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The California Strong Motion Instrumentation Program (CSMIP), a program within the 

California Geological Survey (CGS) of the California Department of Conservation, records the 

strong shaking of the ground and structures during earthquakes for analysis and utilization by the 

engineering and seismology communities, through a statewide network of strong motion 

instruments (www.conservation.ca.gov/CGS/smip).  CSMIP is advised by the Strong Motion 

Instrumentation Advisory Committee (SMIAC), a committee of the California Seismic Safety 

Commission.  Major program funding is provided by an assessment on construction costs for 

building permits issued by cities and counties in California, with additional funding from the 

California Governor’s Office of Emergency Services (Cal OES), the Office of Statewide Health 

Planning and Development (OSHPD) and the California Department of Transportation (Caltrans) 

 

In July 2001, the California Governor’s Office of Emergency Services (Cal OES) began funding 

for the California Integrated Seismic Network (CISN), a newly formed consortium of institutions 

engaged in statewide earthquake monitoring that grew out of TriNet, funded by FEMA, and 

including CGS, USGS, Caltech and UC Berkeley.  The goals are to record and rapidly 

communicate ground shaking information in California, and to analyze the data for the 

improvement of seismic codes and standards (www.cisn.org).  CISN produces ShakeMaps of 

ground shaking, based on shaking recorded by stations in the network, within minutes following 

an earthquake.  The ShakeMap identifies areas of greatest ground shaking for use by OES and 

other emergency response agencies in the event of a damaging earthquake. 

 

The Center for Engineering Strong Motion Data (CESMD) is operated by the CSMIP in 

cooperation with the National Strong-Motion Project (NSMP), a part of the Advanced National 

Seismic System (ANSS) of the U.S. Geological Survey (USGS).  The CESMD builds on and 

incorporates the CISN Engineering Data Center and will continue to serve the California region 

while expanding to serve other ANSS regions.  The Data Center provides strong-motion data 

rapidly after a significant earthquake in the United States.  Users also have direct access to data 

from previous earthquakes and detailed information about the instrumented structures and sites.  

The CESMD also provides access to the U.S. and international strong ground motion records 

through its Virtual Data Center (VDC). The Data Center is co-hosted by CGS and USGS at 

www.strongmotioncenter.org 

 

 

 

 DISCLAIMER 

 

Neither the sponsoring nor supporting agencies assume responsibility for the accuracy of the 

information presented in this report or for the opinions expressed herein.  The material presented 

in this publication should not be used or relied upon for any specific application without 

competent examination and verification of its accuracy, suitability, and applicability by qualified 

professionals.  Users of information from this publication assume all liability arising from such 

use. 
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PREFACE 
 

 The California Strong Motion Instrumentation Program (CSMIP) in the California 

Geological Survey of the California Department of Conservation established a Data 

Interpretation Project in 1989.  Each year CSMIP funds several data interpretation contracts for 

the analysis and utilization of strong-motion data.  The primary objectives of the Data 

Interpretation Project are to further the understanding of strong ground shaking and the response 

of structures, and to increase the utilization of strong-motion data in improving post-earthquake 

response, seismic code provisions and design practices. 

 As part of the Data Interpretation Project, CSMIP holds annual seminars to transfer recent 

research findings on strong-motion data to practicing seismic design professionals, earth 

scientists and post-earthquake response personnel.  The purpose of the annual seminar is to 

provide information that will be useful immediately in seismic design practice and post-

earthquake response, and in the longer term, useful in the improvement of seismic design codes 

and practices.  Proceedings and individual papers for each of the previous annual seminars are 

available at http://www.conservation.ca.gov/cgs/smip/docs/seminar/Pages/default.aspx in PDF 

format.  Due to the State budget restraints, CSMIP did not fund as many projects as in other years 

and did not hold an annual seminar in 2010 or 2011.  The SMIP17 Seminar is the twenty-sixth in 

this series of annual seminars. 

 The SMIP17 Seminar is divided into two sessions in the morning and two sessions in the 

afternoon.  There are a total of nine presentations including one invited presentation and eight 

presentations on the results from CSMIP-funded projects.  The sessions in the morning include 

four presentations.  The first session will focus on ground motions.  Professor Stewart of UCLA 

will present small-strain damping for ground response analysis.  It will be followed by a 

presentation by Professor Motamed of University of Nevada Reno on the nonlinear site response 

at California downhole arrays.  The second session will focus on results from building response 

data: code torsional provisions by Professor Zareian of UC Irvine and building soil-structure 

interactions by Dr. Ebrahimian of Caltech.  During the lunch break, Professor Miranda of 

Stanford University is invited to present his observations from the M7.1 earthquake occurred in 

Mexico on September 19, 2017. 

 The third session in the afternoon will focus on lifeline structures.  Professor Taciroglu of 

UCLA will present spatial variability of bridge foundation input motions.  Professor Armstrong 

will present embankment dam deformations.  The last session will include presentations of 

inelastic response from the ground motions recorded during the 2014 South Napa Earthquake by 

Dr. Mazzoni of UC Berkeley, and ground motion intensities for record selections by Professor 

Miranda of Stanford University.  Individual papers and the proceedings are available to the 

SMIP17 participants in an USB flash drive, and will be available at the CSMIP website. 

 Moh Huang 

 CSMIP Data Interpretation Project Manager 

 

http://www.conservation.ca.gov/cgs/smip/docs/seminar/Pages/default.aspx
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SMALL-STRAIN DAMPING FOR GROUND RESPONSE ANALYSIS AS USED IN 

NON-ERGODIC HAZARD ANALYSIS – LESSONS FROM CALIFORNIA 

RECORDINGS 

 

 

Kioumars Afshari and Jonathan P. Stewart 

 

Department of Civil & Environmental Engineering 

University of California, Los Angeles 

 

 

Abstract 

 

We compile a California vertical array database of 21 sites. Weak motion transfer 

functions derived from data are compared to predictions from 1D ground response analyses 

performed using three damping models – geotechnical models, models for quality factor (Q) 

based on seismological inversion, and models derived from the site-specific site diminutive 

parameter (0). When compared to prior results for KiK-net sites in Japan, the California sites 

have, on average, improved match of empirical and theoretical transfer function shapes and more 

event-to-event consistency. Using 0-informed damping results in a slightly better fit between 

predicted and observed transfer functions than alternative damping models. 

Introduction 

Evaluating the role of local site conditions on ground shaking is an essential part of 

earthquake ground motion prediction, which can be done using ergodic models or site-specific 

(non-ergodic) analyses. One-dimensional (1D) simulation of shear waves propagating vertically 

through shallow soil layers, also known as ground response analysis (GRA), is a common 

approach for capturing the effects of site response on ground shaking. While site response can 

include important contributions from the wave propagation mechanics simulated in GRA, site 

response as a whole is considerably more complex. Processes that can control site response in 

this context include 1D ground response in combination with additional effects including surface 

waves, basin effects (including focusing and basin edge-generated surface waves), and 

topographic effects. Because GRA only simulates a portion of the physics controlling site 

response, there should be no surprise that it is not always effective at accurately predicting site 

effects. 

Validation and testing of 1D GRA is possible by studying recordings from vertical array 

sites. They allow for the observation of ground motions from the same source both at the surface 

and the depth at which the downhole sensor is installed. Therefore, a vertical array directly 

reveals the effects of site response between surface and downhole instruments. In addition, well 

characterized vertical array sites, which include a high quality shear wave velocity (VS) profile 

and possibly a geotechnical log, allows for validating numerical site response models. 

Numerous studies of data from vertical arrays at individual sites have found reasonably 

good fits of data to GRA results (e.g., Borja et al., 1999; Elgamal et al., 2001; Lee et al., 2006; 

Tsai and Hashash, 2009; Yee et al., 2013). The KiK-net array in Japan (Aoi et al., 2000) provides 
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a large inventory of vertical arrays that has been extensively used for validation purposes 

(Thompson et al., 2012; Kaklamanos et al, 2013, 2015; Zalachoris and Rathje, 2015), although 

the resolution and quality of the seismic velocity and geotechnical site descriptions is arguable 

sub-optimal. Nonetheless, when viewed as a whole, these KiK-net data challenge the notion that 

1D GRA provides a reliable estimate of site response. Were this result found to be widely 

applicable, it would upend a good deal of current practice that relies on GRA to estimate first-

order site response. 

Our objective in this study was to evaluate ground response analysis as a method of 

predicting non-ergodic (site-specific) site response. We utilize the growing body of vertical array 

data from California which we compiled into a database described in Chapter 2 of Afshari and 

Stewart (2017). We use the data to evaluate surface-downhole transfer functions, and we study 

the goodness of fit between empirical transfer functions (ETF) from observations and theoretical 

transfer functions (TTF) from 1D GRA. In 1D GRA, we use three different approaches for 

estimating soil damping as discussed next. This paper extends upon the preliminary results 

presented in Afshari and Stewart (2015) using more sites and an additional damping model 

informed by site-specific observations regarding high-frequency spectral decay using the so-

called diminutive parameter (0).  

Ground Response Analyses Procedures 

There are many options for performing 1D GRA. Different procedures for GRA can be 

used depending on the level of nonlinearity that is expected in the profile. The principal 

alternatives for GRA are linear (more specifically, visco-elastic), Equivalent-Linear (EL), and 

Nonlinear (NL) methods. Linear methods require only a shear wave velocity profile, unit 

weights, and a soil damping profile. Additional soil properties required for EL are relationships 

for modulus reduction and damping vs. shear strain. The NL procedures require these same 

inputs, but will often incorporate shear strength and other parameters related to viscous damping 

and rules for unload-reload relationships.  

We model the soil as linearly visco-elastic because almost all of the recordings compiled 

in our database are not strong enough to cause soil nonlinearity. Therefore, we only perform 

linear analysis to validate GRA under small levels of ground shaking. We have chosen to use the 

linear option in the Frequency Domain Analysis module in DEEPSOIL (Hashash et al., 2016) for 

linear analysis. We applied parameter selection protocols for GRA as given by Stewart at al. 

(2014). An exception is small strain damping (Dmin), the selection of which is discussed below. 

Alternative Damping Models 

 Small-strain damping is required in GRA, including those employing linear soil 

properties. Even under elastic conditions, damping occurs because of the intrinsic damping 

within soil elements and scattering of waves off of subsurface irregularities (e.g., Rodriguez-

Castellanos et al. 2006).  

We consider two classes of models for small strain damping in soils, both of which are 

frequency-independent (hysteretic). The first class of models are collectively referred to as 

geotechnical models, because they are derived from advanced cyclic testing performed in 
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geotechnical labs. These models account for intrinsic damping. The second are VS-based models 

originally developed from calibration of stochastic ground motion simulations in central and 

eastern North America. To the extent that the calibration is accurate for a given application, these 

models incorporate the effects of both intrinsic material damping and scattering.  

Material Damping Models 

Various geotechnical models relate small-strain damping as measured from geotechnical 

laboratory cyclic testing, denoted 𝐷𝑚𝑖𝑛
𝐿 , to various predictor variables related to soil type and 

confining pressure. We estimate laboratory-based 𝐷𝑚𝑖𝑛
𝐿  using Darendeli (2001) relations for 

clays and silts, and Menq (2003) relations for granular soils. The input parameters for the 𝐷𝑚𝑖𝑛
𝐿  

models are plasticity index (PI), overconsolidation ratio (OCR), and effective stress for 

Darendeli (2001), and mean grain size (D50), coefficient of uniformity (Cu), and effective stress 

for Menq (2003). The 𝐷𝑚𝑖𝑛
𝐿  relations can only be used when geotechnical log and/or description 

of soil conditions are available for the site. 

Models for Combined Material Damping and Wave Scattering Effects 

 We begin with a brief description of the square-root impedance (SRI) method for 

predicting site effects (Joyner et al. 1981; Boore 2013). While this method is not directly used for 

comparison to data in this study, the approach is nonetheless important for the present discussion 

because it provides the context in which site diminutive parameter 0 is used. The SRI method 

uses the following equation for evaluating amplification of Fourier Amplitude Spectra for a 

vertical ray path: 

 

0.5

0 ( ) R RV
A f

V





 
  
 

 (1) 

where A0 is the amplification, R and VR are density and shear wave velocity at the reference 

(downhole condition), and  and V are average density and shear wave velocity for a depth 

interval corresponding to the top quarter wavelength of the profile. While this method is simple 

and efficient, it cannot capture the effects of resonance and nonlinearity. Moreover, in the form 

represented by Eq. (1), it does not include the effects of damping, which is evident by the 

amplification value at high frequencies approaching a plateau. This plateau feature is unrealistic 

because actual amplification functions slope downward with frequency at high frequencies 

beyond the primary modal peaks in the spectrum. Although the shape shown in Figure 1 is 

strictly applicable to site amplification, similar features are observed in simulated Fourier 

amplitude spectra using stochastic methods (e.g., Boore, 2003).  

 


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Figure 1. Unrealistic plateau of amplification at high frequencies when using quarter wave length 

theory without application of diminutive parameter . 

 

In order to overcome the problem of unrealistic Fourier amplitude spectral shapes at high 

frequencies, a spectral decay, or diminutive, parameter () is introduced.  

 0( ) ( ) exp( )X f X f f    (2) 

where X indicates Fourier amplitude. The effect on spectral shape of applying this parameter is 

shown in Figure 2. The value of κ applicable to a particular ground motion recording can be 

partitioned into two components, namely a zero distance κ or site κ (κ0), and the attenuation with 

distance (κRR) (adapted from Anderson, 1991): 

 𝜅 = 𝜅0 + 𝜅𝑅𝑅 (0) 

where R is the source-site distance, and κR is the rate with which the decay parameter (κ) 

increases with distance, capturing the effects of anelastic attenuation.   

 

Figure 2. Modifying simulated ground motions at high frequencies by introducing . 
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The contribution of site damping to high frequency attenuation is captured by the 0 

diminutive parameter (Eq. 3). The 0 parameter represents the cumulative effect of damping 

through the soil column, which is commonly represented by (Hough and Anderson 1988; 

Chapman et al. 2003; Campbell 2009):  

 
   0

0

z

ef S

dz

Q z V z
    (4) 

where z is the soil column depth and Qef  is the depth-dependent effective material quality factor, 

representing both the effects of frequency-dependent wave scattering and frequency-independent 

soil damping. Quantity Qef can be readily converted to an effective soil damping as follows 

(Campbell, 2009):  

 
ef

100
(%)

2
effD

Q
  (5) 

In order to facilitate ground motion prediction in central and eastern U.S., several 

investigators have developed models for either depth-dependent Qef or 0 in particular regions 

(e.g., Boore and Joyner 1991, Gomberg et al. 2003, Cramer et al. 2004). Campbell (2009) 

reviewed many of these studies and proposed a suite of models relating Qef to VS, one of which is 

given by: 

 𝑄𝑒𝑓 = 7.17 + 0.0276V𝑆 (6) 

where VS is in m/s. Eq. (6) is one of four models proposed by Campbell (2009) and has seen 

application in a number of subsequent studies (Hashash et al., 2014; E. Rathje, personal 

communication) (more so than the other three models). We choose to use this model over an 

older model by Olsen et al. (2003) which is intended for long periods (>2 sec). An advantage of 

this approach for modeling Deff is that it is only based on VS as an input parameter, and therefore 

it does not require a geotechnical log. We apply this approach for all 21 sites used in this study. 

 The third damping model considered in this study takes the site component of  (i.e, 0) 

from ground motion recordings to adjust values of small-strain damping derived from 

geotechnical models to represent site-specific effects. Whether such adjustments are effective for 

ground motion prediction is investigated in the next section.  

The expression for 0 given in Eq. (4) strictly applies when the full crustal profile is 

considered in the depth integral. A more practical alternative is to evaluate the site diminutive 

parameter for reference rock, κ0,ref , and then modify it for damping through the soil column as 

(Campbell, 2009): 

 𝜅0 = 𝜅0,𝑟𝑒𝑓 + ∫
𝑑𝑧

𝑄𝑒𝑓(𝑧)𝑉𝑆

𝑧

0
 (7) 

The integral in this case represents the contribution from the geologic column above the 

reference rock. Note that κ0,ref  as used in simulations may not match the site condition at the 

downhole sensor. However, for the present application, we take κ0,ref  as applying for the 
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downhole geologic condition. Adopting this definition and using Eq. (5) to convert Qef to Dmin, 

we re-write Eq. (7) as: 

 𝜅0 = 𝜅0,𝑟𝑒𝑓 + ∫
2𝐷𝑒𝑓𝑓(𝑧)

100

𝑧

0
𝑉𝑆

−1(𝑧)𝑑𝑧 (8) 

 The vertical array data can be used to estimate the integral in Eq. (8), which in turn can 

be used to adjust model-based Dmin to reflect site-specific conditions. The methodology of 

estimating κ-informed damping is described in Section 3.2.3 of Afshari and Stewart (2017). 

Inferences of Site Response from Transfer Functions and Implications for 

the Effectiveness of Ground Response Analysis 

Empirical transfer functions (ETFs) representing site response between the downhole and 

surface accelerometers are computed from ratios of Fourier amplitudes as follows:   

 
1

2

( , )
( )

( , )

Z f x
H f

X f x
  (9) 

where H(f) is the ETF, Z(f,x1) is the surface FAS and X(f,x2) is the downhole FAS. ETFs are only 

considered over the usable frequency range based on record processing. The ETF is taken as the 

geometric-mean of ETFs for the two horizontal components of the recordings (at their as-

recorded azimuths) for each site. The results shown subsequently are smoothed through the use 

of a logarithmic window function proposed by Konno and Ohmachi (1998) with the coefficient 

for bandwidth frequency (b) equal to 20.  

 Theoretical transfer functions (TTF) are a direct outcome of linear analysis. In other 

words, the calculation of TTFs does not require analysis of ground motions and their Fourier 

amplitudes as in Eq. (9). When time-domain procedures are used, the ground motions must be 

calculated, their FAS computed, and then TTF can be taken using Eq. (9).  

Before proceeding further, it should be pointed out that the ETF (and TTF) represents the 

surface/downhole ratio in which the surface motion is outcropping and the downhole motion is 

‘within’. The ‘within’ term indicates that the motion includes the effects of down-going waves 

that have reflected from the ground surface, whereas outcropping motions are twice the 

amplitude of the incident wave due to full reflection at a free-surface. 

Transfer Function Comparisons from KiK-Net Array in Japan 

Thompson et al. (2012) studied 100 KiK-Net sites in Japan in order to assess the 

variability in site amplification and the performance of linear 1D GRA. These sites have 

recorded a large number of surface and downhole recordings. For GRA, they used the program 

NRATTLE, which is a part of the ground motion simulation program SMSIM (Boore, 2005). 

NRATTLE performs linear GRA using Thomson–Haskell matrix method (Thomson, 1950; 

Haskell, 1953). The input parameters for NRATTLE include shear wave velocity (VS), soil 

density, and the intrinsic attenuation of shear-waves (𝑄𝑆
−1) which represents damping. Soil 

density was estimated from P-wave velocity using the procedures suggested by Boore (2008), 

and 𝑄𝑆
−1was estimated using a grid-search algorithm to optimize the fit to H(f). Note that by 
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optimizing damping in this manner, Thompson et al. (2012) do not assess the performance of 

alternative damping models. Moreover, this optimization would not be possible to perform in a 

forward sense when vertical array recordings from a site are not available.  

Thompson et al. (2012) computed ETFs with Eq. (9) using available data meeting certain 

selection requirements. In order to minimize the potential for nonlinear effects, only records 

having a ground surface PGA < 0.1 g were selected. In total, 3714 records from 1573 

earthquakes were considered for the 100 KiK-net sites. Goodness-of-fit was quantified using 

Pearson’s sample correlation coefficient (r) as a measure of how well the model predictions and 

the data are correlated. Parameter r quantifies how well the transfer functions align, including the 

locations and shapes of peaks. Parameter r is insensitive to relative overall levels of 

amplification. Thompson et al. (2012) calculated the Pearson’s sample correlation coefficient for 

ith earthquake and jth analysis (based on damping estimation approach) as follows for a given site: 

 
  

   
2 2

ETF ( ) ETF TTF ( ) TTF

ETF ( ) ETF TTF ( ) TTF

i i j j

ij

i i j j

f f
r

f f

 


 



 
 (10) 

The summations in Eq. (10) are taken over a frequency range with a lower bound fmin 

corresponding to the first peak in the TTF and an upper bound fmax that is the minimum of the 

frequency of the fourth peak of the TTF or 20 Hz. The summation is performed over all 

frequency points between fmin and fmax, which are equally spaced in logarithmic units. The mean 

value of r across all events (rj) for a given site is denoted �̅�. A value of �̅� = 0.6 was taken by 

Thompson et al. as the threshold for good fit.  

Results for the 100 considered KiK-Net sites show that only 18% have a good fit between 

ETFs and TTFs, indicating 1D GRA fails to provide an accurate estimation of site response for a 

large majority of KiK-net sites.  

A second metric considered by Thompson et al. (2012) concerns the inter-event 

variability of transfer function ordinates, which they computed as a median value of the standard 

deviations computed across the frequencies within the range to compute r. Large values of this 

standard deviation indicate large event-to-event differences in observed site amplification, 

suggesting potential complexities from 3D geologic structure. The results for full list of 100 sites 

and a comparison to California data is presented in the next section.  

Transfer Function Comparisons for California Vertical Array Data  

Using the data set described in Chapter 2 of Afshari and Stewart (2017), we compute 

ETF ordinates for each of 21 selected California vertical array sites. In this sense our approach is 

similar to that of Thompson et al. (2012) – we ‘cast the net widely’ to study site response 

performance over a wide range of conditions. Unlike several studies conducted since Thompson 

et al. (2012), we do not screen sites to identify those for which the ETF matches the shape of a 

TTF; instead we seek to understand how frequently such a match is achieved in relatively weak 

motion data from California vertical array sites. 
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We exclude recordings with strong ground shaking (PGA at surface instrument > 0.1 g) 

so as to minimize nonlinear effects. Figure 3 shows histograms of PGA and PGV for the 

downhole instrument records used in the present work. 

 

 

Figure 3. Histograms of PGA (a) and PGV (b) for downhole recordings used in this study 

 

We assume a log-normal distribution for ETF ordinates and compute for each site the 

median (ln) (equivalent to the exponent of the natural log mean) and the natural log standard 

deviation of ETF (σln) at each frequency using all available record pairs.  

Theoretical transfer functions (TTFs) are computed by linear visco-elastic 1D GRA in 

DEEPSOIL (Hashash et al., 2016). As the downhole sensor is recording both up-going and 

down-going waves, we take the boundary condition at the base of the model as rigid (Kwok et 

al., 2007). The visco-elastic analysis in DEEPSOIL is performed in the frequency domain, and 

the transfer function predicted by the model is independent of the input motion. Similar to ETFs, 

the TTFs are smoothed by Konno and Ohmachi (1998) function with b=20. We utilize alternate 

approaches for estimating small-strain soil damping as described previously to provide insight 

and guidance on best practices for selection of effective small-strain damping (Deff). Note that 

this aspect of our analysis departs from the prior work of Thompson et al. (2012), who back-

calculated damping to optimize the ETF-TTF fit. 

Figure 4 shows two examples of model-data transfer function comparisons. The match 

(or lack thereof) of the positions of the first several peaks in ETFs and TTFs are a good indicator 

of consistency between the transfer functions. In the example of El Centro-Meloland site, the 

simulations are not able to capture the position of any of the visible five peaks seen in the ETF. 

This is an indication that 1D GRA is unable to simulate the site response between surface and 

downhole regardless of the damping model. On the contrary, for the Treasure Island site, the 

position of all six peaks in the ETF are captured by GRA, which is an indication that the 1D 

assumption implicit to GRA is valid for this site. 

We also consider the quantitative assessment of goodness of fit provided by the Pearson’s 

sample correlation coefficient r (Eq. 10). We use the mean value over all recordings at a given 

site, �̅�, which is shown in Figure 5. Generally, sites with qualitatively good fit between ETF and 

TTF have values of �̅� > 0.6 (e.g., Treasure Island site in Figure 4) and sites with poor fit have 
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�̅� < 0 (e.g., El Centro-Meloland site). Transfer function comparisons for the other 19 vertical 

array sites are given in Chapter 4 of Afshari and Stewart (2017).  

