �̈� are the accelerations in the above mentioned degrees of 
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freedom. The variables 𝑘 and 𝑐 represent, respectively, the fixed-base stiffness and viscous 

damping of the building, and 𝑘𝑥𝑥, 𝑘𝑥𝜃, 𝑘𝜃𝜃,𝑐𝑥𝑥, 𝑐𝑥𝜃 and 𝑐𝜃𝜃 are the soil-stiffness and soil-dashpot 

matrix coefficients provided in Equation (11). The variable 𝑚 is the mass of the fixed-base 

building, 𝑚𝑓 the mass of the foundation, and 𝐼0 the rotational inertia of the foundation, and lastly 

�̈�𝑔(𝑡) is the ground acceleration. 

The stiffness and damping matrices in Equation (11) can also be employed to replace the 

simplified flexible-base system of modified height ℎ̅ = ℎ + 𝐷, stiffness 𝑘 ∈ ℝ+, structural 

damping 𝛽 ∈ ℝ+, supported by a distributed horizontal spring 𝑘𝑥  ∈ ℝ+and distributed vertical 

springs 𝑘𝑧  ∈ ℝ+with an equivalent fixed-base single-degree-of-freedom system with mass 𝑚 ∈
ℝ+, modified-stiffness �̃�  ∈ ℝ+, modified-fundamental period �̃�  ∈ ℝ+, and modified damping 

𝛽0  ∈ ℝ+as it is presented in Givens 2016, Stewart 1999. This idea is depicted in Figure 9.  

 

Figure 9. Model reduction from (a) the simplified flexible-base system into (b) the equivalent 

fixed-base system. 

It can be shown that the period elongation is defined as follows: 

�̃�

𝑇
= √1 +

𝑘

𝑘𝑥𝑥 𝑘𝜃𝜃 − 𝑘𝑥𝜃
2 (ℎ̅2𝑘𝑥𝑥 − 2 ℎ̅ 𝑘𝑥𝜃 + 𝑘𝜃𝜃), (13) 

Note that in Equation (13) when the stiffness 𝑘𝑥𝜃 = 0, the expression reduces to the same 

as the one presented in Givens 2016, Stewart 1999. Following a similar procedure as presented 

in Givens 2016, Stewart 1999 we obtain the reduced foundation-damping provided in Equation 

(14), 
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𝛽0 =
𝛽𝑖
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1 −
𝑘𝑥𝜃

2

𝑘𝑥𝑥 𝑘𝜃𝜃)

 

2

, (14) 

where we define the translational period as 𝑇𝑥 = 2𝜋 √
𝑚

𝑘𝑥𝑥
 and the rocking period as 𝑇𝜃 =

2𝜋 √
𝑚ℎ̅2

𝑘𝜃𝜃
 . Note once again that when the stiffness  𝑘𝑥𝜃 = 0 in Equation (14) the expression 

reduces to the one presented in Givens 2016, Stewart 1999 for the foundation damping. 

Global Soil-Structure-Interaction effects on Buildings 

In this section, equations (13) and (14) are employed to estimate the period lengthening 

and radiation damping. In addition, and in order to compare how much these values deviate, the 

so-called and well-accepted modified-Bielak-method - described in details in Jacobo 1975, 

Stewart 1999 - is employed. However, the modified-Bielak-method requires the impedance 

function of the soil to be prescribed. In order to deal with this situation, the procedure described 

in Seylabi 2016 is employed to compute the translational and rotational impedance functions of 

the half-space soil in plane strain condition assuming a rigid foundation.  

Figures (10) shows the period elongation and radiation damping computed using the 

modified-Bielak-method and the system-identification method based on the Kalman filtering for 

different foundation aspect ratios.  As shown, a good-agreement between the proposed 

expressions and the one obtained using modified-Bielak-method is achieved. On the one hand, it 

is evident that Equation (13) provides with more flexible models, but on the other hand, Equation 

(14) provides with less-dissipative values when they are compared with the modified-Bielak-

method. A very close fit is however obtained for the three-buildings when the foundation aspect 

ratio is small (i.e., Π3 = 0.1). The discrepancies must be attributed mainly to the fact that the 

estimated frequency of the interaction using the system-identification framework can be different 

from the one obtained using the modified-Bielak-method. Moreover, in the system-identification 

framework, we are implicitly compensating for kinematic interaction in the embedded cases as 

well as we are implicitly considering the spring and dashpot coupling terms. It can be seen in 

both equation (13) and (14) that mentioned coupling in the stiffness and damping matrices 

generate a slight increase in the period elongation ratio as well as a slight decrease in the 

radiation damping. It is indeed evident that if the term  𝑘𝑥𝜃 is set to be zero, then the expression 

given in Equations (13) and (14) and the ones provided in Jacobo 1975, Stewart 1999 are totally 

equivalent. However, this small deviation plays an important role in the period elongation and 

radiation damping of the reduced-model when the foundation embedment becomes larger. 
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Figure 10. Period elongation ratio �̃�/𝑇 and radiation damping 𝛽0 for the three buildings with  