 

 

 

Figure 4. Comparison of ETF and TTFs for El Centro-Meloland and Treasure Island. Values of 

�̅� for each damping model are shown in different colors (red: 𝐷𝑚𝑖𝑛
𝐿 , green: VS-based, 

blue: -informed). 

 

Figure 5 shows histograms of �̅� from the California vertical array sites using the three 

damping models (geotechnical, VS-based, -informed). Also shown for comparison is the 

distribution from Thompson et al. (2012) for KiK-net sites, although the optimization of 

damping performed in that study makes the comparison somewhat ‘apples-to-oranges’, with 

Japan sites expected to have higher �̅� than they would have had without optimization. We see 

that California sites have higher values of �̅� in aggregate, with a higher population median and 

lower standard deviation. There is also a higher percentage of sites with strong correlation ( �̅� >
0.6) in comparison to their counterparts for the KiK-net arrays in Japan for all damping models. 

This suggests that the ability of GRAs to match observation is better for the California vertical 

arrays than for KiK-net sites. Furthermore, the comparison of �̅� histograms for California sites 

suggests a slight increase in �̅� when using the -informed model indicating a slightly better 

performance of the -informed damping model in capturing the shape of site response transfer 

functions.  
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Figure 5. Histograms of �̅� for California and KiK-net sites as well as their medians and standard 

deviations. Values and summary statistics of �̅� for each damping model are shown in 

different colors for California sites (red: 𝐷𝑚𝑖𝑛
𝐿 , green: VS-based, blue: -informed 

model). 

As described earlier, Thompson et al. (2012) introduced a metric of ETF variability that 

is useful to consider in combination with �̅� because it quantifies event-to-event variability in 

observed site response across a particular vertical array. This metric is computed by first taking 

the natural log standard deviation of ETF ordinates for each of the frequencies considered in the 

analysis of �̅� (i.e., between the lower and upper bound frequencies fmin and fmax). Then the 

median across those standard deviations is taken, which is denoted 𝜎𝑙𝑛
𝑀. Figure 6 shows the 

distribution of 𝜎𝑙𝑛
𝑀 for the California vertical array sites, with the values reported by Thompson et 

al. (2012) for the KiK-net sites also shown for comparison (the method of computation is the 

same in both cases). The inter-event dispersion is notably smaller for the California sites, with 

only two (10%) exceeding the value of 0.35 considered as ‘high dispersion’ by Thompson et al. 

(2012).  

Sites having comparable transfer function shapes and low dispersion have been useful for 

GRA validations performed in several studies (e.g., Kaklamanos et al. 2015, Zalachoris and 

Rathje, 2015). To facilitate similar work using California data, Table 1 lists California vertical 

array sites with �̅� > 0.6 and 𝜎𝑙𝑛
𝑀 < 0.2 (considering the most optimal outcomes among the 

damping models).  
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Figure 6. Histogram of ETF between-event standard deviation term 𝜎𝑙𝑛
𝑀 for California and KiK-

net vertical array sites. 

 

Table 1. California vertical array sites with 𝑟 > 0.6 and 𝜎𝑙𝑛
𝑀 < 0.2 (considering the most optimal 

outcomes among the damping models) 

Site Name Code # Optimal �̅� Damping model 𝜎𝑙𝑛
𝑀 

Benicia-Martinez South 68323 0.79 VS-based 0.17 

Eureka 89734 0.75 VS-based 0.20 

Treasure Island 58642 0.82 VS-based 0.20 

Wildlife Liquefaction Array NA 0.69 Geotechnical 0.15 

 

 

Summary and Interpretation of Results 
 

California has one of the most useful inventories of vertical arrays world-wide, when 

viewed from the perspective of site and ground motion data quality and quantity. We have 

compiled a database that is used to investigate the effectiveness of the 1D assumption inherent to 

ground response analysis procedures and to evaluate the relative effectiveness of three alternative 

damping models.  

We find a better fit and smaller ETF dispersion for the California sites as compared to 

what was found previously by Thompson et al. (2012) for 100 KiK-net sites. This may result 

from the former mostly being located within large sedimentary basins and relatively flat areas, 

whereas the later are often on firmer ground conditions (often weathered rock or thin soil over 

rock) with uneven ground conditions. The geologic conditions at the KiK-net sites are such that 

horizontal layering of sediments is less likely to be an acceptable assumption, with the site 

response being strongly influenced by 2D and 3D effects associated with irregular stratigraphy 

and (in some cases) topography. The 2D and 3D effects in site response in KiK-net sites has been 

studied by De Martin et al. (2013), who suggests the period and amplitude of site response peaks 

are significantly sensitive to 2D and 3D effects due to non-horizontal layering. Another possible 
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factor resulting in a better fit for California sites is the quality of VS measurements. The vertical 

arrays in California used in this study have high-resolution suspension logging measurements 

(with only one exception), while the KiK-net sites are characterized with lower-resolution 

downhole measurements.  

Ground response analyses based on geotechnical models underestimate site attenuation, 

which has been observed previously and is expected because scattering effects are neglected. The 

models based on seismological inversion tend to overestimate site attenuation; this conclusion is 

likely not fully general, but applies to the considered data inventory. Among the three damping 

models used in this study for GRA, the -informed model is found to slightly better predict the 

shape of site response transfer functions. 
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Abstract 
 

This paper summarizes the results of a recently completed project on the one-dimensional 
(1D) site response analysis (SRA) of five geotechnical downhole arrays in California which were 
subjected to both strong and weak earthquake shakings. The arrays were initially assessed in 
terms of the effectiveness of the 1D SRA using taxonomy classification. Then, SRA was 
performed utilizing finite element program LS-DYNA to study the site effects at the selected 
arrays. Lastly, the predictions were compared with the recorded counterparts and the 
uncertainties of the 1D SRA models were evaluated using two methods namely the Goodness-of-
Fit (GOF) and Amplification Factor (AF) residuals. The 1D SRA results of the selected arrays 
were interrogated on a site-by-site basis and discussions are made on the effectiveness of the 
employed nonlinear SRA models. 

 
Introduction 

 
This study investigates the influence of local site effects and the soil nonlinear response 

on the amplification of recorded ground motions at five CSMIP geotechnical downhole arrays 
where recorded motions exceeded 0.1g. Taxonomy evaluation of the arrays was carried out to 
inform the expected level of accuracy of the 1D SRA models. Furthermore, LS-DYNA, an 
advanced Finite Element (FE) program, was utilized to develop soil column models for 1D SRA 
at these arrays in order to quantify the shortcomings of the 1D approximations on the computed 
site response. By acknowledging the limitation of the 1D SRA modeling such as: (1) all 
horizontal boundaries are extended infinitely, and (2) the response is dominated by vertically 
propagating horizontally polarized shear (SH) waves, we evaluated the accuracy of the 
calculated response at these arrays. Both strong and weak recorded ground motions were used to 
perform SRA for each downhole array and the analysis results were compared with the 
observations at every available downhole sensor depth in order to examine the effectiveness of 
SRA models in capturing the soil response. On the basis of the analyses performed, we 
quantified the accuracy of the 1D SRA models and the advantages of the nonlinear soil modeling 
using two quantitative methods namely the Goodness-of-Fit (GOF) and Amplification Factor 
(AF) residuals.  
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Selection of Geotechnical Downhole Arrays 
 

Array Selection Criteria 
 

We carried out a screening procedure through the CSMIP geotechnical downhole arrays 
with special attention to the ones recorded motions during the 2014 Mw 6.0 South Napa 
Earthquake to select arrays that met the following criteria: 

1.  Accelerometers measure bi-directional shaking (i.e. two horizontal components); 
2.  The array has recorded both small and moderate-to-large amplitude motions (PGA < 0.1 

g and PGA > 0.10 g); 
3.  Recorded ground motions are regarded as free-field motions and are not affected by an 

adjacent structure; 
4.  The soil layers are not susceptible to liquefaction and liquefaction has not previously 

been observed at close proximity to the array; 
5.  The site geology is relatively simple and a soil column can reasonably represent the 

subsurface soil behavior (i.e. minor basin or topography effects); 
6.   Arrays with information on subsurface soil properties such as in-situ test data.  

 
Selected Arrays 
 

Ideally, the selected arrays should have met all the criteria as listed above; however, it is 
acknowledged that site-specific aspects of the local geology, topography, and level of site 
characterization will diverge from these criteria to some extent. In most cases, the constraints had 
to be relaxed for selecting sites. In this study, we eventually identified 5 downhole arrays 
including (1) Crockett - Carquinez Bridge Geotech Array #1 (CC #1), (2) Crockett – Carquinez 
Bridge Geotech Array #2 (CC #2), (3) Vallejo - Hwy 37/Napa River E Geo. Array (Vallejo), (4) 
Eureka Geotechnical Array (Eureka), (5) El Centro - Meloland Geotechnical Array (El Centro). 
Figure 1 presents the location of these arrays in California. At these sites, PS suspension logging 
was conducted by the California Department of Transportation (Caltrans) hence shear wave 
velocity (Vs) and compression wave velocity (Vp) were measured. The site characteristics of the 
selected arrays are summarized in Table 1. Detailed description of these arrays and the 
subsurface soil characteristics can be found in Li et al. (2017).  

 

 
Figure 1. Location map of the selected CSMIP downhole arrays in this study  
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Table 1. Site characteristics of selected arrays (CESMD) 

Station Name Site Geology 
Sensor 

Depths (m) 
Vs,30 

(m/sec) 
Site Class 

(ASCE 7-10) 
GWT Depth* 

(m) 

Taxonomy (Site 
Quality for 1D 

SRA) 
Crockett - 

Carquinez Br #1 
Shallow clay 

over rock  
0, 20.4, 45.7 345 D 4 HP (5) 

Crockett - 
Carquinez Br #2 

Shallow clay 
over soft rock 

0, 61, 125 173 D 0.9 LP (2) 

Eureka 
Geotechnical 

Array 
Deep alluvium 

0, 19, 33, 
56, 136 

194 D 1 LG (1) 

El Centro -
Meloland 

Geotechnical 
Array 

Deep alluvium 
0, 30, 100, 

195 
182 D 5 LP (3) 

Vallejo - Hwy 
37/Napa River E  

Bay mud 0, 17.9, 44.5 509 C 3 HP (4) 

Note: * GWT depth is estimated as the depth where Vp reaches 1500m/sec. 
 

 
Taxonomy Evaluation of Selected Arrays 

 
In this study, we utilized the site classification scheme (i.e. taxonomy) proposed by 

Thompson et al. (2012) to quantify the extent of site response complexity at the selected 
downhole arrays and assess the validity of the 1D site response assumptions. In the proposed 
taxonomy classification, the sites are classified into four distinct categories, i.e. LG, LP, HP and 
HG sites. The first letter of the taxonomy notation indicates the inter-event variability (σ) class of 
empirical transfer functions (ETFs) (H for “high” and L for “low”) while the second letter 
indicates the goodness-of-fit (r) between ETFs and theoretical transfer functions (TTFs) (G for 
“good” and P for “poor”). The threshold values of σ and r are 0.35 and 0.6, respectively. In order 
to minimize the potential for nonlinear effects and increase the statistical significance, Thompson 
et al. (2012) recommended to use at least 10 records with PGA < 0.1g at ground surface for the 
taxonomy evaluation.  

We carried out the taxonomy evaluation of the selected five downhole arrays and Figure 
2 illustrates two extreme examples including Eureka as an LG site (i.e. the highest quality array) 
and the Crockett - Carquinez Br #1 as an HP site (i.e. the least quality array) for 1D SRA studies. 
The taxonomy designations for all other arrays are listed in Table 1 and the details of our 
taxonomy evaluation can be found in Li et al. (2017). In this paper, we further discuss the 
correlations between the taxonomy evaluation outcome and the calculated average residuals at 
these arrays. 

 
1D Site Response Analysis 

 
Methodology 
 

In this study, Finite Element (FE) program LS-DYNA (LSTC, 2012) was utilized to 
develop and run 1D SRA models. We acknowledge the constraints of the 1D SRA modeling 
such as (1) soil layer boundaries are horizontal and extended infinitely in lateral directions, and 
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(2) modeled seismic waves are limited to the vertically propagated shear waves (i.e. SH waves). 
Soil column models of the selected arrays were developed in LS-DYNA using solid elements 
constrained to move in shear and Figure 3 presents two example soil columns. The soil columns 
were discretized in such a way that the maximum frequency each layer could propagate was as 
close to 37.5 Hz as possible. The bases of the soil columns were fixed to represent the “within” 
profiles (Stewart et al., 2008). In the current engineering practice, soil deposits are routinely 
modeled with lumped mass, springs and dampers for 1D SRA (e.g., DeepSoil, Hashash et al., 
2016). Alternatively, SRA modeling with advanced FE programs such as LS-DYNA are capable 
to represent the effects of multi-directional shaking. In this study, the recorded acceleration data 
at the deepest downhole sensors of each array were input in both horizontal directions (bi-
directional shaking) simultaneously to study the interaction between the horizontal components 
of the site response. 

 

 
 
 

Figure 2. Taxonomy evaluation of Eureka and CC #1 
 

The influence of dynamic stress-strain behavior on computed site response were 
investigated using two different soil nonlinear models, including general quadratic/hyperbolic 
backbone curve (Groholski et al., 2016, denoted as GQH hereafter) , modified two-staged 
hyperbolic backbone curve (Motamed et al., 2016, denoted as MTH hereafter). For all the 
nonlinear soil models, small strain damping (Dmin) was applied using the 
DAMPING_FREQUENCY_RANGE_DEFORM feature in LS-DYNA which provides 
approximately frequency-independent damping over a range of frequencies to element 
deformation. Dmin was set as 2% and 5% for strong and weak shakings in the frequency range of 
1~30 Hz, respectively. 

 
Regarding the nonlinear soil models (i.e. GQH and MTH), the 

MAT_HYSTERETIC_SOIL model was employed to simulate the dynamic response of the soil 
deposit, which includes an option to adjust soil stiffness based on the level of strain rate. 
Dynamic soil behavior was characterized by modified two-stage hyperbolic backbone curve for 
MTH model and general bivariate quadratic equation for GQH model. These two models were 
developed to properly account for the maximum shear stress in the constitutive model at large 
strain. Hysteretic damping of soil materials is governed by the loading-unloading relationship as 
described by Masing rule (Masing, 1926). Rate-dependent effects of clayey soils were accounted 
for by applying a 5% increase in stiffness per log cycle of plastic strain rate.  
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       (a)        (b)  

Figure 3. LS-DYNA soil column models for (a) CC #1 and (b) Eureka 
 

Selection of Ground Motions 
 

For each selected CSMIP downhole array, six individual analyses were performed using 
input motions that included one moderately strong time history  (PGAsurface ≥ 0.1 g) and five 
low-amplitude motions (PGAsurface < 0.1 g). The processed ground motion time series were 
downloaded through the CESMD website. In total, 30 ground motions ranging in amplitude from 
PGA at the surface of 0.004g to 0.98g were utilized in this study. Figure 4 presents the 
distribution of recorded PGA at ground surface and the site classification of the studied arrays. 

 
Analysis Results and Discussions 
 

The performance of the 1D SRA models varied by site, which is attributed to the 
combined influence of stratigraphy and dynamic soil properties, and to aspects of the geological 
conditions at the sites that may not lend themselves to the 1D approximation of wave 
propagation.  This section discusses the 1D SRA results of the two downhole arrays, Eureka and 
CC #1, which represent the highest and lowest quality predictions, respectively. Due to the page 
limitation, only the strong shaking analysis is presented for each array. For more details of our 
analysis results and discussions, please refer to Li et al. (2017) 

 



SMIP17 Seminar Proceedings 
 

20 

 
Figure 4. Distributions of PGA at the ground surface versus VS,30 for the ground motion records 

used in this study and the site classes. 
 

Eureka 
 

The 1D SRA analysis results of Eureka subjected to the Ferndale Earthquake (Mw 6.5, 
01/09/2010) are presented in Figures 5 and 6. As can be seen in Figure 5, GQH and MTH models 
fairly well reproduced the soil response for all components at various depths with regard to the 
5% damped spectral acceleration (Sa). However, they slightly underestimated the peaks of Sa at 
surface and 19 m depth for both EW and NS components. Conversely, general overestimation 
was noticed at all depths (EW and NS components) for the linear elastic model. In addition, 
Figure 6(a) illustrates that the two nonlinear models underestimated the PGA at all depths while 
the linear model overestimated PGA at all depths. Figure 6(b) shows that the shear strain level in 
the soil profile reached as high as about 0.3%, indicating that the soil likely exhibited some 
nonlinear behavior in response to this strong shaking.  

 
CC #1  
 

The 1D SRA analysis results of CC #1 subjected to the main shock (Mw 6.0, 08/24/2014) 
of the South Napa Earthquake are plotted in Figures 7 and 8. It is shown in Figures 7 and 8(a) 
that the 5% damped spectral acceleration (Sa) and PGA predictions of GQH and MTH models 
reach fairly good agreement with the observations at mid-depth of 20.4 m. However, these two 
nonlinear models underpredicted 5% damped spectral acceleration (Sa) at period less than 0.4 sec 
and PGA at surface. In contrast, the linear elastic model overpredicted the soil response at 20.4 
m depth while it surprisingly performed much better in capturing the large amplification at 
surface, especially in the EW direction. The nonlinear soil behavior was not dominant in the soil 
profile as shown in Figure 8(b) with peak shear strain smaller than 0.1%.  
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Figure 5. Comparison of measured and predicted 5% damped spectral accelerations at the Eureka 
array under the shaking of Ferndale Earthquake at different depths. 
 
 
 

 

                         (a)                                                                    (b)                   

Figure 6. (a) PGA and (b) max shear strain profiles of Eureka under the shaking of the Ferndale 
Earthquake. 
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Quantitative Assessment of 1D SRA Results 
 
In this study, we quantified the accuracy of the different 1D SRA models using two 

different approaches namely the Goodness-of-Fit methodology proposed by Anderson (2004) 
and the amplification factor residuals described by Zalachoris and Rathje (2015). These two 
measures are described briefly hereafter and the results are presented.   
 

 
Figure 7. Comparison of measured and predicted 5% damped spectral acceleration of CC #1 under 
the shaking of South Napa Earthquake mainshock at different depths.   
 
 

 
(a)                                                                              (b) 

 

Figure 8. (a) PGA and (b) max shear strain profiles of CC #1 under the shaking of South Napa 
Earthquake mainshock. 

 
Goodness-of-fit 
 

Anderson (2004) proposed the Goodness-of-Fit (denoted as GOF hereafter) scoring 
system to characterize how well synthetic seismographs match the statistical characteristics of 
observed records using ten different parameters including the peak acceleration, Arias intensity, 
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Fourier spectrum, acceleration response spectrum, etc. A GOF score below 4 is a poor fit, a score 
of 4-6 is a fair fit, a score of 6-8 is a good fit, and a score over 8 is an excellent fit. In this study, 
the GOF for an individual site subjected to a specific shaking is calculated by averaging the GOF 
at different depths and shaking directions.  

We utilized the GOF matrix to evaluate the overall accuracy of the nonlinear (i.e. GQH, 
MTH) and linear (i.e. L) models across all sites and the results are summarized in Figure 9 which 
are the mean GOF of the site response models, computed by averaging the GOF across all sites 
and ground motions. The GOF were also computed using subsets of the pooled GOF 
corresponding to records with binned ߛ௠௔௫ (0.01% =<ߛ௠௔௫ ௠௔௫ߛ => 0.02% ,0.02% >   < 0.05%, 
௠௔௫ߛ ௠௔௫< 0.1% andߛ ≥ 0.05%  ≥ 0.1%) and measured PGAsurface (PGAsurface < 0.05 g, 0.05 g ≤ 
PGAsurface < 0.1 g, 0.1 g ≤  PGAsurface < 0.15 g and PGAsurface ≥ 0.15 g). As illustrated in Figure 9, 
the overall quality of the nonlinear SRA models was higher than the linear models (i.e. higher 
GOF score) and this improvement was more substantial in stronger shakings. We further 
investigated the correlations between the GOF score and the taxonomy classification which is 
elaborated hereafter. 

Figure 10 presents a summary plot to correlate taxonomy designations with GOF of the 
nonlinear models for all sites. Each plot was divided by dashed red lines into four subareas 
representing the taxonomy classification the sites fell under. Besides, the size of the circles in 
Figure 10 is linearly proportional to the magnitude of the GOF score. The texts adjacent to the 
circles indicate the actual values of GOF score. 

 

 

Figure 9. GOF of the 1D SRA models binned for different levels of ߛ௠௔௫	and PGA at surface. 
 

It is shown that the GOFs of all sites are in between 6 and 8, which implies that a “good 
fit” was achieved by either GQH or MTH model for the arrays, and illustrates the GOFs of GQH 
and MTH models for the same site are in good agreement. 
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In general, as shown on Figure 10, the GOF score becomes larger with low σ or high r for 
both models. For example, Eureka is classified as a LG site according to the taxonomy scheme 
with the lowest σ and the highest r among all arrays and thus it yields the highest GOF for both 
models. Contrarily, CC #1 is designated as a HP site and achieves the lowest GOF with the 
combined effects of the highest σ	and the second lowest r among all sites. This observation 
indicates that taxonomy designation is in general agreement with the calculated GOF scores for 
the studied arrays. 

 

 

Figure 10. Correlation of taxonomy classification with mean GOF of GQH and MTH models for the CSMIP 
downhole arrays.  

 
Residual of Amplification Factor  
 

In this study, similar to Zalachoris and Rathje (2015), we quantify the misfit (or bias) as 
the difference between the natural log of the measured and computed amplification factors (AF) 
at each period. For the ith site and jth recording, the residual (R) at period T between the 
observed amplification factor (AFobs) and the calculated amplification factor (AFcalc) is given by 
Equation 1. 

                                          ܴ௜,௝ሺܶሻ ൌ lnAF௜,௝
௢௕௦ሺܶሻ െ lnAF௜,௝

௖௔௟௖ሺܶሻ                                     (1) 
 
A positive residual indicates underprediction by the model while a negative residual 

implies overprediction. A consistent period range (0.04 – 3.0 sec), which was the commonly 
shared period range of response spectra of all sites and events provided by CSMIP, was utilized 
to compute the AF residual hereafter. 

The analysis results were initially grouped based on their corresponding level of shaking, 
as depicted by the measured peak acceleration of the surface motions (PGAsurface). Since the 
recorded peak ground acceleration at the surface ranges from low (0.004 g) to high (0.98 g), the 
effect of shaking intensity on the accuracy of the predictions was investigated. Four different 
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ranges of PGAsurface were considered: PGAsurface ≤ 0.05 g, 0.05 g < PGAsurface ≤ 0.1 g, 0.1 g < 
PGAsurface ≤ 0.15 g and PGAsurface > 0.15 g. 

As seen in Figure 11, the performance of the GQH, MTH and L models strongly 
depended on the level of shaking, and thus implicitly on the magnitude of the induced shear 
strains. At low intensity levels, namely for PGAsurface less than 0.05 g, there is strong agreement 
between the observations and the prediction results at all frequencies. A slight underprediction 
occurs at periods less than 0.2 sec and a slight overprediction at periods greater than 0.2 sec, but 
still the agreement is fairly good. As the shaking intensity increases, the calculated amplification 
factor residuals of the site response models deviate from each other, as well as from the 
observations. In general, the GQH and MTH models moderately underpredicted the 
amplification at shorter periods while L model strongly overpredicted the amplification over a 
wide range of periods at high intensity shakings.  

 
Figure 11. Computed mean residual of amplification factor for all sites at different ranges of measured 
PGAsurface. 

 
Conclusions 

 
This paper evaluated the taxonomy classification of the five selected CSMIP downhole 

arrays, hence their quality for 1D SRA studies is ranked. The 1D SRA modeling was performed 
in LS-DYNA for these arrays to study the effects of subsoil conditions on the amplification of 
ground motions. Both strong and weak shakings were analyzed for each array and the analysis 
results were presented.  

 
Overall, nonlinear finite element models for all arrays were capable of reproducing the 

ground motions fairly well over low frequency range (< 1 Hz) but failed to capture (in most 
cases underestimated) the components of the motions at intermediate and high frequencies (> 1 
Hz). Besides, linear elastic models of arrays in general overestimated the soil response 
(especially for strong shaking case) and tended to yield intermediate period spectral acceleration 
peaks caused by resonance of soil profiles. In addition, the nonlinear SRA models typically 
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resulted in better quality predictions compared to the linear models and this improvement was 
more significant under strong shakings (PGA > 0.1g). 

 
The outcome of the taxonomy evaluation informed us of the expected level of accuracy at 

the five studied arrays and our observations were in good agreement with the taxonomy site 
classification. Among the five arrays studied in detail, Eureka was identified as an LG site (i.e. 
highest 1D SRA quality rank suggested by the taxonomy scheme) which was consistent with the 
calculated average GOF and amplification residual at this site. On the other hand, CC#1 was 
identified as an HP site (i.e. lowest 1D SRA quality rank suggested by the taxonomy scheme) 
which was again in good agreement with the calculated average GOF and amplification residuals 
at this site.  

 
 We employed two methods to quantify the extent of accuracy of the 1D SRA models 
using (1) GOF scoring system, and (2) amplification factor residuals and both techniques were 
found to be useful in comparing the results. The strengths and limitations inherent in the practical 
application of 1D SRA model demonstrated the following: (i) 1D SRA is applicable for sites 
where the 1D SRA assumptions are valid, (ii) 1D SRA fails to account for 2D and 3D effects 
including spatial heterogeneity, nonvertical incidence, basin effects and topographic effects. 
Considering the presence of complex geologic and topographic conditions at some sites was 
found to be significant, 1D SRA was not quite effective or accurate in estimating site 
amplifications. As a means to understand the complexity of site response and the validity of 1D 
SRA assumptions, it is recommended to evaluate taxonomy class of a specific site prior to 
performing 1D SRA in engineering practice, if weak ground shakings were recorded at that site.  
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Abstract 
 

This research aims at assessing the validity of accidental torsion provisions in building 
codes. Uncertainty in stiffness is considered as the main source of possible eccentricity. Monte 
Carlo simulation is utilized to statistically assess the behavior of nine one-story symmetric-in-
plan base systems with nine different translational to rotational period ratios (Ω). Three 
vibrational characteristics and equivalent design eccentricity are developed and compared with 
information obtained from CSMIP database. The effect of Ω, plan aspect ratio, and correlation in 
building stiffness on building displacement amplification due to torsion are investigated. 
Equivalent design eccentricity is quantified based on these results. 

Introduction 

Seismic code provisions require that the effect of building torsion during seismic 
excitation be considered at each floor level. This effect for symmetric-in-plan buildings is 
captured by exerting the seismic equivalent lateral force of each floor at a distance–equal to 5% 
of the building’s plan dimension perpendicular to the direction of the applied equivalent lateral 
force–from the center of mass (CM) of the floor diaphragm. Denoted as “accidental torsion,” the 
later represents the effect of discrepancies between the mass and stiffness distribution along the 
height of the real building, and the effect of rotational component of ground shaking on the 
structure. In essence, accidental torsion is rooted in the inherent uncertainty of engineering 
models. Traditionally, analytical methods for seismic response assessment of buildings are 
incapable of addressing such modeling uncertainty, unless accidental torsion is explicitly built 
into the analytical model through the so-called 5% rule.  

Building code provisions on inclusion of accidental torsion in seismic response 
assessment of buildings is not limited to symmetric-in-plan structures. Accidental torsion is 
added to the inherent torsional effects in asymmetric-in-plan buildings, and is explicitly 
considered in traditional analytical seismic response assessment methods. In contrast, however, 
the effect of modeling uncertainty that leads to consideration of accidental torsion is dwarfed by 
the inherent torsional effects in buildings with asymmetric-in-plan. Therefore, its critical to 
maintain focus on assessing the torsional response of symmetric-in-plan buildings. 

This research is built on the results of previous work at CSMIP (De la Llera and Chopra, 
1992), and others (e.g. De la Llera and Chopra, 1994, and 1995; Lin et al., 2001; Hernandez and 
Lopez, 2004; De-la-Colina and Almeida, 2004; Basu et al., 2014) that lend itself to evaluation of 
code-accidental torsion provisions and its dependence on structural system properties. 
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Specifically, in an effort similar to what is proposed here, De la Llera and Chopra (1992) 
concluded–based on motions recorded in three buildings instrumented by CSMIP–that code 
specified accidental torsion is adequate in representing the torsion in recorded motions. They 
speculated that it is not necessary to consider accidental torsion in the design of many buildings. 
We critically evaluate these claims using CSMIP data, and develop expressions for accidental 
torsion of buildings. The ultimate aim of this study is to develop a set of rational, meaningful, 
and practical ways to include accidental torsion in seismic response assessment, and improve 
both the seismic design provisions of building codes (e.g., ASCE, 2010, and 2007) and the 
practice of performance-based design and retrofit of structures.  

Methodology 

For a building subject to translational ground motions, the equation of motion can be 
written as Eq.1-1: 
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0
ቑ                             (Eq.1-1) 

where Io = mr2 is the rotational inertia. Theoretically, a building with symmetric plan has zero 
off-diagonal elements in the stiffness matrix, and the dynamic responses of two translational 
directions of the system are uncoupled. However, when asymmetric stiffness distribution takes 
place in a system with nominally symmetric plan, translational ground motion triggers torsional 
vibration and the deformation along the translational axis is amplified due to torsional effects. 

One of the most important parameters that affects torsional behavior of a building is Ω, 
the ratio of dominant translational period to dominant rotational period. Large Ω values are 
associated with perimeter frame buildings with large torsional stiffness (Eq.1-2), while small Ω 
values represent buildings such as core wall systems with low torsional stiffness. Ω values 
ranging from 0.6 to 1.4 are investigated in this study, which covers most of the building cases. 

ߗ                                          ൌ ೟்ೝೌ೙

ೝ்೚೟
ൌ ඥ௠/௄೟ೝೌ೙

ඥ௠௥మ/௄ೝ೚೟
                                                      (Eq.1-2)  

Nine one-story four-VLLR (i.e. vertical lateral load resisting elements) base systems with 
symmetric plans are developed whose translational period Ttran = 1.5sec and Ω = 0.6, 0.7, 0.8, 
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, respectively. The deformation of the roof of the base systems subject 
to one directional earthquake ground motion along the direction of Ttran, denoted as δb, is merely 
the translational displacement along that direction due to the symmetric plan of the buildings.  

To consider the effect of uncertainty in stiffness of VLLRs, literature review has been 
conducted to access the variability of element cross section dimensions, second moment of 
inertia and material strength. Ramsay et al. (1979) used Monte Carlo simulation to conclude that 
deformation of reinforced concrete beams has a coefficient of variation of 0.14, and De la Llera 
and Chopra (1994) suggested the same value be used as the variation of stiffness of reinforced 
concrete elements. This approach is under the assumption that force distribution is deterministic 
(a conservative estimate). Ellingwood and Galambos (1980) investigated probability based load 



SMIP17 Seminar Proceedings 
 

31 

criterion and Melchers (1987) evaluated reliability of structures, showing that the coefficient of 
variation of Young’s modulus and cross section moment of inertia is approximately 0.06 and 
0.05, respectively. Bournonville et al. (2004) performed statistical analysis to mechanical 
properties of reinforcing bars and found that coefficient of variation of reinforcement yield 
strength ranges from 0.03 to 0.09. ASTM A6 (2005) provides variability of structural element 
dimensions, and ASTM A992 (2004) provides steel and concrete material strength; according to 
the ASTM resources, section depth or width has a coefficient of variation ranging from 0.01 to 
0.04, and column steel yield stress (Grade 50) has a coefficient of variation of 0.05.  

If each dimension is assumed to have a coefficient of variation equal to 0.03, then 
moment of inertia has a coefficient of variation of 0.06 to 0.09 assuming no correlation and 
complete correlation between each dimension, respectively. Given the coefficient of variation of 
Young’s modulus is approximately 0.06, coefficient of variation of the stiffness of all structural 
elements are conservatively equal to 0.14.  

A hundred sample Monte Carlo simulations is run for each base system, treating four 
VLLRs as four normally distributed random variables, with mean values equal to the stiffness of 
the base system and the coefficient of variation equal to 0.14. Given that the probability of the 
stiffness of one of the four VLLRs being close to the stiffness of another is high if they are 
manufactured in batch and produced identically, a correlation coefficient of ρ = 0.5 between the 
stiffness of four VLLRs is assumed. For comparison purposes, ρ = 0, which conservatively 
assumes uncorrelated VLLR stiffness are also used in this study. Forty ground motion are scaled 
to a low intensity level of Sa=0.06g at a period of 1.5sec to examine linear torsional behavior of 
the buildings. Therefore, 4000 asymmetric building plan analyses are performed per base system 
and 36000 analyses are completed in total. These 36000 analyses are repeated for base systems 
with plan aspect ratios of 1:1, 1:2, 1:4 and 1:8 to account for the effect of building plan 
dimension, where aspect ratio is defined as the length along the applied ground motion direction 
to the length perpendicular to the ground motion direction.  

Effect of torsional vibration is measured and estimated via the largest amplification in 
displacement among four corners of the building at the roof level. With asymmetric stiffness 
distributions, buildings rotate even though the ground motion is applied to the center of mass. 
Total response is the summation of translational response and rotational response. Three 
torsional vibration characteristics are developed in Eq.1-3: 

ଵߙ                                         
௜ ൌ ௠௔௫	ሺఋ೟ೝೌ೙

೔ ାఋೝ೚೟
೔ ሻ
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																																																											ሺEq.1‐3,aሻ	 
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௠௔௫	ሺఋ್ሻ
																																																																				ሺEq.1‐3,cሻ	

ଵ௜ߙ																																														 ൌ ଶߙ
௜ ଷߙ

௜ 																																																																													ሺEq.1‐3,dሻ	

ଵߙ
௜  is the ratio of the peak total response of the ith asymmetric system to the peak 

translational response of the base system without eccentricity. ߙଶ
௜  is the ratio of the peak total 



SMIP17 Seminar Proceedings 
 

32 

response of the ith asymmetric system to the peak translational response of the same ith system. 
ଷߙ
௜  is the ratio of the peak translational response of the ith asymmetric system to the peak 

translational response of the base system. To summarize, ߙଵ
௜  estimates the total displacement 

amplification due to stiffness eccentricity compared to a non-eccentric base system; it is the 
multiplication of ߙଶ

௜  and ߙଷ
௜ , where the former estimates the displacement amplification within a 

certain asymmetric system, and the latter estimates the contribution of pure translational 
displacement in that asymmetric system. 

Torsional vibration characteristics represent the amplification in displacement due to 
stiffness uncertainty in asymmetric buildings, and those characteristics need to be transferred to a 
measure of distance representing how far away the equivalent lateral force should be applied to 
the center of mass to capture the same amount of torsional displacement amplification.  

To analyze the displacement amplification caused by eccentric static loading, an eccentric 
equivalent lateral force is applied to the base system. In comparison, a non-eccentric equivalent 
lateral force is also applied to the base system right at the center of mass. The ratio between two 
displacements in these two scenarios demonstrates the amplification due to eccentric push over, 
as shown in Eq.1-4 and Eq.1-5, where b is the dimension of the plan perpendicular to the applied 
static force, and e is the eccentricity in percentage, eb/2 is the distance from the applied force to 
the center of mass.      

௣ߙ                                   ൌ
ఋ೛
೐

ఋ೛
೙೐ ൌ

௏
௄೟ೝೌ೙ೞൗ ା௏௘ ௄ೝ೚೟ൗ ௕/ଶ

௏
௄೟ೝೌ೙ೞൗ

                                               (Eq.1-4) 

                                                 ܸ ൌ ܵ௔ܹ/݃                                                            ሺEq.1‐5ሻ 

An example of displacement amplification from eccentric push over analysis is shown in 
Figure 1-1: two buildings with plan aspect ratios of 1:1 and 1:8 are subject to eccentric lateral 
force, nine grey lines represent the linear relationship between displacement amplification and 
the eccentricity of the applied lateral force. Higher displacement amplification is seen in the 
building with higher plan aspect ratio, when Ω and lateral force eccentricity are both fixed.  
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Figure 1-1. Amplification due to eccentric push over for nine base systems 

ଵߙ , which is the ratio of the asymmetric system peak total response to the symmetric 
system peak translational response, is mapped to the eccentricity in percentage by equating 
average of ߙଵ	 and αp. In other words, the equivalent eccentricity determines how far away should 
the equivalent static lateral force be applied from the center of mass to make the symmetric 
system have as much displacement amplification as an asymmetric system with uncertain 
VLLRs stiffness and subject to ground motions. Since each Monte Carlo simulation results in 
one ߙଵ  value, there are 36000 realizations of ߙଵ  for a given plan aspect ratio system. Statistical 
properties of ߙଵ  database such as median and 75th percentile are mapped to the corresponding 
equivalent eccentricity, representing different levels of torsion design requirements.  

Results 

Results of equivalent eccentricities from Monte Carlo simulation are shown in Figure 2-
1; observations and conclusions are as follows: 

 5% eccentricity from code provision is larger than the median response from the 
simulations, as the computed equivalent eccentricity of all systems with translational to 
rotational period ratio ranging from 0.6 to 1.4 and plan aspect ratio ranging from 1:1 to 
1:8 fall below 5%. 

 Higher levels of eccentricity (compared to 5%) is required to be applied to a system if 
confidence levels larger than 50% is of interest.  

 Compared to buildings that have large rotational stiffness (Ω larger than 1), buildings that 
are sensitive to torsion (Ω less than 1) require less equivalent eccentricity at higher 
confidence level. 

 Equivalent eccentricity (displacement amplification) is Ω sensitive. When translational 
period and rotational period are identical, it reaches its minimum value (almost equal to 
zero). Equivalent eccentricity displays an M shape over the Ω = 0.6 to 1.4 range.  
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 Buildings with larger plan aspect ratio do not necessarily have higher equivalent 
eccentricity, though they have relatively higher displacement amplification ߙଵ	 .  

 

Figure 2-1. Equivalent eccentricity for buildings with Ω ranging from 0.6 to 1.4 and plan aspect ratio ranging 
from 1:1 to 1:8, using uncorrelated VLLRs stiffness model (ρ = 0) 

 

The effect of VLLRs stiffness correlation on equivalent eccentricity is also studied; 
sample results are demonstrated in Figure 2-2 for a building with plan aspect ratio of 1:2 and  = 
0.0 and 0.5. Using the median value of the simulations as the target displacement amplification 
to compute the equivalent eccentricity, systems with correlated VRRLs stiffness have smaller 
equivalent eccentricity and correspondingly smaller displacement amplification. This can be 
explained by the observation that when stiffness of the four VLLRs increase or decrease 
coherently (i.e. correlation), the level of asymmetricity is reduced and leads to a reduction in 
displacement amplification. Asymmetricity can be estimated by the off-diagonal element (Eq.2-
1) in equation of motion, where D is the perpendicular distance between center of mass and 
VLLRs, k1 and k2 are stiffness of VRRLs along X axis. 

                                        ݇௫ఏ ൌ ∑݇௜ݔ௜ ൌ ሺ݇ଵ െ ݇ଶሻܦ                                            (Eq.2-1) 

Variation in difference between the stiffness of VLLRs decreases when introducing correlation 
to VLLRs stiffness as shown in Eq. 2-2. 

௞భି௞మߪ                           
ଶ ൌ ∑ ∑ ௞ೕߪ௞೔ߪ௜௝ߩ

ଶ
௝ୀଵ

ଶ
௜ୀଵ ൌ ௞భߪ

ଶ ൅ ௞మߪ
ଶ െ  ௞మ                          (Eq.2-2)ߪ௞భߪߩ2
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Figure 2-2. Equivalent eccentricity for buildings with Ω ranging from 0.6 to 1.4 and two stiffness correlation 
(ρ = 0, ρ = 0.5), using a plan aspect ratio 1:2 model 

 

The difference between equivalent eccentricity of systems with and without VLLR 
stiffness correlation diminishes at large quantiles (see Figure 2-2 for the 75% quantile). This 
numerical issue may happen due to the small amount of total simulation numbers to capture 
equivalent eccentricity at the tail of its distribution. Nevertheless, equivalent eccentricity 
associated with uncorrelated stiffness cases are preferred since it provides a more conservative 
estimate of accidental torsion. 

The distribution of three torsional vibration characteristics (ߙଵ ଶߙ ,  and ߙଷ ) are plotted 
in forms of box plots and compared among four systems with different plan aspect ratios. Each 
box plot shows five quantiles of the data set: top and bottom sides of the blue box show 75 and 
25 percentiles; the red bar in the middle of the blue box shows the median; and top and bottom 
whiskers show an extension equal to 1.5 times the difference between the values associate with 
75 and 25 percentiles to the 75 and 25 percentile values respectively. Figure 2-3, Figure 2-4 and 
Figure 2-5 show the boxplots for ߙଵ ଶߙ ,  and ߙଷ , respectively. The following observations are 
drawn from Figures  2-3, 2-4, and 2-5: 

 The total amplification is mainly due to translational displacement other than rotational 
displacement, since no large difference is observed between ߙଵ  and ߙଷ , and the mean 
value of ߙଶ  is below 1.05. That reveals the fact that amplification in translational response 
due to simultaneous decrease in VLLRs stiffness affects the building more than 
amplification in rotational response due to the difference in stiffness of the opposite 
VLLRs. 

 An increase in plan aspect ratio results in an increase in displacement amplification due 
to uncertainty in stiffness.  
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 Buildings with plan aspect ratio of 1:1 have smaller rotational amplification (ߙଶ ) 
compared to other plan aspect ratios.  

 In average, total displacement amplification (ߙଵ ) is less than 1.05, and is minimized 
when the building’s translational period equals its rotational period.  

 Large variance of three vibration characteristics show the importance of extreme cases. 
Design for confidence levels larger than 50% would result in large values of ߙଵ ଶߙ ,  and ߙଷ .  

 

Figure 2-3. Distribution of α1 for buildings with Ω ranging from 0.6 to 1.4 and plan aspect ratio ranging from 
1:1 to 1:8 

 

 

Figure 2-4. Distribution of α2 for buildings with Ω ranging from 0.6 to 1.4 and plan aspect ratio ranging from 
1:1 to 1:8 
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Figure 2-5. Distribution of α3 for buildings with Ω ranging from 0.6 to 1.4 and plan aspect ratio ranging from 
1:1 to 1:8 

 
Validity of simulation results are checked using records from CSMIP database. Three-

dimensional system identification techniques (Juang,1997, Van Overschee, 1996, Zhang 2001) 
are applied to four selected SMRF buildings (combinations of two plan aspect ratio of 1:1 and 
1:2, and two levels of building height: high-rise and low-rise) in the CSMIP database to obtain 
translational to rotational period ratio. ߙଶ , the ratio of peak total response to peak translational 
response within an asymmetric system is computed in each of the four selected buildings. Since 
results of computed displacement amplification can be inaccurate at high noise levels, only those 
records with PGV (peak ground velocity) larger than 5cm/s are selected. Building information 
can be found in Table 2-1 and Figure 2-6. 

Table 2-1. Selected buildings and ground motions information  

Station 
Height 

(ft) 
Aspect Ratio 

(X to Y) 
Ground 
Motion 

PGVx  
PGVy 

(cm/s) 

α2x 

α2y 
Ωx 

Ωy 

14533 265 1:1 
Whittier 87 

 

6.86 

4.43 

1.03 

1.07 

1.03 

1.11 

23516 41.3 1:1.1 
Calexico 

04Apr 2010 

2.50 

5.85 

1.01 

1.01 

1.22 

1.28 

24104 41 1:2 
Calexico 

04Apr 2010 

3.08 

1.80 

1.01 

1.01 

1.37 

1.36 

24569 274 1:2.1 
Landers 92 

 

7.63 

12.42 

1.06 

1.02 

0.93 

0.96 
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Figure 2-7 shows the vibrational characteristic ߙଶ  versus translational to rotational period 
ratio Ω of four selected buildings from CSMIP database superposed on the corresponding 
simulation results. It is notable that due to lack of records for one-story building, none of the 
selected buildings are one-story systems as the building models used for simulation purpose. 
However, Chopra (1995) showed that displacement amplification in a multistory building can be 
approximated by a single-story system with the same Ω as long as it satisfies: 1) The centers of 
mass of all floors lie on a vertical line; 2) Resisting planes form an orthogonal grid and are 
connected by a rigid diaphragm at each floor; 3) Lateral stiffness matrices of all resisting frames 
are proportional to each other. Thus, the displacement amplification of four selected symmetric-
in-plan buildings can be approximated by their one-story counterparts.  

 

 

 

 

 

 

 

 

 

Figure 2-6. Selected buildings from CSMIP database 

 

 

Figure 2-7. Comparison between simulation results and records from four selected buildings in CSMIP 
database 

23516

24104 24569

14533
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It can be observed from Figure 2-7 that displacement amplification of low-rises (building 
ID 23516 and 24104) are close to the median of simulation results. Simulations used in this 
research take into account VLLRs stiffness uncertainty only, while real-life data contains sources 
other than stiffness uncertainty that may cause torsional vibration (e.g. uncertainty in mass and 
location of center of mass). Nevertheless, displacement amplification in low-rise buildings has a 
good match with simulation results at median level. In high-rises (building ID 14533 and 24569), 
however, data leans towards higher than 75th percentile amplification in displacement, and more 
extreme cases can be observed. This shows the need for extending this investigation into models 
other than one-story systems to study the torsional behavior of high-rises.  

Summary and Future work 

This research develops statistical information on building vibrational characteristics such 
as displacement amplification factors and equivalent eccentricity using Monte Carlo simulations 
of one-story systems. Simulation results are verified using records from CSMIP database. 
Building properties such as plan aspect ratio, translational to rotational period ratio, correlation 
between VLLRs stiffness are found to be of great importance for prediction of torsional behavior 
of a building. Conclusions of this study are as follows: 

 Displacement amplification due to torsion is highly affected by Ω. Buildings with a 
translational period identical to rotational period (Ω =1.0) and buildings who are 
insensitive to torsion (Ω >1.4) tend to have smallest amplification and are least 
affected by torsional vibration.  

 An increase in plan aspect ratio results in an increase in displacement amplification. 
 Correlation between VLLRs stiffness reduces displacement amplification due to 

torsion. 
 To account for accidental torsion, the 5% rule is higher than how much an equivalent 

eccentricity requires at a median level. But when higher confidence level is preferred, 
equivalent eccentricity can be larger than 5%.  

This study mainly focuses on torsional effect of one-story symmetric-in-plan linear 
system due to uncertainty in stiffness. Aside from plan aspect ratio and period ratio, building 
height could be one predictor of displacement amplification (as is demonstrated in Figure 2-7). 
In future studies, building height and nonlinear behavior will be studied. 4-story, 8-story, 12-
story and 20-story building models with bilinear hysteretic materials are built to take into 
account stiffness and strength uncertainty. These building models can also capture the effect of 
number of VLLRs along one direction.  
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Abstract 
 

The dynamic response of a building structure to an earthquake excitation is the result of a 
complex interaction between the structural system and the underlying and surrounding geology. 
Since modeling the physics of the coupled soil-structure system is a complex undertaking, the 
state-of-practice has adopted simplified modeling procedures, such as the substructure method. 
Nevertheless, these procedures are often empirical and/or based on idealized assumptions, such 
as linear-elasticity. In this study, our objective is to develop a robust model inversion framework 
that can be utilized to extract information from the real-world building response measurements to 
back-calculate the model parameters that characterize the structural response and soil-structure 
interaction effects.  

Introduction 
 

The dynamic response of a building structures to an earthquake excitation is the result of 
a complex interaction between the structural system and the underlying and surrounding 
geology. The coupled soil-structure response is a function of seismic waves interacting with the 
building foundation, the nonlinear structural and geologic material response, and other energy 
dissipation mechanisms such as friction and viscous damping in the structure and soil. Therefore, 
the prediction accuracy of structural response quantities depends on the accuracy of the 
employed numerical model in characterizing these different sources of seismic energy 
dissipation and the dynamic soil-structure interaction. 