𝑇 = (0.507, 1.025, 1.531) s, supported on eleven homogeneous soil half-space with 𝑉𝑠 =
(80, 100, 125, 150, 175, 200, 225, 250, 300, 400, 500) m/s. The solid-lines represent the 

modified-Bielak-method while the solid-dots represents equation (13) or (14) using the 

system-identification-method. 

Summary and Conclusions 

In this study, we first presented analytic expressions to estimate soil's impedance 

functions to account for inertial interaction and kinematic interaction in terms of dimensional 

parameters. In particular, the structure-to-soil-stiffness ratio, foundation-aspect ratio, and 

building-aspect ratio are chosen as dimensionless parameters in this framework. The distributed 

soil-spring and soil-dashpot elements identified using the Extended-Kalman-Filter are the one 
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that best represents the system interaction between the soil and the structure since it minimizes 

the error between the direct-method and the substructure-method. These soil-spring and soil-

dashpot functions were then tested using the substructure-flexible-based-model to validate its 

accuracy and predictive power in several configuration systems. It is worth mentioning that the 

impedance expressions obtained using the EKF are assumed to be frequency independent. This 

assumption is not inaccurate since the frequency contents of earthquake signals in general varies 

between 0.2 − 10 Hz, range in which the impedances of the homogeneous soil half-space are 

more-or-less constant. Another important aspect we consider is because of the building' 

symmetry the responses are dominated by their first-mode of vibration. However, higher-mode 

responses are well-captured employing the framework presented here. We second presented 

analytic expressions to evaluate the effects of period lengthening and radiation damping for a 

reduced-fixed-base system. The provided expressions can be considered as an extension to 

Givens 2016, Stewart 1999 since it incorporates the coupling term in the stiffness matrix as well 

as the damping matrix. In overall a good-agreement is reached not only for global parameters 

such as maximum displacements, period lengthening and radiation damping, but also for local 

responses such as time-history displacements at each node evaluated in terms of correlation 

between both the direct-method and the substructure-method. 

Nevertheless, extrapolation far from the dimensional-analysis design domain represented 

in a blue rectangle in Figure 3 can produce large errors in global responses such as period 

elongation, and radiation damping. However, for almost all cases represented in this work, we 

note a good-agreement in both time history responses and their frequency content for the 

extrapolated values. The discrepancies are mostly attributed to the facts that (i) the extrapolation 

of the soil spring and dashpot elements using equations (7), (8), (9), and (10) is not exact, and (ii) 

the number of building frames considered in this analysis to span the whole dimensional-

parameter space may not be enough—therefore a more refined sampling for building-aspect 

ratio (Π2) and foundation-aspect ratio (Π3) should be employed to provide with a much better 

approximation. Overall, extrapolation close to the design  domain provides a very small error in 

terms of time history responses, maximum displacements, period lengthening and radiation 

damping when they are compared to the full-finite element model as it is presented in Table III. 
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Frame Maximum Period Radiation

Name Displacement Elongation Damping Slope Pearson's

Error Error Error

A 0.0268 0.006 0.1017 1.0610 0.9660

B 0.1709 0.032 0.1073 1.1390 0.9677

C 0.1176 0.045 0.1073 1.1113 0.9212

D 0.2158 0.2131 0.3845 0.2394 0.2321

E 0.22 0.0874 0.1554 0.9772 0.8973

F 0.2407 0.0688 0.0096 1.1743 0.9462

G 0.2061 0.1204 0.1141 1.2246 0.8947

H 0.233 0.113 0.0893 1.2071 0.8689

J 0.1787 0.0491 0.0276 1.1088 0.8604

K 0.1787 0.0977 0.0663 1.1088 0.8604

L 0.1815 0.0794 0.0238 1.1250 0.9137

M 0.2341 0.0568 0.0164 1.1005 0.8913

N 0.013 0.0304 0.0124 0.9472 0.9252

P 0.171 0.004 0.1077 0.9070 0.7821

R 0.0895 0.0848 0.1321 0.7400 0.6713

max 0.013 0.004 0.0096 0.7400 0.6713

min 0.2407 0.1204 0.1554 1.2246 0.9677

Average 0.1615 0.0625 0.0765 1.0666 0.8833

Correlation

𝑚 𝑅2

 

Table III. Errors associated to response parameters employed in the validation process. 
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