Since modeling the physics of the coupled soil-structure system in detail is a complex 
undertaking, especially for practical design or assessment purposes, the state-of-practice has 
adopted simplified modeling procedures (e.g., [1], [2]). Soil-structure interaction effects are 
usually modeled using a substructure approach, where the soil flexibility and energy dissipation 
are modeled using distributed springs and dashpots [3]. Numerous simplified solutions exist to 
determine the stiffness and damping coefficients of these elements; solutions that are nonetheless 
based on idealized and restrictive assumptions. Examples of these assumptions include linear-
elastic soil and structural behavior, uniform soil half space (or soil profiles with stiffness 
gradually varying with depth [4]), canonical foundation geometry, etc. These assumptions and 
the empirical nature of mechanical analogs such as soil springs and dashpots, could potentially 
lead to large error margins in predicting the seismic response of real-world building structures, 
even if the simplified models have demonstrated acceptable accuracy for ideal cases. The 
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applicability of these models becomes even more questionable for nonlinear response time 
history analyses. This is due to the fact that the concept of soil impedance functions and the 
resulting equivalent soil springs and dashpot is mainly based on the premise of linear-elastic 
response behavior. Nevertheless, the coupled soil-structure system is expected to experience 
nonlinearity during strong earthquakes – both material and geometrical (e.g., foundation-soil 
separation during rocking). Thus, the system may deviate substantially from the underlying 
assumptions that have led to substructure modeling techniques for soil-structure interaction 
analysis. 

On the other hand, modern seismic design and assessment codes are progressively 
stirring toward nonlinear finite element (FE) modeling and response simulations for predictions 
of structural and nonstructural seismic demands. In a modern seismic analysis approach, a well-
calibrated nonlinear model is required to precisely predict not only the peak values of response 
parameters, but also the time histories of structural responses. Despite all the advancements 
made in the field of mechanics-based nonlinear structural modeling, the state-of-practice for 
modeling structural damping and soil-structure interaction is still based on empirical 
assumptions. Clearly, there is an inconsistency between the mechanics-based modeling 
techniques available for structural systems and the underlying assumptions guiding the structural 
damping and soil-structure interaction modeling. This could result in an "inconsistent crudeness" 
in state-of-the-art seismic modeling of building structures that this proposal seeks to investigate. 

In this study, we do not seek to develop new models of soil springs and dashpots or 
structural damping. Instead, we seek developing a model inversion framework that can be 
utilized to extract information from the real-world building response measurements to back-
calculate the model parameters that characterize the structural response and soil-structure 
interaction effects. By repeating this effort for different building case studies and earthquake 
records in the long run, our objective is to compare the estimation results with the state-of-the-art 
recommendations, and to provide guidelines on how to improve the state-of-practice structural 
modeling capabilities.  

Model Inversion through Nonlinear FE Model Updating  
 

Suppose that the dynamic response of a building structure is recorded during an 
earthquake event. To simulate the dynamic response of this building structure, a mechanics-
based (linear or nonlinear) FE model is developed. The FE model depends on a set of unknown 
parameters including inertia properties, damping parameters, soil spring and dashpot parameters, 
and parameters characterizing the nonlinear material constitutive laws used in the FE model. 
These parameters are referred to as the model parameters henceforth. Using the recorded input 
ground acceleration time history and the response of the building, the objective is to identify the 
best set of unknown model parameters that minimize the discrepancy between FE predicted and 
measured structural responses. Another objective of is to utilize the measured structural 
responses to jointly estimate the model parameters and input excitation (i.e., foundation input 
motion) time history.  

In this study, the estimation problem is tackled by updating sequentially (i.e., for several 
batch of measurement data) the probability distribution function (PDF) of the unknown model 
parameters (and input excitation) using a Bayesian inference method (e.g., [5], [6]). FE model 



SMIP17 Seminar Proceedings 
 

43 

updating using the measured input excitation and output response of the structure is referred to as 
the input-output model updating. Contrarily, in an output-only FE model updating, one or 
multiple time histories of the dynamic input excitation are also unknown. Therefore, the 
objective of the sequential Bayesian estimation is to estimate jointly the FE model parameters 
and the time unknown time history of the base excitation so that the discrepancies between the 
estimated and measured response quantities are minimized [7].  

Background 

The time-discretized equation of motion of a nonlinear FE model at time step i  (
ki  1 , where k denotes the total number of time steps) is expressed as 

            θfθθqrθqθCθqθM iiiii  ,  (1) 

where   DOFnDOFn θM  = mass matrix,   DOFnDOFn  θC  = damping matrix, 

   1,  DOFn
ii θθqr  = history-dependent (or path-dependent) internal resisting force vector, 

      1,,  DOFn
iii θqθqθq   = nodal displacement, velocity, and acceleration response vectors, 

respectively, 1 θθ n  = FE model parameter vector,   1 DOFn
i θf  = dynamic load vector, and

DOFn  = number of degrees-of-freedom. In the case of uniform (or rigid) seismic base excitation, 

    g
ii uLθMθf   where gnDOFn

uL 


  = base acceleration influence matrix, and 
1


gng

i
uu    

denotes the seismic input ground acceleration vector. Using a recursive numerical integration 
rule, such as the Newmark-beta method [8], Eq. (1) is reduced to a nonlinear vector-valued 
algebraic equation that can be solved recursively and iteratively in time to find the nodal 
response vector at each time step. In general, the response of a FE model at each time step is 
expressed as a function (linear or nonlinear) of the nodal displacement, velocity, and/or 
acceleration response vectors at that time step. Denoting the response quantity predicted by the 

FE model at time step i by 
1

ˆ


 yy
n

i  , it follows that  

 00:1 ,,,ˆ qquθhy  g
iii   (2) 

where  ...ih  is the nonlinear response function of the FE model at time step i. The measured 
response vector of the structure, iy , is related to the FE predicted response, iŷ , as 

   g
iii

g
ii :1:1 ,ˆ, uθyyuθv    (3) 

in which 
1

 yv
n

i   is the simulation error vector and accounts for the misfit between the 
measured and FE predicted response of the structure. This misfit stems from the output 
measurement noise, parameter uncertainty, and model uncertainties. The latter stands for the 
mathematical idealizations and imperfections underlying the FE model, which result in an 
inherent misfit between the FE model prediction and the measured structural response [9]. In the 
absence of model uncertainties, it is assumed here that the measurement noises are stationary, 
zero-mean, independent Gaussian white noise processes (i.e., statistically independent across 
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time and measurement channels) [10]. Therefore, the probability distribution function (PDF) of 
the simulation error in Eq. (3) is expressed as 

 
 

i
T
i

ni ep
vRv

y R
v

1
2

1

2/12/π2

1


  (4) 

in which R  denotes the determinant of the diagonal matrix yyR
nn  , which is the (time-

invariant) covariance matrix of the simulation error vector (i.e.,   iE T

ii  ,vvR ).  

 In an output-only FE model updating problem, the FE model parameter vector (θ) and the 

time history of the seismic input ground acceleration at each time step ( g
k:1u ) are unknown and 

modeled as random variables (the corresponding random variables are denoted by Θ and g
k:1U , 

respectively). Using Bayes’ rule, the posterior probability distribution of the unknowns can be 
expressed as 

   
 k

g
k

g
kk

k
g

k
p

pp
p

:1

:1:1:1
:1:1

,,
,

y

uθuθy
yuθ


 





  (5) 

where  g
kkp :1:1 ,uθy   =  kp :1v  = likelihood function,  g

kp :1,uθ   = joint prior distribution of the 

random variables Θ  and g
k:1U , and  kp :1y  = normalizing constant independent of Θ  and g

k:1U . 

The objective of the output-only FE model updating problem is to estimate jointly the unknown 
model parameters and the ground acceleration time history such that their joint posterior PDF 
given the measured response of the structure is maximized, i.e., 

  













k
g
k

g
k

g
k p :1:1

:1,
MAP:1 ,maxargˆ,ˆ yuθuθ

uθ





 
(6) 

in which  TT

k

TT

k yyyy ,,..., 21:1  = time history of the measured response of the structure, and 

MAP stands for the maximum posterior estimate. The estimation uncertainty is quantified by 
evaluating the parameter estimation covariance matrix at the MAP estimate. 

Since the model inversion problem is highly nonlinear, a sequential estimation approach, 
referred to as the sequential Bayesian estimation method, is used in this study to improve the 
computational efficiency and convergence rate. In this approach, the estimation time interval is 
divided into successive overlapping time windows, referred to as the estimation windows. The 
estimation problem is solved at each estimation window to estimate the posterior PDF of 
unknown parameters. The first two moment of distribution (i.e., mean vector and covariance 
matrix) of the parameters are then transferred to the next estimation window and used as prior 
information. The sequential Bayesian estimation method approach is schematically shown in 
Figure 1.  Two approaches are developed to find the posterior mean vector and covariance matrix 
of the unknown parameters and from the prior estimates: (i) a FE model linearization approach, 
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and (ii) an unscented transformation approach. These two methods are described in the next two 
sections, respectively. 

 
Figure 1: Schematic presentation of the sequential Bayesian FE model updating method. 

 

Sequential Bayesian Estimation using FE Model Linearization 

Following Eq. (5) and the sequential estimation logic described above, the natural 
logarithm of the posterior joint PDF of the FE model parameters and base acceleration time 
history at the mth estimation window, spanning from time step mt1  to time step mt 2 , can be derived 
as  
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in which 












 mtmt

pc
2:1

log y  is a constant. In this equation, the time history of the base 

acceleration from time step 1 to 11 mt , (i.e., g
mt 11:1 

u ), is assumed to be deterministic and equal to 

the mean estimates obtained from previous estimation sequences. For notational convenience, an 

extended parameter vector at the mth estimation window is defined as 
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By substitution of Eq. (8) into Eq. (7) and assuming a Gaussian distribution for the prior joint 
PDF, it follows that 
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where 0k  is a constant, and 
mψ̂  and 

ψP̂  are the prior mean vector and covariance matrix of the 

extended parameter vector at the mth estimation window.    yyR
nltnlt 

 
~  is a block diagonal 

matrix, in which the diagonals are the simulation error covariance matrix R . To find the MAP 
estimate of mψ , the posterior PDF in Eq. (9) is maximized, i.e., 
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Eq. (10), which is a nonlinear algebraic equation in mψ  can be solved using an iterative first 

order approximation of the FE response function 
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, 
 represents the FE response sensitivities with respect to the 

extended parameter vector, evaluated at the prior mean values of the extended parameter vector, 

mψ̂ . This matrix is denoted by C hereafter for notational convenience. Substituting Eq. (11) into 

Eq. (10) and neglecting the higher order terms results in the following (first order approximate) 
equation for the MAP estimate of mψ : 
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in which 
mψ̂  is the updated (or the posterior) mean estimate of mψ . It can be shown that the 

term   1
111 ~ˆ~~ 

 





  RCPCRCK ψ

TT  is similar to the Kalman gain matrix, as used for Kalman 

filtering [11].  

The updated 
mψ̂  from Eq. (12) is iteratively used as the new point for the linearization of 

the nonlinear FE model in Eq. (11) to find an improved estimation. This iterative prediction-
correction procedure at each estimation window is equivalent to an iterative EKF method for 
parameter-only estimation [11]. Following the EKF procedure, the prior covariance matrix of the 

extended parameter vector 
m,

ˆ
ψP  is updated to the posterior covariance matrix 

m,
ˆ

ψP  after each 

prediction-correction iteration. Moreover, it is assumed that both the prior and posterior joint 
PDF of the extended parameter vector are Gaussian. The updated estimation covariance matrix, 
can be derived as 

         TT

m

T

mmmmm E KRKKCIPKCIψΨψΨP ψψ

~ˆˆˆˆ
,,    (13) 

Furthermore, to improve the convergence of the iterative prediction-correction procedure, a 
constant disturbance matrix is added to the posterior covariance matrix at each iteration to provide 
the prior covariance matrix for the next iteration, i.e., 

QPP ψψ  
 ii ,1,

ˆˆ  (14) 

where Q  is a constant diagonal matrix with small positive diagonal entries (relative to the diagonal 

entries of matrix 
i,

ˆ
ψP ). The matrix Q  is referred to as process noise covariance matrix in the 

Kalman filtering world. The subscript i in Eq. (14) denotes the iteration number. 

Sequential Bayesian Estimation using the Unscented Transformation 

While the terms ψyP̂  = cross-covariance matrix of Ψ  and Y , and yyP̂  = covariance 

matrix of Y  in are derived by linearizing the nonlinear FE model in the previous section, an 
unscented transformation (UT) method (e.g., [12], [13]) can also be used to derive the ψyP̂  and 

yyP̂ . UT is a deterministic sampling approach to propagate the uncertainty in Ψ  through the 

nonlinear FE model; thus, circumventing the linearization of the FE model. Therefore, it results 
in a more accurate estimation of the ψyP̂  and yyP̂ , especially for highly nonlinear models. 

Indeed, using the UT method is at the cost of evaluating the FE model at multiple samples of the 
vector Ψ ; nevertheless, the additional FE computations can be performed in parallel ( [14], [15]).  

In this approach, the nonlinear FE model is evaluated separately at a set of 
deterministically selected realizations of the extended parameter vector Ψ , referred to as the 
sigma points (SPs) denoted by j , which are selected around the prior mean estimate Ψ̂ . In 
this study, a scaled UT based on  12  Ψn  sigma points (i.e.,  12,,2,1  Ψnj  ) is used, 
where Ψn  denotes the size of the extended parameter vector. The mean and covariance matrix of 
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the FE predicted structural response Y , and the cross-covariance matrix of Ψ  and Y  are 
respectively computed using a weighted sampling method as  
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where j
mW  and j

eW  denote the mean and covariance weighting coefficients, respectively [13]. 
With this approach, the Kalman gain matrix can be computed and the sequential parameter 
estimation can be pursued following Eqs. (12) and (13). 

FE Model Updating of the Millikan Library Building 

The Millikan Library 

The Millikan Library is a reinforced concrete shear wall building with a basement level 
and nine stories above the ground. It is located on the California Institute of Technology 
(Caltech) campus in Pasadena, and was constructed from 1966 to 1967. Millikan library has been 
the subject of several studies, especially in the fields of system identification and structural 
health monitoring. The building is a unique case for soil-structure interaction studies, due to its 
unique structural and soil properties (Figure 2). 

The Millikan Library structure is 43.9 m tall above ground including the roof level. It has 
a 4.3 m deep basement below the ground level. Except for the first and the roof levels, which are 
4.9 m high, all floors are 4.3 m high. The basement is encased by surrounding retaining shear 
walls. A surrounding precast concrete wall enlaces the roof story to protect the installed 
mechanical equipment. The lateral force resisting system comprises of shear walls in the NS 
direction on the east and west sides of the building, and shear walls around the elevator shaft in 
the north-south and east-west directions. The floor system consist of lightweight reinforced 
concrete slabs supported by reinforced concrete beams. The foundation system consist of a 1.2 m 
deep central pad 6 meters below the ground level, and two foundation beams in the north and 
south sides of the building 5 meters below the ground level. Four stepped beams connect the 
foundation pad to the north and south foundation beams. This special foundation system acts 
somehow similar to a rocking chair [16]. 

FE Model Development 

Using the available structural drawings, a detailed FE model of the structural system is 
developed. We used the graphic-user-interface of SAP2000 software [17] to develop the initial 
geometry of the model. The SAP2000 model was then transformed to OpenSees [18] using a 
series of custom-developed Matlab interfaces based on the SAP2000 Application Programming 
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Interface (API). The developed FE model in OpenSees is nonlinear, with an option to switch to a 
linear model. The model is based on fiber-section force-based beam-column elements to model 
beams and columns. Kent-Scott-Park uniaxial material model with linear tension softening is 
used to model concrete and Giuffré-Menegotto-Pinto material is utilized to model reinforcing 
steel. A multi-layered nonlinear shell element with damage-plasticity concrete material model 
[19] is used to model shear walls and slabs. The kinematic interaction of precast claddings on the 
north and south faces of the building with the structural system are modeled using diagonal brace 
elements, with an elastic-perfectly plastic material model. The brace elements are assumed to 
have a rectangular cross section of 0.1 x 0.1 m. By adjusting the elastic modulus and yield 
strength of their material model, the stiffness and force contribution of the precast panels to the 
dynamic response of the structure are modeled.   

Figure 3 shows the geometry of the model. Different colors in this figure present different 
section properties used to define the shell (shear wall and slab) and beam-column elements. The 
model is meshed manually to adjust the size and shape of elements. It consists of 1,885 frame 
elements, 4,043 shell elements, and 27,526 digress of freedom.  

  
Figure 2: Millikan Library building. Figure 3: Developed FE model of the 

Millikan Library structure. 
 

Several earthquake records are available for the Millikan Library. Details about sensor 
arrangements [20] and recorded earthquake data [16] are available in the literature and are not 
repeated here for brevity. For the purpose of this study, we used only the 2002 Yorba Linda 
earthquake record, which is a low-amplitude earthquake (PGA ~ 0.8% g). Although the level of 
considered earthquake in this study is low and therefore, may not activate the material 
nonlinearity, the developed model updating process is general and can be used with linear and or 
nonlinear models regardless of the earthquake intensity.  

FE Model Updating using Foundation-Level Input Motions 

At this stage, we use the measured acceleration response at the foundation level (i.e., 
foundation-level input motion) and the measured output response of the structure for the FE 
model updating. The objective of this input-output model updating is to estimate the unknown 
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model parameters of the superstructure, regardless of the soil subsystem. For this purpose, we 
start with an identifiability analysis to determine the most identifiable parameter sets. After 
selecting the parameter sets, we verify the estimation algorithms using simulated data. Finally, 
we use the real measurement data to estimate the model parameters.  

Model Identifiability and Parameter Selection 

Identifiability analysis is an approach to investigate if the unknown parameters can be 
uniquely estimated from data. To assess the parameter identifiability we used an information-
theoretic approach [21] to measure the amount of information contained in measurement data 
about an unknown model parameter. The entropy gain is used to quantify the amount of 
information each unknown parameter receives from the measurement data. Comparing the 
entropy gain between different parameters is used to assess the relative identifiability of 
parameters. Moreover, the mutual entropy gain between parameter pairs is used to investigate the 
relative correlation between the parameters. This entropy gain and mutual entropy gain are used 
to guide the selection of the estimation parameters.  

To assess the identifiability of model parameters, first we start with a nonlinear FE 
model. Twenty different parameters that characterize the material and inertia properties of model 
are selected, as shown in Table 1. Since the amplitude of the 2002 Yorba Linda earthquake is 
low, material yielding is not expected and therefore, only the elastic-related material parameters 
for reinforcing steel are included in the identifiability analysis. On the contrary, since the precast 
cladding are expected to yield under small inter-story drift ratios, the yield strength of brace 
elements is included in the analysis. 

For a given input motion, the entropy gain for each parameter is a function of the initial 
(prior) value of the parameter, which is unknown in advance. The incorrect selection of the prior 
model parameter values can result in an incorrect identifiability assessment. Therefore, without 
the knowledge of correct parameter values, the identifiability assessment results would not be 
accurate anyways; but we still expect to have an approximate assessment of the identifiability.  
Initial material parameter values for steel and concrete are selected based on the material 
properties reported in the as-built drawings. The distributed floor mass (aside from self-mass of 
the structural materials) are estimated based on the approximate mass contribution of 
nonstructural components and live loads, and are in agreement with the building mass reported in 
[22]. The mass of each precast cladding panel is approximated as 5,000 kg based on Kuroiwa 
[22]. The stiffness, of the brace elements (used to model the kinematic interaction effects of the 
claddings) are approximated based on the modal analysis results before and after their 
installation ( [23], [24]). The yield strength of the brace elements is approximated based on the 
experimental literature on the precast cladding panels (e.g., [25]). It should be noted that the 
stiffness and strength contribution of precast panels depends highly on the connection and 
construction details. In the absence of any detailed information about the precast panels in the 
Millikan Library, we postulated its properties based on engineering judgement. The model 
parameter values used for identifiability assessment are listed in Table 1.  
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Table 1: Twenty model parameters used for the first-step identifiability assessment.  
Parameter ID Description Value 

1 Elastic modulus (Es) of steel rebar in beams 180 GPa 

2 Compressive strength (f'c) of concrete in beams 27.6 MPa 

3 Tensile strength (f't) of concrete in beams  1.73 MPa 

4 Elastic modulus (Ec) of slab concrete in 1st floor 21 GPa 

5 Elastic modulus (Ec) of slab concrete in 2nd floor 21 GPa 

6 Elastic modulus (Ec) of slab concrete in 3rd to 5th floors 21 GPa 

7 Elastic modulus (Ec) of slab concrete in 6th to roof floors 21 GPa 

8 Compressive strength (f'c) of concrete in columns 34.5 MPa 

9 Tensile strength (f't) of concrete in columns 1.94 MPa 

10 Elastic modulus (Ec) of shear wall concrete in basement 21 GPa 

11 Elastic modulus (Ec) of shear wall concrete in 1st story 21 GPa 

12 Elastic modulus (Ec) of shear wall concrete in 3rd to 5th stories 21 GPa 

13 Elastic modulus (Ec) of shear wall concrete in 6th to roof stories 21 GPa 

14 
Elastic modulus (E) of brace elements representing the precast 

claddings 
25 GPa 

15 Distributed floor mass (m) on 1st to 9th floors 400 kg/m2 

16 Distributed floor mass (m) on basement floor 200 kg/m2 

17 Distributed floor mass (m) on roof 300 kg/m2 

18 Yield strength (fy) of brace elements representing the precast claddings 140 MPa 

19 Mass-proportional Rayleigh damping coefficient 0.1508 

20 Stiffness-proportional Rayleigh damping coefficient 0.0038 
 

 

Figure 4 shows the entropy gain of these twenty parameters. The entropy gain (measured 
in Nats) is the amount of information that the measurement data (i.e., the model responses 
herein) carries about each model parameters. It can be seen that the entropy gain of parameters 
#16 (distributed floor mass on basement floor), and #18 (yield strength of brace elements) is 
zero, which means that the structural response (for this specific base excitation) is not sensitive 
to these parameters. Those parameters that have the higher entropy gain are more likely to be 
identifiable.  

Figure 5 shows the mutual entropy gain between the parameter pairs. This figure is used 
to investigate the dependence between parameters, which is presented with dark colors: darker 
colors means stronger relative dependence. For example, Figure 5 that there are strong mutual 
dependence between parameters #9 (Tensile strength of concrete in columns), #10 (Elastic 
modulus of shear wall concrete in basement), #11 (Elastic modulus of shear wall concrete in 1st 
story), and #12 (Elastic modulus of shear wall concrete in 3rd to 5th stories). Moreover, there are 
some competing effects between these parameters and parameters #1 (elastic modulus of steel 
rebar in beams), #15 (distributed floor mass on 1st to 9th floors), and #17 (distributed floor mass 
on roof). This plot along with the plot presented in Figure 4 can be used to choose the estimation 
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parameters. The parameters that gain relatively small amount of information from the 
measurement dataset, or have strong dependencies on the other estimation parameters can be put 
aside (i.e., fixed) during the estimation process to enhance the estimation performance. 

Figure 4: Entropy gain (in Nats) of the twenty 
model parameters. 

Figure 5: Relative mutual entropy gain 
between the parameter pairs. 

 

Investigation of these two figures and the FE predicted response of the structure at the 
component-level reveals that the structure does not experience severe nonlinearity during this 
earthquake motion. Tensile cracking of concrete is expected in the columns (see parameter #9 in 
Figure 4), but no yielding is expected. Therefore, we decided to reduce the FE model to a linear 
elastic model for this earthquake excitation. Based on the presented results, we selected six final 
parameters to be estimated, as listed in Table 2. The initial (effective) elastic modulus values for 
concrete in this table are selected to account for tensile cracking under gravity loading. 

 

Table 2: Final selected model parameters for linear-elastic model.  
Parameter 

ID 
Description Value 

1 Elastic modulus of brace elements representing the precast claddings (EClad) 25 GPa 

2 Elastic modulus of beams and slabs (all floors) (Efloor) 15.8 GPa 

3 Elastic modulus of shear wall and column concrete at 1st and 2nd stories (EW&C1) 22.1 GPa 

4 Elastic modulus of shear wall and column concrete at 3rd to roof stories (EW&C2) 22.1 GPa 

5 Stiffness-proportional Rayleigh damping coefficient (b) 0.0038 

6 Distributed floor mass on 1st to 9th floors (m)  400 kg/m2 
 

 

Model Inversion using Recorded Yorba Linda Earthquake Data 
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After successful verification of the estimation algorithm, we utilize the real data recorded 
at the Millikan library building during the 2002 Yorba Linda earthquake for the model updating. 
The six unknown model parameters as introduced before are estimated. The initial and final 
estimate of parameters along with the final estimated coefficient of variation (COV) are listed in 
Table 3. Figure 6 shows the time history of the posterior mean and coefficient of variation 
(COV) of the model parameters, which presents the estimation uncertainties. To evaluate how 
well the updated model prediction matches the measurement records, Figure 7 compares the 
measured acceleration response time histories with those estimated using the initial and final 
estimates of the model parameters. Furthermore, Figure 8 compares the relative root mean square 
error (RRMSE) of the predicted FE model responses using the initial and final parameter 
estimates. This figure clearly shows that the model updating process has reduced the RRMSE 
substantially. Nevertheless, the time history plots in Figure 7 shows non-negligible differences 
between the estimated and measured response time histories, especially at the middle stories of 
the building and for the north-south acceleration responses. These differences are most likely due 
to the incorrect base rocking motions applied on the model. The rocking components of the base 
motion are calculated using the vertical accelerations recorded at different locations on the 
foundation level, and the (approximate) horizontal distance between the sensor locations. 
However, the vertical acceleration data are noisy and moreover, any approximation in 
determining the sensors’ location may result in erroneous estimation of the rocking components 
of base acceleration. The effects of model uncertainty is another source of error that can 
contribute to the discrepancies between the estimated and measured structural responses in 
Figure 7.  

 

Table 3: Initial and final estimate of model parameters using Yorba Linda earthquake data. 
Parameter ID Parameter Initial Estimate Final Estimate Estimated COV (%) 

1 EClad 20 GPa 7.81 GPa 1.60 

2 Efloor 21 GPa 4.13 GPa 0.81 

3 EW&C1 26.7 GPa 16.58 GPa 0.45 

4 EW&C2 26.7 GPa 32.06 GPa 0.84 

5 b 0.0038 0.0035 1.13 

6 m 250 (kg/m2) 153.84 (kg/m2) 0.61 
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Figure 6: Time histories of the posterior mean (left) and coefficient of variation (COV) (right) 

of the model parameters estimated from the Yorba Linda earthquake records. 
 

 

Output-Only Model Inversion 

At this stage, we use the updated model of the superstructure, obtained from previous 
step, and the measured responses of the structure for an output-only FE model updating. The 
objective is to estimate the foundation input motions (FIMs) and the stiffness and viscosity of the 
soil springs and dashpots used to model the inertial soil-structure interaction effects. For this 
purpose, and similar to the previous step, we start with an identifiability analysis to evaluate the 
sensitivity of the structural response with respect to the soil stiffness and viscosity parameters. 
Then, we use the real measurement data to estimate the soil parameters.  
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Figure 7: Comparison of the measured structural responses with the structural responses 

predicted using the initial and final estimate of model parameters.  
 

 
Figure 8: Relative root mean square error (RRMSE) of the FE predicted structural responses 

using the initial and final estimate of model parameters. 
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Model Identifiability and Parameter Selection 

Distributed linear soil springs and dashpots are included underneath the foundation slab 
of the updated FE model, obtained from the previous step. Three linear springs and three linear 
viscous dashpots are modeled independently in x-, y-, and z-direction at each nodal point of the 
foundation slab. The stiffness of soil springs and viscosity of dashpots are computed using the 
subgrade modulus (i.e., soil stiffness per unit area), and viscosity modulus (i.e., viscosity of the 
soil per unit area), respectively, in x-, y-, and z-direction. The spring stiffness is calculated by 
multiplying the tributary area of the nodal point by the corresponding subgrade modulus. 
Similarly, the dashpot viscosity is calculated by multiplying the tributary area of the nodal point 
by the corresponding viscosity modulus. 

Six different (unknown) subgrade modulus, namely kx, ky1, ky2, kz1, kz2, kz3, are defined 
for different foundation regions. These regions and the corresponding subgrade modules are 
shown Figure 9. Similarly, six (unknown) parameters are used to define the viscosity modulus of 
soil. The viscosity modulus parameters (cx, cy1, cy2, cz1, cz2, cz3) characterize the viscosity of the 
soil per unit area, and are specified in Figure 9.  

 

  

(a) (b) 
Figure 9: (a) six unknown subgrade modulus parameters, and (b) six unknown viscosity 

modulus parameters defined for different foundation regions. The figure shows the foundation 
plan of the Millikan library including the central pad (at -6 m elevation), and the two 

foundation beams on the north and south sides (at -5 m elevation). 
 

To assess the identifiability of these twelve soil parameters, we pursue the same 
identifiability analysis approach presented before. Initial estimate of soil model parameters are 
assigned following the results presented in [16], and the NIST standard recommendations [3], 
and are listed in Table 4.  
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Table 4: Twelve soil model parameters used for the first-step identifiability assessment. 

Parameter ID Description 
Initial 

Estimate 
Parameter ID Description 

Initial 
Estimate 

1 kx 65 MN/m3 7 cx 700 kN.s/m3 

2 ky1 40 MN/m3 8 cy1 700 kN.s/m3 

3 ky2 60 MN/m3 9 cy2 700 kN.s/m3 

4 kz1 25 MN/m3 10 cz1 1000 kN.s/m3 

5 kz2 22.5 MN/m3 11 cz2 1000 kN.s/m3 

6 kz3 37.5 MN/m3 12 cz3 1000 kN.s/m3 
 

 

Figure 10 shows the entropy gain of the soil parameters. These plots presents the 
cumulative sensitivity of the FE model response (measured at 34 output channels) to the twelve 
soil parameters. The small entropy gain of some parameters such as ky1, cy1, cz2, and cz3 makes 
them weakly identifiable, and therefore these parameters are removed from the estimation 
process. Moreover, Figure 11, which shows the mutual entropy gain between the parameter 
pairs, indicates a strong dependence between kz1, kz2, and kz3. This is not unexpected because the 
structural response does not include the vertical components of the acceleration (except on the 
foundation level). Therefore, although the rocking stiffness of the foundation system might be 
identifiable, its vertical stiffness remains weakly identifiable. By investigating these results, we 
decide to limit the number of estimation parameters to eight including:  kx, ky, kz1, kz2, kz3, cx, cy, 
and cz. The three vertical stiffness are kept for the estimation despite their dependency.  

Figure 10: Entropy gain (in Nats) of the twelve 
soil parameters. 

Figure 11: Relative mutual entropy gain 
between the soil parameter pairs. 

 
Model Inversion using Recorded Yorba Linda Earthquake Data 

The real data recorded at the Millikan library building during the 2002 Yorba Linda 
earthquake are now utilized for an output-only FE model updating to estimate the eight soil 
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parameters and the three components of the foundation input motion (FIM), namely in EW, NS, 
and Up directions. The initial and final estimate of parameters along with the estimated 
coefficient of variation (COV) are listed in Table 5. Figure 12 shows the time history of the three 
components of the estimated FIM. The estimation uncertainties are quantified through the 
standard deviation plots presented in this figure. Figure 13 shows the time history of the posterior 
mean and coefficient of variation (COV) of the soil parameters, which quantifies the estimation 
uncertainties. The large estimation uncertainties indicate the potential inaccuracy in the final 
parameter estimates. To evaluate how well the updated model prediction matches the 
measurement records, Figure 14 compares the measured acceleration response time histories 
with those estimated using the final estimates of the model parameters. This figure shows a 
remarkable match between the estimated and measured acceleration responses.  

 

  
(a) (b) 

Figure 12: Estimated foundation input motion (FIM) time history (left) and standard deviation 
(S.D.) of the estimated FIM time history (right). 

 

Table 5: Initial and final estimates of soil parameters. 
Parameter ID Parameter Initial Estimate Final Estimate Estimated COV (%) 

1 kx 65 MN/m3 192.1 MN/m3 19.4 

2 ky 50 MN/m3 13.0 MN/m3 40.3 

3 kz1 20 MN/m3 106.6 MN/m3 5.4 

4 kz2 22.5 MN/m3 279.3 MN/m3 14.4 

5 kz3 37.5 MN/m3 408.8 MN/m3 9.7 

6 cx 700 kN.s/m3 2.4 MN.s/m3 24.1 

7 cy 700 kN.s/m3 1.8 MN.s/m3 7.9 

8 cz 1000 kN.s/m3 5.9 MN.s/m3 4.9 
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Figure 13: Time histories of the posterior mean (left) and coefficient of variation (COV) (right) 
of the model parameters estimated from the Yorba Linda earthquake records. 

 

 

Summary and Conclusions 
 

In this study, we developed a nonlinear FE model updating framework using a sequential 
Bayesian estimation approach based on the unscented transformation method. The FE model 
updating algorithm can estimate the unknown model parameters and/or the time history of 
dynamic input excitation using the measured structural responses. The algorithm can be used for 
input-output structural model updating (i.e., estimating the unknown model parameters using the 
foundation level input motion and the output response of the structure), and for output-only 
model updating (i.e., estimating jointly the unknown model parameters and the time history of 
input excitation). This capability has been used in this study to estimate the structural model 
parameters, the stiffness and viscosity of soil subsystem, and the foundation input motions (FIM) 
for the Millikan library. 
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Figure 14: Comparison of the measured structural responses with the structural responses 
predicted using the final estimate of soil parameters and FIM.  

 

We first developed a detailed FE model of the Millikan library structure. Through an 
identifiability analysis, we determined the sensitivity of the structural response to various model 
parameters, and selected a set of parameters that were likely to be identifiable. Since, we used 
the 2002 Yorba Linda earthquake data, which is a low-amplitude earthquake, we used a linear-
elastic FE model of the building structure. At the first step, we performed an input-output model 
updating to estimate the model parameters related to the structural system. For this purpose, we 
utilized the foundation motion, measured on the foundation level, and the output response of the 
structure to estimate six structural model parameters. At the second step, we performed and 
output-only model updating to estimate the foundation input motions (FIM) and the parameters 
characterizing the stiffness and viscosity of the soil spring and dashpots. For this purpose, the 
structural model parameters were fixed at the parameter estimates obtained from the input-output 
model updating step. Eight soil-related parameters and three components of the FIM were 
estimated using the recorded response of the structure during the Yorba Linda earthquake.  

The objective of this study was to develop, verify, and validate a FE model updating 
capability that can be used with real-world data. The FE model updating is a tool to integrate 
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mechanics-based models with measurement data obtained from real world, to reduce the 
uncertainties in the model and thus, provide more accurate information about the system 
properties, behavior, and its parameters. The long-term goal of this research initiative is to use 
this approach for investigating the soil model parameters that are used to model the inertial soil-
structure interaction effects.  
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Abstract 
 

This paper presents interim results from a study on the identification of spatial variability 
in bridge Foundation Input Motions (FIMs) observed during the 2014 South Napa Earthquake. 
Bridges are especially prone to the spatial variability of ground motions because they extend 
over relatively long distances. The primary objective of this project has been to develop a 
framework to identify FIMs from response signals recorded at instrumented bridges, because, in 
general, FIMs cannot be measured directly. In this progress paper, we present the development 
and verification of a framework developed for this purpose and its application to a real-life case 
study—namely, the Golden Gate Bridge. This bridge was chosen, because initial analysis 
suggested that its behavior is not significantly affected by inertial soil-structure interaction 
effects, and thus, the identified FIMs could be—at least partially—validated. Results obtained 
from both verification (identification using simulated response signals) and validation 
(identification using real-life data) confirmed the applicability of the developed framework, 
which will be applied to the other long-span bridges affected by the 2014 South Napa 
Earthquake in a follow-up study.  

Introduction 

In order to accurately estimate the response of bridge structures under earthquake ground 
motions, highly detailed and accurate Finite Element (FE) models are necessary; but they are not 
sufficient by themselves. While presently available commercial/open-source software packages 
enable accurate response predictions for bridges, our inability to apply physically 
accurate/consistent input motions remains a major challenge. This issue is even more challenging 
for long-span bridges due to the spatial variability of input motions [1]. In current practice, 
California Department of Transportation (Caltrans), for example, takes spatial variability into 
account by computationally producing ground motions at each pier of the bridge using one-
dimensional site-response analyses. That is, the seismic motion estimated on the bedrock is 
transferred to the surface at each pier using specific soil properties at each pier’s site. In the 
presence of kinematic Soil-Structure Interaction (SSI) effects, these Free-Field Motions (FFMs) 
must also be converted to the so-called Foundation Input Motions (FIMs) (see Figure 1). 
Therefore, while ground motions at the bedrock of the bridge site may be uniform, a long bridge 
may still experience differing excitations at different piers. This procedure assumes vertically 
propagating horizontally polarized waves, which is not necessarily true. The deconvolution 
procedures used for estimating the bedrock motions from ground surface records also introduce 
various numerical errors (including unrealistically large motions at the bedrock). Conversion of 
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FFMs into FIMs is another source of potentially significant error, and at the present time, there is 
no validated procedure to carry out the said conversion.  

 

 

Figure 1. Schematic representation of dynamic analysis of a long bridge. 

The back-calculation of FIMs from real-life data is a key capability to study spatial 
variability effects and to validate (or to refute) new or existing procedures that predict the 
foundation input motions. In our previous study [2], we showed some evidences of spatial 
variability in data recorded on the foundation level of bridges during 2014 South Napa 
earthquake. However, due to possible inertial soil-structure interaction effects, these foundation 
level measurements may not be representative of FIMs. To resolve this issue, we proposed a 
framework to recover FIMs from recorded response of bridge structures instrumented through 
California Strong Motion Instrumentation Program (CSMIP) [3]. In the present paper, we verify 
and validate the proposed framework through both simulation and real-life data obtained from 
the Golden-Gate Bridge. There is almost no overlap between this paper and our previous study in 
SMIP16, so the readers should refer to [2] for more details about the definitions, objective, and 
overall plan. Also, the methods developed to recover bedrock motion and site effect transfer 
function from identified FIMs are discussed in [2] which are not discussed here for the sake of 
space. Details of these methods can be found in [4] and [5].  

Data Selection 

As mentioned above, this project will use data recorded during the 2014 South Napa 
earthquake. To be able to select earthquake data sets in systematic way, a Matlab [6] toolbox, 
called CSMIP-BRIDGE, is developed, which is able to connect to the Center for Engineering 
Strong Motion Data (CESMD)1 [7], collects meta data of all bridges instrumented through 
CSMIP. An overview of this toolbox is shown in Figure 2. Current version of this toolbox has a 
database which can be updated manually by the user. Also, there is search form through which 
bridges with specific characteristics can be identified. As seen in Figure 2, currently there are 81 
instrumented bridges in the database. 17 of the 80+ instrumented bridges recorded the South 
Napa earthquake. In our previous study [2], we described a process through which 7 bridges 
(CSMIP 68184, 68185, 68322, 68682, 58632, 58700, and 67771) can be subject of the current 

                                                            
1 www.strongmotioncenter.org 
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project based on some criteria like level of vibration, sensor distribution, having nearby FFM, 
etc.  

 
Figure 2. CSMIP-BRIDGE toolbox. 

Identification Method 

Our objective is to estimate jointly the model parameters and the time history of the 
foundation input motions (FIMs) using the recorded dynamic response of a bridge structure 
during an earthquake. For this purpose, we adopted the output-only Extended Kalman Filter 
(EKF) presented by Huang et al. [8] in our SMIP16 paper [2]. We successfully verified that 
approach through a simple 39-DOF synthetic example shown in Figure 3 where 6 parameters of 
the structure (modules of elasticity of the deck beam, two Rayleigh damping parameters, and 
three soil-foundation springs) along with three FIMs were unknown. We were able to identify 
unknown parameters and FIMs with measured response simulated at only five locations as 
shown in Figure 4 and Figure 5, respectively. However, that method is not suitable for real-life 
structures that exhibit significant nonlinearities (material and/or geometry). In the present study, 
we have developed a joint parameter and input estimation approach based on the unscented 
Kalman filtering method [9]. The estimation approach is briefly described in this section. 
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Figure 3. Synthetic bridge model with multiple support excitation. 

 
Figure 4. Error convergence rate. 

 
Figure 5. Comparison between exact and identified FIMs. 
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The response of the Finite Element (FE) model of a bridge structure at each time step to a 
multi-support earthquake excitation can be expressed as a (nonlinear) function of the model 
parameter vector, ࣂ, and the time history of the base input motions, ࢛ሷ ଵ:௜

௚ , i.e.,   

ෝ௜࢟ ൌ ݄௜൫ࣂ, ሷ࢛ ଵ:௜
௚ ൯, 

1)
where ݄௜ሺ. ሻ is the nonlinear response function of the FE model at time step ݅, 

encapsulating all the dynamics of the model from time step 1 to ݅. The measured response vector 
of the structure, ࢟௜, is related to the FE predicted response, ࢟ෝ௜, as 

,ࣂ௜൫࢜ ሷ࢛ ଵ:௜
௚ ൯ ൌ ௜࢟ െ ,ࣂෝ௜൫࢟ ሷ࢛ ଵ:௜

௚ ൯, 
2)

in which ࢜௜ ∈ R
௡࢟ൈଵ  is the simulation error vector and accounts for the misfit between 

the measured and FE predicted response of the structure. The simulation error is ideally modeled 
as a zero-mean Gaussian white noise vector (i.e., ࢜௜~ܰሺ૙,  ሻ) by neglecting the effects of܀
modeling error [10]. The objective of the estimation problem is to find the estimates of the 

unknown parameter vector, i.e., ࣒௜ ൌ ቂ்ࣂ, ሷ࢛ ଵ:௜
௚ ்

ቃ
்
, for which the discrepancies between the 

measured and FE predicted responses are minimized in a probabilistic sense. Since the 
estimation problem is highly nonlinear, a sequential estimation approach is used in this study to 
improve the estimation efficiency. In this approach, the time domain is divided into successive 
overlapping time windows, referred to as the estimation windows. The estimation problem is 
solved at each estimation window to estimate the unknown parameter vector. Assume that the 
݉-th estimation window spans from time step ݐଵ

௠ to time step ݐଶ
௠. Therefore, the unknown 

parameter vector at this estimation window is defined as ࣒௠ ൌ ቂ்ࣂ, ሷ࢛ ௧భ೘:௧మ೘
௚,௠ ்

ቃ
்
, where ࣒௠ ∈

R൫௡ࣂା௧೗ൈ௡࢛ሷ ೒൯ൈଵ , in which ݐ௟ ൌ ଶݐ
௠ െ ଵݐ

௠ is the estimation window length, and ࢛݊ሷ ೒ is the number 
of unknown components of the base input motions. The unknown parameter vector, ࣒௠,  is 
estimated using a parameter-only Kalman filtering method. To this end, the unknown parameter 
vector is modeled as a random vector, the evolution of which is characterized by a Gaussian 
Markov process – also known as a random walk. Then, a state space model is set up, in which 
the state equation governs the evolution of the random parameter vector and the measurement 
equation corresponds to the discrepancies between the measured and FE predicted structural 
responses [11], i.e., 

௠,௞ାଵ࣒ ൌ ௠,௞࣒ ൅ (௠,௞, 3ࢽ

௧భ೘:௧మ೘࢟ ൌ ௠,௞ାଵ൯࣒ෝ௧భ೘:௧మ೘,௞ାଵ൫࢟ ൅ ,௧భ೘:௧మ೘,௞ାଵ࢜ 4)

in which ࢽ௠,௞~ܰሺ૙, ,௧భ೘:௧మ೘,௞ାଵ~ܰሺ૙࢜ ,ሻۿ ෩܀ ෩ሻ, where܀ ∈ R൫௧೗ൈ௡࢟൯ൈ൫௧೗ൈ௡࢟൯ is a block 
diagonal matrix, whose block diagonals are the simulation error covariance matrix ܀. In Eqs. (3) 
and (4), ݇ denotes the iteration number. As can be observed, the estimation process at each 
estimation window is iterative, i.e., the mean vector and covariance matrix of the unknown 
parameter vector is iteratively updated based on the discrepancies between the time histories of 
the measured and estimated responses.  

An Unscented Kalman Filtering (UKF) method is used to update the unknown parameter 
vector at each iteration. In this method, the nonlinear FE model is evaluated separately at a set of 
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deterministically selected realizations of the unknown parameter vector, which are referred to as 
the sigma points (SPs) denoted by ࣖ௝. The sigma points are selected around the prior mean 
estimate ࣒෡ି. In this study, a scaled Unscented Transformation (UT) based on 2࣒݊ ൅ 1 sigma 
points (i.e., ݆ ൌ 1,2, … ࣒2݊, ൅ 1) is used, where ࣒݊ denotes the size of the extended parameter 
vector. The mean and covariance matrix of the FE predicted structural responses, and the cross-
covariance matrix of ࣒ and ࢟ are respectively computed using a weighted sampling method as  

ഥ࢟ ൌ ෍ ௠ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

(ෝ௜൫ࣖ௝൯, 5࢟

࢟࢟෡۾ ൌ ෍ ௘ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

ෝ௜൫ࣖ௝൯࢟ൣ െ ෝ௜൫ࣖ௝൯࢟ഥ൧ൣ࢟ െ ഥ൧࢟
்
൅ ,܀

6)

࣒࢟෡۾ ൌ ෍ ௘ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

ൣࣖ௝ െ ෝ௜൫ࣖ௝൯࢟෡ି൧ൣ࣒ െ ഥ൧࢟
்
,

7)

where ௠ܹ
௝  and ௘ܹ

௝ denote weighting coefficients [12]. Now, the UKF prediction-
correction procedure can be employed to estimate the posterior parameter mean vector ࣒෡ା௠,௞ାଵ 

and covariance matrix ۾෡࣒,௠,௞ାଵ
ା  at each iteration. The identification algorithm is summarized in 

Table 1. 

Table 1. Identification algorithm for joint estimation of the model parameters and the FIM time history. 

1. Set the estimation window length ݐ௟, and the start and end points of each estimation window. 
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as 

෡ା଴࣒ ൌ ቂࣂ෡଴
்
, ሷ࢛

௧భ
బ:௧మ

బ
௚,଴ ்

ቃ
்
, and ࣒۾,଴

ା ൌ ቈ
଴,ࣂࣂ෡۾ ૙

૙ ሷ࢛෡۾ ೒,బ
቉.  

3. Define the process noise covariance matrix ۿ and the simulation error covariance matrix	܀. Set up matrix ܀෩. 
4. For the ݉-th estimation window: 

4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown parameter 
vector from the last estimation window (i.e., ࣒෡ା௠ିଵ, and ࣒۾,௠ିଵ

ା ). Set up ࣒෡ା௠,଴ and ࣒۾,௠,଴
ା  based on


1ˆ mψ  and ࣒۾,௠ିଵ

ା . 

4.2. Iterate (݇ = 1, 2, …): 
a. Set ࣒෡ି௠,୩ାଵ ൌ ௠,௞ାଵ,࣒۾ ,෡ା௠,୩࣒

ି ൌ ௠,௞,࣒۾
ା ൅  .ۿ

b. Generate sigma points. Run the FE model for ሺ2࣒݊ ൅ 1ሻ sigma points. Derive  ࢟ഥ, ۾෡࢟࢟, and ۾෡࣒࢟ 
using Eqs. (5)-(7). 

c. Compute the Kalman gain matrix: ۹ ൌ ൯࢟࢟෡۾൫࣒࢟෡۾
ିଵ

. 
d. Find the corrected estimates of the mean vector and covariance matrix of the unknown parameter 
vector: 

෡ା௠,୩ାଵ࣒  ൌ ෡ି௠,୩ାଵ࣒ ൅ ۹ ൫࢟௧భ೘:௧మ೘ െ ௠,௞ାଵ,࣒۾ ,ഥ൯࢟
ା ൌ ௠,௞ାଵ,࣒۾

ି െ ۹൫۾෡࢟࢟ ൅  .෩൯۹்܀

e. Check for convergence:   if ቚ࣒෡ା௠,௞ାଵ െ ෡ା௠,௞ቚ࣒ ൏ 0.02 ൈ ݇ ෡ା௠,௞ିଵ or࣒ ൅ 1 ൐ 10, then move to the 

next estimation window (݉	 ൌ ݉ ൅ 1, go to step 4); otherwise, iterate again at the current estimation 
window (݇	 ൌ 	݇	 ൅ 	1, go to step 4.2).  
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Verification and Validation 

To verify and validate output-only identification method, we use both simulated and real-
life data obtained from the Golden Gate Bridge (GGB), respectively. GGB is chosen for this 
pilot study because it was the only bridge with structural drawings available to us at the present 
time. Also, we expected to have negligible inertial SSI effects due to the flexibility of the bridge, 
so foundation responses would be representative of FIMs and thus could be used to validate the 
identified FIMs. 

The Structural System 

The Golden Gate (Figure 6) is a strait that connects he San Francisco Bay to the Pacific 
Ocean. The GGB is a suspension bridge over Golden Gate, which connects San Francisco to 
Marin County. GGB was the longest (main span) suspension bridge in the world until 1964. It 
has been also declared one of the wonders of the modern world by the American Society of Civil 
Engineers (ASCE). 

 

 
Figure 6. Golden Gate. 

The GGB was completed and opened to traffic on May 28, 1937 [13]. The total length of 
the GGB from abutment to abutment is 2737 m (8981 ft), with other detailed dimensions of the 
bridge as shown in Figure 7. Summarizing from [14], the structural system is briefly reviewed 
here (Geometrical and mechanical properties of these elements can be fund, for example, in [15], 
[16] and not discussed here for brevity). As a suspension bridge, the GGB consists of several 
structural systems. To have a visual understating, Figure 8 is presented. The approach viaducts 
are of steel girder, truss and arch construction. Anchorage blocks (south one is not shown in 
Figure 8), piers, and pylons are of reinforced concrete construction. The towers, deck, and 
cables (main cable and hangers) are of steel construction. The towers are funded directly on the 
underlying rock. The deck, which was originally of reinforced concrete and replaced by 
orthotropic steel plate at the center and reinforced concrete sidewalks in 1980’s, is carried on 
floor beams every 25 ft. These beams are connected to stiffening trusses at both sides. In original 
construction, stiffening trusses were connected to each other with only a top lateral bracing 
system. Later, in 1950’s, a bottom lateral bracing system was added to make the roadway 
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supporting system a closed box and consequently reduce deck’s torsion/twist. The entire 
mentioned stiffening system is suspended every 50 ft with hangers on each side, were replaced in 
1970’s. The main span is fixed laterally and vertically to the towers at its both ends, has a limited 
amount of free movement in the longitudinal direction, and fully released for rotation at its both 
ends through joints.    

While the GGB has experienced several retrofit stages as mentioned above, prompted by 
the 1989 Loma Prieta earthquake, the GGB, Highway and Transportation District2 initiated a 
series of studies of the bridge which concluded necessity of a massive retrofit including [17]: 

 installation of dampers between the stiffening trusses and the towers,  

 replacement of one-quarter of the stiffening truss lateral braces with new ductile 
members,  

 stiffening of the bridge towers to prevent undesirable plate buckling,  

 strengthening of the bridge piers,  

 strengthening of the saddles supporting cables on the tops of the towers,  

 strengthening of the wind-locks connecting the suspended structure and the towers,  

 and strengthening of the pedestals supporting the orthotropic deck. 

The retrofit started in 1997 and was initially planned to be ended in 2012, which was later 
changed several times (lately to 2021). Retrofit carried out in three phases due to several factors 
like level of vulnerability, provided fund, and traffic closure. In Phase 1 (1997-2002), the Marin 
(North) approach viaduct was retrofitted. In Phase 2 (2002-2007), San Francisco (South) 
approach viaduct, anchorage housing, arch, and pylons were retrofitted. Phase 3 (2008-2021) 
was conducted in two sub phases A and B. In Phase 3A (2008-2014), North Anchorage housing 
and pylon were retrofitted. In Phase 3B, main suspension span, main towers, South tower pier 
and fender is going to be retrofitted. This phase is the most challenging part and mainly due to 
this reason the completion date of retrofit project has been extended to 2021. Another reason for 
such extension was to increase the strength of the bridge against factors beyond earthquakes, like 
terrorism attacks. As a summary, details of the retrofit measures conducted at each phase are 
shown in Figure 9.  

 

 
Figure 7. Dimensions of the bridge [18]. 

                                                            
2 This is a special district of the state of California formed in 1928. 
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Figure 8. Various parts of the GGB (3D model is taken from Google Earth). 

 
Figure 9. GGB retrofit measures (http://goldengatebridge.org/projects/retrofit.php). 

Prior Identification Studies 

The oldest study on vibration-based identification of the GGB goes back to 1947 when 
Nishkian measured vertical movement of the bridge deck during its operation [19]. Later, 
Vincent carried out similar measurements using more accurate sensors and compared real-life 
data and model prediction [20], [21]. He used data recorded in a 15 years period by suspended 
mass accelerometers and identified first asymmetric, first and second symmetric vertical natural 
frequencies of the deck as 0.095, 0.125, and 0.158 Hz, respectively. He also reported torsional 
frequency of deck as 0.20 Hz. The rate of studies (not specifically on system identification topic) 
on this bridge got accelerated in 90’s. Tanaka and Davenport [22] re-examined data used by 
Vincent [20]. They also experimentally tested a taut-strip model in laboratory under wind 
turbulence and concluded that at low speed wind first asymmetric mode is the dominant one. 
Abdel-Ghaffar and Scanlan [15], [16] conducted extensive experimental investigations on the 
bridge to determine natural frequencies, mode shapes, and damping ratios from ambient data. 
They used spectral peak picking for natural frequency identification, cross-spectrum analysis for 
mode shape identification, and half-power bandwidth method for damping ratio estimation. They 
could identify 20 vertical, 18 torsional, 33 lateral, and 20 longitudinal modes of the suspended 
span in the frequency range of 0 to 1.5 Hz and 20 longitudinal, 15 torsional, and 11 lateral modes 
of the towers in the frequency range of 0 to 5 Hz. 

Pakzad et al. [23] designed and implemented a scalable wireless sensor network and used 
it for modal identification of GGB from ambient data collected in summer of 2006. They limited 
their analysis to modes below 5 Hz. As they used wireless sensor network, they could measure 
vibration using various instrumentation layouts. Through their study, it is clearly understood that 
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for such large and flexible structure, identification could be subjected to spatial aliasing3 if the 
number of measurement nodes is small. Based on their results, first vertical, transverse and 
torsional modes are at  0.106, 0.228, and 0.230 Hz, respectively, where all these modes are 
asymmetric [24]. This valuable dataset were later used several times for verification and 
validation of some identification methods and frameworks. For example, Pakzad et al. [25] 
verified the performance of the distributed modal identification approach through this dataset. 
Chang and Pakzad [26] verified their modified Natural Excitation Technique (NExT) using same 
data. Also in 2014, same data was analyzed by Matarazzo and Pakzad [27] through pseudo 
mobile sensing data4 and they used structural identification using expectation maximization 
(STRIDE) [28] to identify modal properties of the GGB from ambient data. Their results were as 
accurate as those identified before [24]. 

In 2012, Çelebi [18] carried out an extensive study on the GGB. He analyzed data 
recorded during three weak earthquakes (Bolinas 1999, Yountville 2000, and Alum Rock 2007). 
He employed spectral analysis [29] for output-only and Auto-Regressive with eXogenous input 
(ARX) [30] for input-output identification purposes. This study is the first one in which modal 
characteristics are identified from earthquake data. He filtered out frequencies below 0.05 and 
above 50 Hz. While this study provides us with precious information, it suffers from some 
definiteness. It is done before 2014 South Napa earthquake. Amplitude spectra are not a reliable 
method for identification of earthquake data, while input-out ARX technique suffers from the 
fact that it cannot consider multiple support excitations. Even under uniform excitation 
assumption, any input-output identification technique gives us modal characteristics between 
only input and output locations. So, any flexibility provided by boundaries, like soil, is excluded. 

Recorded Earthquake Data 

Following the 1989 Loma Prieta earthquake, it was recommended to instrument large 
bridges in the California [31]. The seismic instrumentation was planned in 1992 by the CSMIP 
and the GGB, Highway and Transportation District in cooperation with an appointed seismic 
instrumentation advisory board [3]. In 1995 (prior to retrofit), 72 accelerometers (15 on the north 
viaduct and anchorage housing; 33 on the suspension bridge; 22 on the south viaduct and 
anchorage housing and Fort Arch; 3 at the south free-field; 3 at a downhole under the south 
viaduct) and 4 relative displacement sensors were installed [32]. After completion of the Phase 1 
of the retrofit, 18 sensors were installed on the north viaduct and anchorage housing and a 
geotechnical array with 6 sensors was installed near the north viaduct. Finally, 22 more sensors 
were added after completion of the Phase 2. The current locations5 of the sensors on the 
suspension bridge are shown in Figure 10.    

 

 

                                                            
3 This is not explicit conclusion of that study, and is concluded by this paper’s authors based on the results presented 
in [23]. Also, the term spatial aliasing is not a common term in signal processing. 
4 Pseudo mobile sensing data is the data without actually implementing mobile sensor network and is extracted 
directly from a fixed sensor data matrix provide that the paths of the mobile sensors are known.  
5 Last update: 10/31/2016 
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Figure 10. Locations of strong-motion sensors on the suspension span of 
the Golden Gate Bridge (www.strongmotioncenter.org, last accessed 

1/1/2017). 

Figure 11. Geographical distribution 
of earthquake centers around the 

Golden Gate Bridge. 

Several earthquakes have been recorded by the GGB instrumentation system by today 
(see, Table 2 and Figure 11 for these earthquakes’ properties and geographical distribution 
around the GGB); however, a few of them are publicly available through the CESMD. As it will 
be discussed in the next section, earthquake data up to 2007 are already studied by Çelebi [18]. 
Herein, we only study the latest earthquake, i.e., 2014 South Napa earthquake. Note that data of 
Elcerrito earthquake is not available in CESMD. As it can be seen in Table 2, Peak Structural 
Acceleration (PSA) is highest in the South Napa earthquake in comparison with other prior 
earthquakes. 

Table 2. Earthquakes recorded by GGB instrumentation system (Last update: 1/1/2017) 

Earthquake Date/Time UTC Magnitude Depth (km) Epicentral Dist. (km) PGA (g) PSA (g) 

Bolinas 8-17-1999/1:06 4.5 (Mw) 7.0 20.6 0.020 0.112 

Yountville 9-3-2000/8:36 5.0 (Mw) 5.0 62.1 0.009 0.039 

Gilroy 5-13-2002/05:00 4.9 (Mw) 7.6 122.5 0.010 0.071 

Alum Rock 10-30-2007/03:04 5.4 (Mw) 9.2 75.5 0.012 0.036 

Elcerrito 3/5/2012/13:33 4.0 (ML) 9.2 19.6 0.016 0.084 

South Napa 8-24-2014/10:30 6.0 (Mw) 11.3 46.7 0.012 0.181 

 
Due to very sparse instrumentation (Figure 10) it is crucial to limit frequency band to 

prevent phenomenon we can call it spatial aliasing. As it was described in the previous section, 
due to the size and flexibility of the system, there are many modes in the original frequency 
range of data (0-50 Hz). So, using such sparse instrumentation it would almost impossible to 
distinguish modes. As an example, first 8 mode shapes of the suspension part which are 
identified from ambient signals through dense instrumentation by Abdel-Ghaffar [15] are 
redrawn in Figure 12. On this figure, available sensors deployed through CSMIP which could 
measure bridge response during 2014 South Napa earthquake are shown by red circles. In the 
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best scenario, we could be only able to identify mode shapes as displayed by red solid lines. As it 
can be seen from this figure, there is no meaningful difference between first symmetric and 
fourth asymmetric modes shapes through available sensors, for example. Or, AS3 and S4 mode 
shapes are very similar to each other. Note that these modes are all lowest modes and the 
similarity of mode shapes will highly increase for higher modes. As Blind Modal Identification 
(BMID) method [33]–[36], which will be used later to identify modal properties from output 
signals, relies heavily on linear independency of mode shapes, we have to eliminate higher 
modes from our analysis. Therefore, we apply a low-pass filter to only keep a few fundamental 
modes. As studied by Pakzad and Fenves [24], there are, for example, 15 vertical modes below 1 
Hz, so we filter out frequencies higher than this value. Also, due to low frequency errors 
observed in the signals, frequencies below 0.05 Hz are also filtered out through high-pass filter. 
Recorded acceleration signals on the suspension part are shown in Figure 13 in which all records 
are shown with same scale. Also, first 20 seconds of the signals are not shown, because there is 
no significant motion. As this figure shows response of the deck in the vertical direction and 
longitudinal and transverse vibration of the towers have highest level of motion.  

 

 
Figure 12. Mode shapes identified from ambient testing [15] (black curves), permanent sensors (red circles), and 

identifiable mode shapes (red lines). 

 
Figure 13. Recorded acceleration signals on the suspension part of the GGB. 
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To make sure that the frequency range of under study contains most energy content of the 
signals, maximum displacement responses after filtering are normalized with original values and 
shown in Figure 14. As it can be seen, this ratio is higher than 0.8 for most of the channels. 
Specifically, for those channels recorded on suspension part (foundation, deck, and tower levels), 
this value is close to 0.9. Note that those few cases with value less than 0.8 are related to low 
frequency errors which are removed through high-pass filtering. 

 
Figure 14. Ratio of after filtering maximum displacement values to the original values. 

As will be discussed later, material nonlinearity will not be included in the model. 
Herein, we carried out a visual observation on observed dominant frequencies to make sure that 
there is no significant nonlinearity in the system. To do so, we present time-frequency 
representation [37] of a few signals. As a first example, time-frequency representation of 
CH27+CH28 (vertical movement of the mid-span) is presented in subplot (b) of Figure 15(left). 
Acceleration time history of the signal is also shown in subplot (a). As it can be seen, a very 
dominant frequency at 0.3067 Hz with a minor contribution from 0.6733 Hz is observed in this 
figure. High level of energy of the 0.3067 Hz component may mask contribution of other 
components. To resolve this issue, time history is scaled by its instantaneous amplitude as 
described in [38]. This figure is shown in subplot (c) of Figure 15(left). Interestingly, two other 
frequencies appear now. During first ~20 seconds, bridge is vibrating in its fundamental mode 
~0.1333 Hz due to ambient excitations. After arriving seismic waves, higher modes at 0.3067, 
0.6733, and 0.8867 Hz get excited, while mode at 0.3067 persistently exists by the end of the 
record. 

Figure 15(right) presents same graphs for deck’s torsional vibration estimated through 
CH27-CH28. Again, through time-frequency representation and with help of amplitude scaling, 
it is possible to observe contribution of different modes at different time instants. At the very 
beginning, a mode at 0.3333 Hz is dominant, then mode at 0.2333 Hz gets dominated for 20 
seconds until the arrival of severe seismic waves. After a short period of time in which a higher 
frequency of 0.8133 Hz is present, most part of the signal is affected by a mode at 0.5733 Hz. 

Frequencies named at two paragraphs above can be labeled according to the prior studies 
and frequency closeness. These labels are shown in Table 3 and are deduced from Abdel-
Ghaffar’s experimental study [15]. 
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Figure 15. Time and time-frequency representation of CH27+CH28 (left) and CH27-CH28 (right). 

Table 3. Labels of the modes observed in Figure 15 [15]. 

Frequency (Hz) 0.1333 0.2333 0.3067 0.3333 0.6733 0.5733 0.8133 0.8867 

Mode VS1 TS1 VS4 TS2 VS7 TS4 TS6 VS9 

V: Vertical; T: Torsional; S: Symmetric 
 

One of the main objectives of this study is to investigate any spatial variability in bridge’s 
FIMs. This bridge has sensors on its foundation level, so foundation response could be FIMs 
provided that there is no inertial soil-structure interaction effect. Let’s assume that there is no 
inertial SSI effects and assume foundation response as FIM. In the absence of any spatial 
variability, input excitation experienced by the ridge at its all piers must be similar with only 
possible phase delay effect. To check the similarity between two signals, say ݏ௜ሾ݊ሿ and ݏ௝ሾ݊ሿ, 
sample cross-covariance index is employed here [29], which is calculated as 

ܿ௜௝ሾ݇ሿ ൌ
1
ܰ
	෍ሺݏ௜ሾ݊ሿ െ ௜ሻݏ̅
ேି௞

௡ୀ଴

൫ݏ௝ሾ݊ ൅ ݇ሿ െ (௝൯ 8ݏ̅

where ݇ ൌ 0, 1, ⋯ ,ܰ െ 1, and ܰ is number of time samples. ̅ݏ௜ and ̅ݏ௝ indicate the mean 
of two signals. It is also possible to calculate ܿ௜௝ሾ݇ሿ for negative lags, which are indeed obtained 
by changing the ݅ and ݆ sub-indices at the summation above. ܿ௜௝ሾ݇ሿ is usually normalized with 
the square-root of ܿ௜௜ሾ0ሿ and ௝ܿ௝ሾ0ሿ to keep the value of covariance between −1 and 1. This 
normalized value is termed the cross-correlation in time series analysis. A cross-correlation 
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equal to −1 or +1 denotes two signals are identical except with a time lag, whereas a cross-
correlation close to zero means that that they are not similar. 

Figure 16 shows ܿ௜௝ሾ݇ሿ versus tame lags for ݅, ݆ ൌ CH47, CH33, CH 18, and CH12, 
which are four transverse channels at four piers. Peak value of the cross-correlation is depicted 
by using a vertical dashed line and the absolute value of time lag corresponding to these peaks 
are written on each subplot. Several significant observations are deduced from this figure. First, 
all peak values are at negative time lags showing that if there is wave propagation, it is from 
North (Marin) to South (San Francisco) direction. Second, the peak level of correlation is very 
low between all pairs of channels, showing there is significant incoherency [39]. Third, assuming 
plane waves with similar incident angle, the average value of the surface apparent wave velocity 
obtained by dividing horizontal distance between each two channels by these time lags is around 
4400 m/s. 

Similar figures for Longitudinal and Vertical channels are produced but not shown for the 
sake of space. For Longitudinal direction, channels 45, 31, 16, and 10, and for the Vertical 
direction channels 46, 32, 17, and 11 are used. It was observed that similar comments can be 
made on these directions two. If we calculate the surface apparent wave velocity corresponding 
to the observed delays, it could be around 6000 and 7000 m/s for longitudinal and vertical 
directions, respectively. It is noteworthy to mention that estimation of the delay through cross-
correlation gives us an average of the group delay if the medium of the wave propagation is 
dispersive.  

 

  
Figure 16. Cross-correlation among acceleration channels on the foundation level in Transverse direction. 

Horizontal axes are time lags (in seconds) and vertical axes are cross-correlation. 

Numerical Modeling 

Up to the knowledge of the authors, first numerical study on the GGB was carried out by 
Baron et al. [40] in 1976. They created linear 2D (with 278 nodes) and 3D (with 120 nodes) 
models to investigate dynamic behavior of the bridge in longitudinal-vertical and transverse-



SMIP17 Seminar Proceedings 
 

78 

torsional directions, respectively. Both models were fixed at the towers’ bases. Static, 
eigenvalue, and time history analyses were carried out in this study. The model was excited 
under both uniform and multiple support excitations. However, only wave passage effect was 
considered. Also, a Rayleigh damping matrix with mass and stiffness proportional factors of 
0.04805 and 0.0065 were used.  

Abdel-Ghaffar [41] was one of pioneering researchers who studied dynamic response of 
suspension bridges. He employed frequency-domain random vibration approach to analyze GGB 
under multi-support excitations. Both vertical (induced by vertical and longitudinal excitations) 
[42], [43] and lateral [44], [45] earthquake-induced response of the GGB under multiple support 
excitations were studied. 2D linearized Finite Element models developed by Abdel-Ghaffar 
which were later used in several studies [15], [16] consisted of 283 beam elements with 193 
movable nodes, resulting in a system with 1146 degrees of freedom. Axial tension effects of the 
cables were included by the addition of a geometric stiffness matrix to the elastic stiffness matrix 
[46]. In the most fundamental symmetric and ten asymmetric vertical, torsional, and transverse 
modes, there was a very good agreement between numerical and experimental mode shapes and 
natural frequencies. He also showed that his simpler 2D models work as accurately as 3D model 
developed by Baron et al. [40].  

As mentioned earlier, after 1989 Loma Prieta earthquake, a series of studies for the 
purpose of seismic evaluation and possible retrofit were initiated. The district engaged T. Y. Lin 
International (TYLI) to perform these evaluation studies [47], while sub-consultants Imbsen & 
Associates, Inc. (IAI) and Geospectra, Inc. (GI) were also engaged. The 3D model of the main 
bridge used in that evaluation had been originally developed for TYLI’s Transit Feasibility study 
[48]. This model was composed of 9933 frame elements connecting 4775 nodes, which was 
reduced by using a super-element formulation such that the total number of active degrees of 
freedom was around 4000 [14]. Similar to Abdel-Ghaffar’s studies, dynamic loads and responses 
was regarded as disturbances to the dead-load configuration, so the analysis problem was 
linearized with response respect to the dead-load state of the structure. Also, geometrical 
nonlinearity was considered by using geometric stiffness matrices. This global model went under 
several analyses including linearized time history analysis under multiple-support earthquake 
excitation. In addition to this global model, several more detailed linear and nonlinear analyses 
were carried out by local modes, e.g., tower-to-pier connection. Results of these studies were 
later published in several papers and reports [17], [49]–[54]. In a very recent work, Game et al. 
[55] created a 3D model of the GGB in Strand7 [56]. While they kindly shared their model with 
us, the model was not accurate in geometry and details.  

In the present study, a new 3D model is created. To create such model with highest 
accuracy in geometry, the geometry was taken from Google Earth which was already shown in 
Figure 8. This model was taken to the ABAQUS [57] to convert faces and lines to a 3D model 
with solid elements. This model is shown in Figure 17(a). A model with solid elements is 
computationally very expensive and cannot be used in output-only identification framework 
described in the previous section. Hence, solid elements were replaced with structural elements 
in SAP2000 [58], which is shown in Figure 17(c). To create this model, publicly available 
details [13] on this bridge, sample of which is shown in Figure 17(b), were taken into account 
along with all quantitative and qualitative description found in other researcher’s studies 
reviewed in prior sections. Finally, to take advantage of parallel processing, this SAP2000 model 
was transformed to OpenSEES [59] using a Matlab [6] interface developed by the authors, which 
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uses SAP Application Programming Interface (API) to communicate to SAP2000. This Matlab 
code enables us to repeat the process for any other structure. The final OpenSEES model is 

shown in Figure 18.  

 

Figure 17. (a) Abaqus model, (b) samples of available structural details, and (c) SAP2000 model. 

 

 
Figure 18. OpenSEES model of the GGB. 

The OpenSEES model is composed of more than 20000 Degrees-Of-Freedom (DOFs) 
with more than 8000 frame elements and 2000 area elements. In the original SAP2000 model, 
cables and hangers were modeled as cable elements and main cables’ geometry was determined 
iteratively such that after imposing dead load they have internal stress and maximum sag as 
reported by Abdel-Ghaffar [15]. In the OpenSEES, cables and hangers are modeled using 
Co-rotational truss element with material which can accept initial stress. While there is no 
material nonlinearity (except zero compression in cables and hangers) in the model, geometrical 
nonlinearity was considered, because it is crucial for suspension bridges.  

Identifiability 

The first step in any identification is to figure out possible sources of uncertainties and 
identifiability of these uncertainties. As we did not have access to the actual details of the GGB 
and also this bridge experiences several retrofit stages during its life as reviewed in prior 
sections, almost all material properties are uncertain.  In addition, all connections (like spans’ 

a) 

b)

c)
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connections to the towers) and boundaries (like soil-abutment and soil-foundation systems) are 
modeled by appropriate linear springs with expected values which must be updated through 
identification process. Also, parameters of Rayleigh damping (the best possible strategy for 
damping modeling right now) are considered as other potential updating parameters. 

In total, there are 66 parameters which are potential candidates for the updating along 
with FIMs. However, it is not needed/possible to consider all of these parameters in the 
identification process. Through two sifting steps, the number of updating parameters is much 
reduced as follows. In the first step, it was identified which parameters have indeed value and 
which are free or fixed. For example, according to the structural drawings and prior studies, 
towers do not have relative translation with respect to the main and side spans, so we fixed these 
connections and excluded them from identification process. Assuming non-fixed connections 
makes the modal properties of the model deviate from what reported in previous studies. While it 
is expected not to have significant inertial SSI effects (based on this fact we choose GGB to be 
able to validate FIMs, indeed), we considered translational and rotational springs of soil-
foundation systems as unknowns. However, values of these springs’ stiffnesses must be very low 
to make these springs effective, which are not physically meaningful with respect to the GGB’s 
properties. So, we fixed them too. We also excluded initial tension in cables and hangers, 
because they have been already considered by applying gravity loads. Based on these facts, 28 
parameters out of initial 66 parameters can be potential updating parameters, which are listed in 
Table 4. However, all of these parameters might not be identifiable through available 
instrumentation layout. To specify identifiability of these parameters, which is second sifting 
step, we carried out sensitivity analysis to calculate total information for each parameter ߠ௜ as 
[60] 

I௜ ൌ ∑ ቀ
డ௬ೕ
డఏ೔
ቁ
ଶ

௠
௝ୀଵ     for     ݅ ൌ 1…28 

9)

where ߲ݕ௝ ⁄௜ߠ߲  is the sensitivity of response at ݆-th channel with respect to the ߠ௜ and ݉ 
is the number of all recorded channels. We perturbed ߠ௜ around its nominal value and used Finite 
Difference to calculate ߲ݕ௝ ⁄௜ߠ߲ . Figure 19(a) shows information entropy for all these 28 
parameters. Assuming a threshold of 1, for example, 7 parameters are the most informative 
parameters. This figure shows that from this model and instrumentation layout, it is not possible 
to infer any reliable information about abutment’s springs, mainly because it is a very flexible 
bridge.  

Even, not all of 7 parameters can be uniquely identified. By looking at mutual 
information among parameters shown in Figure 19(b), it is seen that some parameters are highly 
correlated with each other. For example, Modulus of elasticity of Chords is correlated with 
modulus of elasticity of diagonal Bars. So, we fix one (diagonal Bar’s) of them and consider the 
other one as updating parameter (Chord’s). Also, because Hanger’s and deck’s modules of 
elasticity are also highly correlated with diagonal bar’s modules of elasticity, we also fix them.  

Finally, we have 4 important parameters (Tower’s, Cable’s, Chord’s, and Bottom 
Bracing’s modules of elasticity) which are identifiable through the present instrumentation 
layout. While damping parameters are not very informative in comparison with respect to others, 
we consider them too, because they do not have any correlation with others. So, we carry out the 
identification with 6 unknown parameters along with 6 time-series of FIMs (3 components at 
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each pier). We assume same FIMs in south and north abutments as south and north piers, 
respectively.   

 

 

 

Table 4. Candidate parameters after first sifting step. 

No. Element Parameter
1 Bottom Bracing Elastic Modules
2 Cable Elastic Modules
3 Chord Elastic Modules
4 Deck Elastic Modules
5 Diagonal Bar Elastic Modules
6 Floor Beam Elastic Modules
7 Hanger Elastic Modules
8 Kneebrace Elastic Modules
9 Top Bracing Elastic Modules

10 Tower Elastic Modules
11 Track Girder Elastic Modules
12 Transverse Strut Elastic Modules
13 Vertical Rod Elastic Modules
14 Vertical Bar Elastic Modules
15 South Tower-South Side Span Spring Stiffness, M2 
16 North Tower-North Side Span Spring Stiffness, M2 
17 South Abutment Spring Stiffness, P 
18 South Abutment Spring Stiffness, V2 
19 South Abutment Spring Stiffness, V3 
20 South Abutment Spring Stiffness, T 
21 South Abutment Spring Stiffness, M2 
22 North Abutment Spring Stiffness, P 
23 North Abutment Spring Stiffness, V2 
24 North Abutment Spring Stiffness, V3 
25 North Abutment Spring Stiffness, T 
26 North Abutment Spring Stiffness, M2 
27 Damping Alpha
28 Damping beta
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(a) Information entropy (b) Mutual information 

Figure 19. Identifiability analysis. (a) information entropy for each parameter, (b) mutual information among 
parameters, and (left) list of parameters. 

Identification Results 

Verification: Simulation Data 

Before applying the proposed identification method on the real-life data, it is crucial to 
verify it through simulated data. The proposed method is able to work for a wide range of 
applications from linear to nonlinear or input-output to output-only cases. As an initial test, we 
used it for input-output identification. Such input-output identification is quite useful in real 
world, because one way to consider soil-structure interaction effects is to modify input motions 
to include feedback inertia effect. In other words, it is possible to exclude compliance beyond a 
location by imposing prescribed motion at that location. For example, Shirkhande and Gupta 
[61] followed same approach to estimate response of the GGB using a fixed-base model. In 
addition, even complexity of the output-only identification could decrease if an input-output 
identification using foundation-level measurement carried out first to estimate superstructure’s 
parameters while soil-foundation parameters. Of course this approach is only applicable if there 
is measurement on the foundation level.  
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Figure 20. Comparison between recorded (simulated) and predicted acceleration responses at select channels. 

We applied this input-output identification on the simulated data of the GGB. Figure 20 
shows comparison between recorded (synthetically simulated) and predicted (at the last iteration 
of the last updating step) responses at some selected channels. As seen, prediction is perfect. 
While we assumed 50% initial error in all 6 parameters, final results show 0.03%, 0.04%, 0.23%, 
1.59%, 2.38%, and 13.76% error at the end of updating process. As expected, damping 
parameters are not identified as accurate as others in which stiffness proportional factor is more 
erroneous, which is in agreement with Figure 19(a).   
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Figure 21. Comparison between recorded (simulated) and predicted acceleration responses at select channels. 

While it is possible to use information obtained in the input-output identification step to 
reduce parameters uncertainty in the output-only identification, we do not use it, because 
response of the foundations/abutment might not be recorded at all piers in real-life. Therefore, 
we carry out output-only identification while all 6 parameters along with FIMs are unknown. 
Assuming an initial error of 20% we obtained 4.28%,0.25%, 0.56%, 23.94%, 6.78%, and 3.25% 
for Towers’, Cables’, Chord’s, Braces’ modules of elasticity, and mass and stiffness proportional 
damping coefficients, respectively. While all results are acceptable and expected, identification 
algorithm was not successful to find modules of elasticity of bottom bracing. Comparison 
between recorded and predicted responses at some selected channels is shown in Figure 216. As 
seen, while one of parameters is not identified accurately, predicted responses are very close to 
the recorded ones.  

Finally, the most important identification results are FIMs. The identified FIM in the 
transverse direction on the South pier is shown in Figure 22 along with its exact counterpart. As 
this figure shows, the input motion is identified with a very good accuracy especially in time 

                                                            
6 We used different damping values in output-only simulation, so response signals are not identical to Figure 20. 
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windows with high levels of excitation. The other FIMs are also identified with the same level of 
accuracy, which are not shown here for brevity. 

 
Figure 22. Comparison between exact and identified FIM in transverse direction on the South pier. 

Validation: Real-Life Data 

Herein, we replace simulated signals with their real-life recorded counterparts and carry 
out input-output and output-only identification as carried out in the previous section. Figure 23 
compares recorded and predicted acceleration responses at some selected channels in the input-
output identification. As expected, results are not as good as synthetic data. However, the level 
of accuracy varies among channels. Predicted responses at channels 37, 30, 35, and 21 are very 
close to the real-life data. All these channels are on the towers or very close to the towers. 
Response prediction at the Channel 15 is acceptable, although there are some high frequency 
components which are not captured in the prediction. The major discrepancies are observed at 
channels 26, 27, and 123. All these channels are on the main span. Several reasons could be 
possible source of such inconsistencies. First off, we did not have access to all details of the 
bridge, so there could be some modeling uncertainties in addition to parameter uncertainties. 
Secondly, responses at these channels are highly affected by the other co-existing excitations like 
due to wind and moving vehicles, which are not considered here. Finally, we modeled damping 
through the Rayleigh method, which might not be able to accurately model damping for all 
modes. This could be significant for the main-span channels, because many modes are 
contributing to these signals, while channels on the tower mostly contain only a few fundamental 
modes of the system. 

While we considered wide boundaries for the updating parameters, all modules of 
elasticities are identified around 2 ൈ 10ଵଵ 	ܰ ݉ଶ⁄  except those of the bottom bracings, which are 
around 2.5 ൈ 10ଵଵ 	ܰ ݉ଶ⁄  . This indicates that perhaps the dimensions of bottom bracing 
elements were underestimated in the model. Identified Rayleigh damping parameters are both 
around 0.1.   

Predicted responses and one of identified FIMs obtained in output-only identification are 
shown in Figure 24 and Figure 25, respectively. As seen, the similarity level between recorded 
and predicted responses is close to what we observed for the input-output case (Figure 23) while 
here FIMs are also identified. One of the identified FIMs is shown in Figure 25. Assuming that 
what is recorded on the foundation is true FIM (inertial SSI is negligible), these two signals are 
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quite similar, but the amplitude of the identified FIM is higher than the recorded foundation 
response. The authors believe that this is because level of input excitation is compromised with 
overall damping of the system. This issue could be addressed in future by introducing damping 
more specifically, especially when system is going under nonlinear behavior. In other words, by 
parametrizing sources of damping, e.g., backbone curves of plastic hinges, relationship there 
would be no linear relationship between input, damping, and response, so both input and 
damping could be identified more accurately. 

 

 
Figure 23. Comparison between recorded and predicted acceleration responses at select channels. 
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Figure 24. Comparison between recorded and predicted acceleration responses at select channels. 

 
 

 
Figure 25. Comparison between recorded foundation response and identified FIM in transverse direction on the 

South pier. 
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Conclusions 

This study presented a verification and validation study whose objective is to quantify the 
spatial variability in bridge Foundation Input Motions (FIMs) using data recorded during the 
2014 South Napa Earthquake. This aspect comprised the development and verification of two 
distinct (and new) methods. The first of these was an output-only system identification method 
that yields time-history estimates of FIMs at all bridge piers from accelerations recorded on the 
bridge. The second was a blind channel identification method that enables the identification of 
local site effects at each pier provided that all FIMs are caused by a single excitation source and 
the kinematic interaction is similar at all piers. The second method was presented in our first 
phase of study at SMIP16. The applicability of the second method—i.e., the output-only 
identification method—was tested in the present paper through an extensive study on both 
simulated and real-life data from the Golden Gate Bridge. The results of this study showed that 
the proposed framework is able to recover FIMs from sparsely measured responses of a complex 
bridge.  To the best of our knowledge, this is the only study in which multiple FIMs are 
identified with real-life recordings from a bridge structure. 
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Abstract 
 

The relationship between earthquake ground motion characteristics and embankment dam 
deformations is currently being investigated through a ground motion study using two validated 
non-linear deformation (NDA) embankment models. Presented in this paper are: (1) NDA results 
for one of the dams in this study, Lenihan Dam, against the 1989 Loma Prieta earthquake, and 
(2) current results of the ground motion study with this NDA model. The paper ends with major 
conclusions and plans for future work. 

 
Introduction 

 
In a seismic hazard assessment of an embankment dam, the ground motion intensity 

measure deemed important to the dam must first be identified (e.g., spectral acceleration, ܵܣ; 
peak ground velocity, ܸܲܩ; and arias intensity, ܫܣ). Following this identification, the potential 
distribution of each intensity measure can be predicted using ground motion prediction 
equations. The actual design target level of one or more of these intensity measures can then be 
determined through deterministic or probabilistic seismic hazard analyses. One method of setting 
the design target level is the conditional mean approach, which is described in detail for use in 
dam engineering by Armstrong (2017). In this approach, a single intensity measure that relates 
well to embankment-dam response—called the conditioning intensity, ܯܫ∗—is selected, and the 
value is set based on the hazard level defined. The values of the other intensity measure targets 
are then selected according to the value of this conditioning intensity measure and other 
statistical considerations. When the conditional mean approach is used, it is important for the 
conditioning intensity measure, ܯܫ∗, to relate well to the engineering demand parameter (ܲܦܧ) 
of interest—for example, vertical crest deformation—because the expectation is that as ܯܫ∗ 
increases, so should the ܲܦܧ. More specifically, as stated by Kramer (2008), ܯܫ∗ should be 
unbiased, consistent, robust, efficient, and sufficient.  

 
Previous studies have investigated the relationship between ground motion intensity 

measures and embankment or slope deformation. Based on these studies, it has been suggested 
that for stiff embankment dams in which significant strength loss is not expected, the ܵܣ at the 
first-mode period of the structure relates well with embankment deformations. However, for 
embankment dams founded on liquefiable alluvium, other non-ܵܣ intensity measures have been 
found to relate better to embankment deformations (Beaty and Perlea 2012)—such as ܫܣ; 
cumulative absolute velocity, ܸܣܥ; and √ܫܣ ∙  is the duration between 5% 595ܦ where ,595ܦ
and 95% ܫܣ. These studies, however, have been based on relatively simplified Newmark-type 
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sliding block analyses with large ground motion databases (e.g., Bray and Travasarou 2007, 
Saygili and Rathje 2007) or on non-linear deformation analyses shaken with significantly smaller 
sets of ground motions (Beaty and Perlea 2012). 

 
In a current project—supported by the California Department of Conservation, California 

Geological Survey, Strong Motion Instrumentation Program, Agreement 1016-988—data from 
strong ground motion recordings from two embankment dams during the 1989 Loma Prieta 
earthquake are being used to validate each non-linear deformation analysis model for subsequent 
use in assessing the relationship between earthquake ground motion characteristics and 
embankment dam deformations. Currently, a suite of over 700 ground motions is being used in 
this assessment. It is anticipated that at the completion of this project, this work will provide 
significant additional insight into the relationship between ground motion characteristics and 
embankment dam deformations. 

 
The purpose of this paper is twofold: (1) to present NDA results for one of the dams in 

this study, Lenihan Dam, against the 1989 Loma Prieta earthquake, and (2) to present current 
results of the ground motion study with this NDA model. The paper will begin with a detailed 
description of the validation of the NDA of Lenihan Dam to the 1989 Loma Prieta earthquake, 
followed by a description of the ground motion database used and an initial evaluation of the 
results. The paper will end with conclusions and plans for future work. 

 
Background 

 
Lenihan Dam 
 

James J. Lenihan Dam (or, simply, Lenihan Dam, which is sometimes called Lexington 
Dam) is a zoned earthfill dam that was constructed across Los Gatos Creek in 1952 (Figures 1 
and 2). The dam impounds Lexington Reservoir, which has a maximum capacity of 19,044 acre-
feet at the spillway elevation of 653 feet (TGP 2012). The crest of the dam is at elevation 673 
feet, with an embankment height of 195 feet measured from the lowest point of the foundation 
rock to an embankment height of 207 feet measured from the lowest point of the downstream 
toe. The zoned earthfill dam is composed of upstream and downstream shells, core, and drainage 
zones. The core is further divided into an upper and lower core to reflect differences in material 
properties. The upstream shell and upper core material were obtained from the same borrow 
source. The upstream shell is generally composed of gravelly clayey sands to sandy clays, while 
the upper core is composed of gravelly clayey sand to clayey gravel. The lower core came from 
another borrow source with the material being generally classified as highly plastic sandy clays 
to highly plastic silty sands-sandy silts. The downstream shell, obtained from a third borrow 
source, consists mainly of gravelly clayey sand to clayey gravels. No classification information 
is available for the drain material. The embankment materials were constructed on Franciscan 
Complex bedrock, without a foundation seepage cutoff or grout curtain. Instrumentation of 
Lenihan Dam includes survey monuments, piezometers, inclinometers, seepage weir, and strong 
ground motion accelerometers. 
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Figure 1. Plan view of Lenihan Dam with locations of strong motion instruments (from Center 
for Earthquake Strong Ground Motion). 

 
 

 
 

Figure 2: Design cross-section with reservoir level of 556 feet during the 1989 Loma Prieta 
Earthquake and at the spillway elevation of 653 feet. 
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Loma Prieta Earthquake 
 

The 6.9 = ܯ Loma Prieta earthquake occurred along a segment of the San Andres fault 
on October 17, 1989. The epicenter of this earthquake event was located 13 miles from Lenihan 
Dam. At the time of the earthquake, the reservoir was at around elevation 556 feet – 97 feet 
below the spillway. During this earthquake, strong ground motion instruments located at the left 
abutment and on the crest measured the dynamic response of the dam. Due to the strong shaking, 
the embankment crest deformed horizontally around 3 inches downstream and approximately 10 
inches vertically downward, resulting in longitudinal and transverse cracking at the dam site 
(Hadidi et al. 2014).  

 
Analysis of the strong ground motion data is provided in Figure 3 in terms of the ܵܣ, 

ratio of the crest ܵܣ to abutment ܵܣ, peak ground velocity (ܸܲܩ), ܫܣ, and 595ܦ. The results 
shown in Figure 3 correspond to the strong ground motion recording in the transverse directions 
(directions “3”, “6”, and “9” in Figure 1). Peak ground acceleration (ܲܣܩ) changed from 0.44g 
at the abutment to between 0.38g and 0.45g along the crest. The most significant increase in 
acceleration corresponded to a spectral period of 1 second, which roughly represents the natural 
period of the dam. 

 
Figure 3: Measured ground motion characteristics in transverse direction during the 1989 Loma 

Prieta earthquake. 
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Non-linear Deformation Analysis of Lenihan Dam 
 

Analysis Approach 
 
Numerical Analysis Details 
 

The NDA was conducted using the commercial program FLAC (Itasca Consulting 
Group, 2016). This program uses an explicit solution scheme and is well suited for performing 
deformation analyses with non-linear material response, large geometry changes, and instability. 
The explicit solution satisfies the equations of motion at each nodal mass for every time step. 
The numerical mesh used in the NDA is shown in Figure 1. The element size was selected to 
accurately transmit motion frequencies up to at least 10 hertz. 
 

 
Figure 4: Numerical mesh. 

 
Constitutive Modeling Approach 
 

The UBCHYST constitutive model (Byrne and Naesgaard, 2011) was used to model the 
expected non-linear soil response during the 1989 Loma Prieta earthquake. The UBCHYST 
model captures, with increased shear strain, the reduction of shear modulus and increase in 
hysteretic damping. The UBCHYST is essentially an extension of the Mohr-Coulomb model 
with a tangent shear modulus that is a function of the developed stress ratio and other 
modification factors. Up to 11 input parameters can be set to control various aspects of the 
UBCHYST constitutive model response. Of those 11 input parameters, the following five 
parameters were modified in these analyses: maximum shear modulus (ܩ௠௔௫) and bulk modulus, 
cohesion (ܵ), hysteretic parameter (݊), and hysteretic parameter ( ௙ܴ). The first three input 
parameters are also inputs into the elastic-perfectly plastic Mohr-Coulomb model, while the last 
two input parameters help to define the hysteretic behavior of UBCHYST. Of ݊ and ௙ܴ, ݊ was 
found to have the most significant effect on the hysteretic behavior. As a result, ௙ܴ was simply 
set to the recommended default value of 0.98, and ݊ was used to adjust the constitutive model 
response to capture the desired dynamic soil element behavior. In particular, the expected 
dynamic soil behavior was defined through the ܩ ⁄௠௔௫ܩ  and ߦ curves developed by Vucedic and 
Dobry 1991 (termed here VD91). 

 
The input parameter ݊ was selected by comparing the calculated ܩ ⁄௠௔௫ܩ  and ߦ of single 

element simple shear simulations to those values from VD91. In performing these simulations, it 
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was found that ݊ as well as the ratio of the shear strength to maximum shear modulus (ܵ/ܩ௠௔௫) 
both significantly affect the calculated value of ܩ ⁄௠௔௫ܩ  and ߦ. Because the goal was to have a 
single target ܩ ⁄௠௔௫ܩ  and ߦ for each material in the embankment, and ܵ/ܩ௠௔௫ will change 
throughout the embankment, it was then necessary to define a relationship between between ݊ 
and ܵ/ܩ௠௔௫. To accomplish this, a large suite of single element simple shear simulations was 
conducted with UBCHYST, with varying values of ݊ and ܵ/ܩ௠௔௫; further, a statistical 
relationship was developed between ݊ and ܵ/ܩ௠௔௫ so that all numerical elements, regardless of 
 ௠௔௫, would result in the same target curve from VC91. Specifically, it was found that for theܩ/ܵ
target shear modulus and damping curves from ܲ15 = ܫ and ܲ30 = ܫ used in VC91, the necessary 
relationship between ݊ and ܵ/ܩ௠௔௫ was ݊ ൌ 2300 ൈ ݊ and 15 = ܫܲ ௠௔௫ forܩ/ܵ ൌ 1300 ൈ
 .30 = ܫܲ ௠௔௫ forܩ/ܵ

 
 An example of the dynamic simple shear response of UBCHYST using this technique is 
shown in Figure 5. For this example, the ratio between the ܵ to ܩ௠௔௫ was 8x10-4, a range 
consistent with the NDA model of the embankment. To reasonably match the VD91 for ܲ30 = ܫ, 
for example, ݊ = 1.04. As highlighted in Figure 5, UBCHYST is capable of matching the 
ܩ ⁄௠௔௫ܩ  curve up to around a shear strain of 0.001, after which the reduction in ܩ ⁄௠௔௫ܩ  is over-
predicted. For the ߦ curve, the UBCHYST model is able to match the curve up to a shear strain 
of approximately 0.0002, after which the model predicts hysteretic damping significantly larger 
than what would be expected from VD91. The highlighted shortcomings of UBCHYST are 
primarily due to its basis on the Mohr-Coulomb model formulation. 

 
Figure 5. Stress-strain and resulting ܩ ⁄௠௔௫ܩ  and ߦ curves for UBCHYST. Comparison to 

Vucedic and Dobry 1991 (VD91) with ܲ30 = ܫ and the Mohr-Coulomb model. 
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Material Property Characterization 
 

Over the years, multiple site investigation programs have been conducted at Lenihan 
Dam. The most recent such program took place in 2012 by TGP (TGP, 2012). When defining 
material properties based on this site investigation information, the material characterization 
completed by TGP and summarized in the work by Hadidi et al. 2014 was used extensively to 
define material properties. The primary difference between the material properties found here 
and those used by Hadidi et al. 2014 was the modeling of the variation of shear strength with 
effective stress. In this work, the shear strength was defined as ܵ ൌ ܾᇱ ൅ ᇱߪ tanߚᇱ for drained 
strength and ܵ ൌ ܾ ൅ ᇱߪ tanߚ for undrained strengths where ߪᇱ ൌ ൫ߪ௫ᇱ ൅ ௬ᇱߪ ൯ 2⁄ , with the values 
of intercepts and slopes defined in Table 1 below. These strength envelopes are based directly on 
the triaxial strength data.  

 
Based on geophysical investigation data, the variation in ܩ௠௔௫ was defined in terms of 

the vertical effective stress (ߪ௬ᇱ ) at 1 atm, ௦ܸଵ, and the exponent ݉ with ܩ௠௔௫ ൌ ߩ ௦ܸ
ଶ ൌ ߩ ൈ

൫൫ ௦ܸଵ ⁄௬ᇱߪ ൯
௠
൯
ଶ
. Note that the rock beneath the soil embankment had a 140 = ߛ psf, ௦ܸ = 4500 ft/s. 

The value of ݊ from the UBCHYST model was determined to match the target ܩ ⁄௠௔௫ܩ  and ߦ 
curve for VD91 with a ܲ30 = ܫ for the lower core, and the target ܩ ⁄௠௔௫ܩ  and ߦ curve for VD91 
with a ܲ15 = ܫ for all other embankment soils. A small proportion of Rayleigh damping was 
included for the embankment material and rock to capture small strain damping characteristics as 
well as to reduce numerical noise. 

 
Table 1. Key material parameters used in NDA 

 

Parameters Upstream shell 
Downstream 

shell 
Upper core Lower core 

 138 140 132 124 (psf) ߛ

௦ܸଵ (ft/s) 1305 1550 1190 680 
݉ 0.5 

 ᇱ (deg.) 31.3 29.8 30.1 23.3ߚ
ܾᇱ (psf) 50 0 
 28.8 18.8 27.9 19.3 (.deg) ߚ
ܾ (psf) 1020 1570 960 1090 

௙ܴ  0.98 
݊(A)  2300 ൈ ܵ ⁄௠௔௫ܩ  1300 ൈ ܵ ⁄௠௔௫ܩ  

Notes (A): variation ݊ defined for lower core chosen to match ܩ ⁄௠௔௫ܩ  and ߦ curve for ܲ30 = ܫ from VD91, and 
variation of ݊ for other embankment material chosen to match ܩ ⁄௠௔௫ܩ  and ߦ curve for ܲ15 = ܫ from VD91. 

 
Establishment of Pre-earthquake Stresses and Boundary Conditions 
 

The pre-earthquake state-of-stress affects both initial conditions for the dynamic analysis 
and the value of shear strength, which is a function of the effective stress. Total stresses for the 
embankment were estimated by sequentially adding rows of elements of the mesh and solving 
for static equilibrium with each new row of elements. This process was continued for the entire 
embankment. The goal of this process was to roughly mimic the actual construction process. 
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A seepage analysis was used to model the pore water pressures in the embankment 
immediately before the 1989 Loma Prieta earthquake. Note that prior to the 1989 Loma Prieta 
earthquake, several years of below-average rainfall occurred. This resulted in a reservoir level of 
506 feet, significant lower than the spillway elevation of 653 feet. Due to the low permeabilities 
in the embankment, the pore water pressure would slowly respond to this lower reservoir level. 
Modeling this non-steady state seepage condition could not be achieved using a steady-state 
seepage analysis with the reservoir at the level of either 506 feet or 653 feet. 

 
In an attempt to reasonably model these non-steady state seepage conditions, the 

approach used was first to model the steady-state seepage conditions corresponding to the 
reservoir of 653 feet, and then to lower the reservoir to 506 feet and rerun the analysis until the 
pore water pressure in the embankment was lowered to the values similar to those measured 
prior to the 1989 Loma Prieta earthquake. For the initial steady-state seepage conditions 
corresponding to the reservoir at 653 feet, values of the horizontal and vertical permeability were 
adjusted until the calculated total head reasonably corresponded to values measured at Lenihan 
Dam for the piezometer recordings when the reservoir was near the same elevation. Note that the 
piezometer reading used to evaluate the reasonableness of the non-steady state seepage analysis 
with the reservoir at 506 feet were based both on actual piezometer readings at the time of the 
1989 Loma Prieta earthquake (represented by blue square symbols in Figure 6) and on recent 
piezometer readings with a previous reservoir response similar to that which occurred before the 
1989 Loma Prieta earthquake. Specifically, the piezometer readings from December 2008 were 
seen to have a previous reservoir response as before the 1989 Loma Prieta earthquake, and the 
piezometer data from this time was used (represented by blue circle symbols in Figure 6). As 
seen in Figure 6, by comparison of the calculated and total heads, the seepage model was able to 
reasonably capture the distribution of total heads. 

 

 
 

Figure 6. Comparison of calculated and target total heads. 
 

Dynamic Analysis Results 
 

Dynamic analyses were conducted with the transverse acceleration time history from the 
1989 Loma Prieta earthquake applied directly at the base of the numerical model. To model the 
elastic half space below the numerical model, numerical dashpots are added and the velocity 
time history of the abutment record is converted to a shear stress time history based on the 
stiffness properties of the rock. 
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As an initial evaluation of the NDA results, the calculated and measured time histories 
are shown in Fig. 7 in terms of the ܵܣ at the crest, the ratio of the crest ܵܣ to abutment ܵܣ, and 
the ܲܫܣ ,ܸܩ, and 595ܦ computed at the crest. As highlighted by these results, the NDA was able 
to capture reasonably well key aspects of the observed site response (e.g., ܵܣ௖௥௘௦௧ ⁄௔௕௨௧ܣܵ ) as 
well as other peak response characteristics (ܸܲܩܲ ,ܣܩ, and ܫܣ) and duration (595ܦ). 

 
Figure 7: Summary of the calculated and measured dynamic responses at the embankment crest. 

 
In terms of computed deformations, the final crest displacements computed with the 

NDA were similar to those measured. In particular, the final horizontal displacement (ܨܺܦ) was 
0.27 feet, compared to the measured horizontal displacement between 0.10 and 0.25 feet; and the 
final vertical displacement (ܨܻܦ) computed was 0.45 feet, compared to the 0.61 to 0.85 feet 
measured. 

 
The computed distribution of the shear strains is shown in Fig. 9(a) in terms of the shear 

strain increment defined as భ
మ
ට൫ఌೣିఌ೤൯

మ
ାସఌೣ೤

మ . Localized areas of high	shear strain increment are 

shown in both the upstream and downstream shells, producing the typical circular-type localized 
failure surfaces expected with slope instability. The computed distributions of horizontal and 
vertical displacement are shown in Figures 9(c) and (d), respectively, and are relatively 
consistent with the pattern of deformations and cracks observed. For example, the region where 
 changes from positive to negative corresponded to high volumetric strain extension (Figure ܨܺܦ
9(b)) and corresponded directly to the location of longitudinal cracking observed following the 
Loma Prieta earthquake. 
 
 Overall, the NDA was able to reasonably capture the dynamic characteristics from the 
1989 Loma Prieta earthquake as well as the magnitude and distribution of displacements. The 
NDA model of Lenihan dam was then used to further explore the relationship between 
embankment dam deformations and earthquake shaking in the ground motion study. 
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Figure 9: Computed deformations in terms of shear strain increment (a), volumetric strain (b), 

horizontal displacement (c), and vertical displacement (d). 
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Numerical Analysis Ground Motion Study 
 

Characteristics of Ground Motion Database 
 

The ground motion database used with the NDA model of Lenihan dam was similar to 
that used previously in Armstrong (2016). These ground motions were based on the NGA-West1 
database with source-to-site distance less than 30 km, similar to many dams in California. For 
this work, only ground motions based on earthquake events with ܯ ൒ 6 were used, because it 
was expected that strong shaking for earthquake events less than 6 would not produce 
appreciable deformations and therefore would not be particularly useful to evaluate the 
relationship between embankment deformation and earthquake ground shaking characteristics. 
For each station, both orthogonal components of the measured strong ground motion acceleration 
were used if available. 

 
A total of 716 ground motion recordings were found to satisfy this criteria, with 

distributions of strong ground motion intensity measures of ܲܫܣ ,ܸܩܲ ,ܣܩ, and 595ܦ shown in 
Figure 7. Referencing the abutment motion from the 1989 Loma Prieta earthquake with a	ܲܣܩ = 
0.44g, ܲ85.0 = ܸܩ cm/s, 1.86 = ܫܣ m/s, and 4.32 = 595ܦ s, it is seen that the ground motions in 
this database have ground motion intensity measures that extend from less than to greater than 
the values measured in the Loma Prieta earthquake. Therefore, it is expected that the resulting 
deformation will go from negligible to values greater than those observed in the Loma Prieta 
earthquake. Future plans are to include ground motions from the NGA-West-2 database to 
augment those in this database, especially those with high ground motion intensity measure 
values. 

 

 
Figure 10. Distribution of ground motion intensity measures. 
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Numerical Analysis Results 
 

Analyses of the NDA model of Lenihan Dam were conducted with the 716 ground 
motion time histories described above. The NDA model used was identical to that of Lenihan 
Dam, except that the reservoir level used was that for a spillway elevation of 653 feet. For each 
analysis, time histories at key locations were stored, as well as the final solved state of the NDA 
model.  

 
In this evaluation, the trends between the ground motion intensity measures (ܯܫs) at the 

base of the model to key engineering demand parameters (ܲܦܧ) are compared. The ground 
motion intensity measures computed were ܲܫܣ ,ܸܩܲ ,ܣܩ, cumulative absolute velocity (ܸܣܥ), 
 at 200 equal logarithmic increments of spectral period between 0.1 and 30 ܣܵ and ,595ܦ
seconds. The engineering demand parameters computed were peak and final horizontal crest 
displacement, ܲܺܦ and ܨܺܦ, and the peak and final vertical crest displacement, ܻܲܦ and ܨܻܦ. 
Note that in computing these displacements, the displacement was computed relative to the base 
of the model. Also, the absolute value of the peak and final vertical crest displacement were 
chosen because the logarithm would otherwise be undefined. Further, only analyses resulting in 
non-negligible deformation, defined here as a value of ܻܲܦ ,ܨܺܦ ,ܲܺܦ, or ܨܻܦ greater than 0.1 
feet, were included. This reduced the NDA results to be compared from 716 to 504. 

 
An initial evaluation of the relationships between the embankment crest deformation and 

ground motion intensity measures is shown in Figure 11 (note that only ܵܣ at a selection of 
spectral periods is included). In each plot, the ݈݃݋ଵ଴ of the ܯܫ is compared to the ݈݃݋ଵ଴ of the 
 s have been removed for clarity in comparing plots. Aܲܦܧ s andܯܫ The magnitude of the .ܲܦܧ
linear trend line is included in each plot, as well as a density ellipse to represent visually the 
correlation relationship between the ܯܫ and ܲܦܧ. As seen in Figure 11, the ability of each ܯܫ to 
relate to an ܲܦܧ varies significantly. ܲܫܣ ,ܣܩ, and ܵܣ at shorter spectral periods related best to 
the ܲܦܧs. Other intensity measures—such as ܸܲܣܥ ,ܸܩ, and ܵܣ—at higher spectral periods still 
related to the ܲܦܧs, but not as strongly as with ܲܫܣ ,ܣܩ, and ܵܣ at short spectral periods. 

 

 
Figure 11. Comparison of ܯܫs and ܲܦܧs (all axes are logarithmic). 
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A closer inspection of the relationship between ܣܩܲ ,ܫܣ, and ܵܣሺ0.56ሻ and ܨܻܦ shown 
in Figure 11 is provided in Figure 12. ܫܣ and ܲܣܩ were chosen because ܫܣ ranked first and ܲܣܩ 
second in order of goodness-to-fit with ܣܵ .ܨܻܦ at a spectral period of 0.56 s was selected 
because it laid within the expected range of the period of the embankment for many of the 
analyses. As in Figure 11, a linear trend line is included. Also included in Figure 12 is the 
magnitude and distribution of ܨܻܦ and each of the three ܯܫs as well as the standard deviation 
from the simple bivariate regression analysis. 

 
As highlighted in Figure 12, the relationship between ܫܣ and	ܨܻܦ and then ܲܣܩ and 

 ܣܩܲ then ,ܫܣ ,resulted in the lowest standard deviation; therefore, for this particular model ܨܻܦ
were the most efficient prediction of this EDP. Therefore, in terms of selecting a conditioning 
intensity measure for the NDA model of this dam, ܫܣ appears to be the preferred ܯܫ. It is 
important to note that the observed relationship between embankment deformations and ground 
motion intensity measures here is based only on the NDA model of Lenihan Dam. Plans for 
additional ground motions, more detailed statistical evaluations, and a second validated NDA 
model will be helpful in better defining the relationship between ground motion intensity 
measures and embankment dam deformations. 
 

 
Figure 12. Comparison of intensity measures and engineering demand parameters. 
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Conclusions 
 

The measured strong ground motion data at Lenihan Dam during the 1989 Loma Prieta 
earthquake provided a useful case-history to assess the capabilities of current NDAs. With the 
analysis approach described, the NDAs were able to capture reasonably well key dynamic 
characteristics such as the surface acceleration response spectra and the magnitude and pattern of 
permanent deformations. Using the NDA model for Lenihan Dam, additional analyses with the 
716 ground motions provided insight into the relationship between ground motion intensity 
measures and embankment dam deformation. For the NDA model used, ܫܣ was found to relate 
best with embankment dam deformations, followed by ܲܣܩ and then ܵܣ at short spectral 
periods. Plans to use additional ground motions, to perform more detailed statistical evaluations, 
and to include a second validated NDA model will be helpful in better defining the relationship 
between embankment dam deformations and ground motion intensity measures. The second 
NDA model to be included is of Anderson Dam. This dam was also shaken during the Loma 
Prieta earthquake, with multiple strong ground motion recordings available. Development of this 
NDA model is ongoing. Note that for Anderson Dam at the design loading earthquake levels, 
liquefaction of portions of the embankment and foundation material is expected; thus, this dam 
model will provide a useful comparison to Lenihan Dam, which had no liquefaction concerns. 
Ground motions from the NGA-West-2 database will be added to the database currently used and 
will provide improved insight into the relationship between ground motion intensity measures 
and embankment dam engineering demand parameters. 
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Abstract 

The 2014 South Napa mainshock caused significant damage in the Northern California 
Bay Area. Time series from a foreshock, mainshock, and three aftershocks were collected from 
various agencies. These were processed following the Pacific Earthquake Engineering Research 
Center (PEER) standard data-processing methods, and a ground-motion database was developed.   
Metadata such as fault style, source-to-site distance, average shear wave velocity in the top 30 m 
(Vs30), and basin depth were collected. Shear wave velocity profiles were also measured by the 
Spectral Analysis of Surface Wave Dispersion (SASW) technique at selected strong-motion 
stations. These datasets were combined in the ground motion database and compared to the 
Ground Motion Models (GMMs) from the NGA-West2 studies to evaluate the regional 
attenuation of these events. Time series at two geotechnical downhole array sites were also 
collected from 29 earthquakes to calculate apparent wave velocities from wave travel times and 
empirical transfer functions to understand wave amplification. Characteristics of pulse-like 
records from the South Napa and NGA-West2 databases were also analyzed to compare near-
fault regions between these databases. The influence of pulse-like records was also investigated 
using inelastic response spectra to understand the damage potential on structures. These observed 
ground-motion characteristics are summarized in this study. The data produced in this study can 
be used to generate fragility curves that account for the presence of a pulse in the record. 

Introduction 

The M6.0 South Napa earthquake occurred on August 24, 2014. The epicenter was 
located approximately 9 km south of the city of Napa in northern California. Residential 
structures and wineries surrounding this area were significantly damaged. After the earthquake, 
PEER summarized various preliminary observations, in which the following ground motion 
characteristics were described (Kishida et al. 2014a). In a comparison of the ground motion 
attenuation from the South Napa earthquake with the median NGA-West2 GMMs (e.g. Campbell 
and Bozorgnia 2014), the attenuation rate was higher from the South Napa event especially for 
relatively high-frequency 5%`damped PSA. Baltay and Boatwright (2015) observed similar 
trends and noted that the northern California Bay Area has stronger attenuation compared to the 
average value of attenuation in the GMMs. To confirm these observations, the ground motion 
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database was expanded by collecting the time series from one foreshock and three aftershocks of 
the South Napa mainshock. The shear wave velocity profiles were also measured by the Spectral 
Analysis of Surface Wave Dispersion (SASW) technique at selected strong-motion stations. 
Combining these data, a ground motion database was developed to evaluate the regional 
attenuation in the northern California Bay Area. The second characteristic observation was that 
two geotechnical downhole arrays operated by the California Strong Motion Instrumentation 
Program (CSMIP) in partnership with California Department of Transportation (Caltrans) 
(CE68206 and CE68259) located on the south side of the Carquinez Bridge (I-80) recorded 
PGAs of approximately 1g and 0.42g, respectively, during the 2014 South Napa mainshock. The 
hypocentral distance was approximately 20 km; hence the observed PGAs were unusually high 
compared to GMMs. These high PGAs were explained after the earthquake with potential causes 
such as local site effects, soil–structure interaction effects, or possible basin effects (Kishida et 
al. 2014a, Çelebi et al. 2015). Çelebi et al. (2015) analyzed the recorded time series and 
concluded that these large PGAs were caused by local site effects. To further understand wave 
propagation at the two downhole arrays, time series from 29 previous earthquakes also were 
collected from the Center for Engineering Strong Motion Data (CESMD 2014). Using this 
database, apparent wave velocities and empirical transfer functions (ETF) were calculated 
between sensors at different depths in the downhole arrays from wave travel times and ratios of 
Fourier amplitude spectrum (FAS), respectively. The third characteristic was that pulse-like 
motions were observed in the velocity time series at several stations in near fault region. These 
large velocity pulses were observed during mainshock especially in the forward directivity 
direction (Kishida et al. 2014a). These pulses could possibly be related to the extensive damage 
observed at structures and wineries in the city of Napa. To understand these effects, we evaluated 
all the time series in the database for pulse characterization and compared these to the NGA-
West2 database to define the region with potential damage from pulse-like velocity time 
histories. We also investigated the inelastic response spectra of the pulse-like waveforms to 
understand the pattern of observed damage during 2014 South Napa mainshock. 

Ground Motion Database 

Table 1 is the catalog of processed earthquakes in the South Napa sequence developed in 
this study. The moment magnitudes (M) were obtained from Northern California Earthquake 
Data Center (NCEDC). Hypocenter locations were similarly obtained from NCEDC using the 
double-difference method as described in Waldhauser and Ellsworth (2000). Time series were 
obtained from CESMD, Incorporated Research Institutions for Seismology (IRIS), NCEDC, and 
the California Department of Water Resource (CDWR). Approximately 1,350 records have been 
processed and filtered following the standard PEER data processing methods (Chiou et al. 2008, 
Ancheta et al. 2013) to provide uniformly processed time series, PSA at various dampings and 
Arias Intensity. Instrument corrections were also applied when the response of sensors was not 
directly proportional to acceleration. A time window for data processing was selected following 
the recommendations of previous studies (Goulet et al. 2014, Kishida et al. 2014b). An acausal 
Butterworth bandpass filter was applied after reviewing the FAS shape and the signal-to-noise 
ratio between the S-wave and the pre-event noise window (when available) on a component-by-
component basis (e.g. Darragh et al. 2004, Chiou et al. 2008, Boore et al. 2012). 5%-damped 
PSA were calculated at selected frequencies for all processed time series following Ancheta et al. 
(2013). The metadata from all the processing steps were also stored in the database such as 
record start time, location of station, time window locations, and applied high-pass and low-pass 
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filter corner frequency. For approximately 500 stations in the database, estimates of Vs30 were 
obtained from SASW performed for this study, the NGA-West2 study (Seyhan et al. 2014), or 
approaches that followed methodologies in the study by Seyhan et al. (2014) and Wills et al. 
(2015). The depths to bedrock were obtained from the USGS study (Aaggard et al. 2010). 
Directivity parameters were also obtained for the mainshock following the approach by Chiou 
and Youngs (2014) that used the finite fault model of Dreger et al. (2015).  

Figures 1(a) – 1(c) show the attenuation of PGA, PSA(1.0s) and PSA(3.0s) with closest 
distance (Rrup) for the South Napa earthquake mainshock. The median of the four GMMs by 
Abrahamson et al. (2014), Boore et al. (2014), Campbell and Bozorgnia (2014), and Chiou and 
Young (2014) are also shown. At PGA, the median GMM prediction fits well to the observations 
at shorter distances (Rrup < 20 km), whereas it tends to over-predict as distance increase. At PSA 
of 1.0 and 3.0 s, the median prediction slightly underestimated the data at shorter distances, but 
fits better at greater distances. Baltay and Boatwright (2015) observed similar trends and 
explained that the over-prediction of high frequency at greater distance was due to the stronger 
regional attenuation in this area of northern California. Figures 1(d)-1(f) shows the residuals 
plotted on a regional map. Positive residuals become prominent in the region north of the 
mainshock epicenter as period increases. Figures 1(g)-1(i) show the residuals against delta DPP 
which was the directivity indicator used by Chiou and Youngs (2014). Clear directivity effects 
were observed in these figures for PSA(3.0s). These effects become unclear as period decreases. 
Baltay and Boatwright (2015) similarly observed positive correlations with residuals against 
DPP. Figures 1(j) – 1(l) show the attenuation of PGA with closest distances (Rrup) for the three 
aftershocks. Stronger attenuation with distance were also observed for all three events compared 
to the median GMM with Rrup.  

 

Table 1. Catalog for the South Napa earthquake sequence in the PEER Database 
 

Earthquake 
Name 

Origin Time 
(Year-Mo-DyTHr:Mn:Sc)

Latitude 
(°N) 

Longitude 
(°E) 

Depth 
(km) 

M 

Foreshock 2014-08-05T12:40:01 38.2557 -122.323 8.20 3.03 

Mainshock 2014-08-24T10:20:44 38.21517 -122.312 11.12 6.02 

Aftershock1 2014-08-24T12:47:12 38.23833 -122.343 8.439 3.60 

Aftershock2 2014-08-26T12:33:16 38.1785 -122.301 12.577 3.90 

Aftershock3 2014-08-31T08:56:20 38.23583 -122.329 9.55 3.24 



SMIP17 Seminar Proceedings 
 

112 

 

 

 

 
Figure 1. Variations in (a) PGA, (b) PSA(1.0s), (c) PSA(3.0s) against Rrup, variations in residuals of 
(d)PGA, (e) PSA(1.0s) and (f)PSA(3.0s) on a map, variations in residuals of (g) PGA, (h) PSA(1.0) and 
(i) PSA(3.0) against Delta DPP for 2014 South Napa mainshock, variations in PGA for three aftershocks 
(j)EQID3, (k) EQID4, and (l) EQID5 against Rrup. 



SMIP17 Seminar Proceedings 
 

113 

Site Characterization of Strong-Motion Stations by SASW 

SASW were performed at 15 strong-motion stations. Table 2 lists these stations, which 
were selected based on the several factors such as number of recordings in the database, the 
significance of the strong shaking during the mainshock, and velocity information available in 
NGA-West2 site database (Seyhan et al. 2013). Figure 2 show pictures of a typical SASW 
layout. Figure 3 shows an example of the surface wave dispersion curves produced by SASW at 
the geotechnical downhole array at the south end of the Carquinez Bridge. Surface waves were 
generated by a truck and recorded by a linear array of seismometers. Figure 4 shows the 
comparison of the Vs profile from SASW to the suspension logging results from CSMIP 
(CESMD 2014). These two Vs profiles agree well at depth, while the SASW method provides Vs 
measurements to the surface. 

Table 2. Station list of Vs measurements by SASW 
 

Station Name Network Station ID Latitude (°N) Longitude (°E) # of records 

Napa - Napa College CGS 68150 38.270 -122.277 4 

Green Valley Road NC NGVB 38.280 -122.216 4 

Huichica Creek NC NHC 38.217 -122.358 5 

Lovall Valley Loop Rd NC N019B 38.301 -122.402 4 

Oakmont NP 1835 38.442 -122.607 4 

Martinez NP 1847 38.0130 -122.134 4 

Glen Ellen NP 1848 38.367 -122.524 4 

McCall Drive, Benicia, CA NC C032 38.083 -122.158 5 

Main St, Napa, CA NP N016 38.299 -122.285 5 

Vallejo_FD NP 1759 38.108 -122.256 2 

Napa; Fire Station No. 3 NP 1765 38.330 -122.318 2 

NMI NC NMI 38.076 -122.259 2 

Sonoma NP 1829 38.290 -122.461 3 

Old Carquinez Bridge north free-field CGS 68184 38.0675 -122.226 1 

Carquinez Bridge Geotechnical Array CGS 68206 38.056 -122.226 3 

 

 
Figure 2. Example pictures of SASW testing equipment 
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Figure 3. Surface wave dispersion curves at 
Carquinez Bridge Geotechnical Array (68206) 

 
Figure 4. Comparison of the SASW Vs profile 
with suspension logging results 

Carquinez Bridge Geotechnical Array Recordings 

The Carquinez Bridge geotechnical array (CE68206) recorded peak ground acceleration 
of approximately 1.0g at ground surface during 2014 South Napa earthquake. To understand this 
observation downhole records were collected and processed from 29 previous earthquakes at this 
array and the nearby CE68259 array. The apparent wave velocities between sensors at depth and 
empirical wave amplification were estimated. Table 3 lists these earthquakes for which 
magnitude ranged from 2.2 to 6.0.  

Apparent Wave Velocities 

Apparent Vs and Vp were calculated between downhole recordings by computing wave 
travel times. Two analyses were conducted to calculate these velocities. The first was cross-
correlation method (CCM) (e.g. Elgamal et al. 1995), and the second was the normalized input-
output method (NIOM) (Haddadi and Kawakami, 1998). Incident P- and S-wave-travel times 
were only considered in the analyses. Figure 5a shows the comparison of apparent wave 
velocities with field measurements for both of the geotechnical arrays. It shows reasonable 
agreement between apparent wave velocities and field measurements, where 91% of velocity 
measurements from CCM and NIOM were within ±30% of the measured velocity. Figure 5b 
shows the same dataset, however, the x-axis is the difference in apparent velocities between 
CCM and NIOM methods. The data with large differences between apparent and measured wave 
velocities also have large differences between the values from CCM and NIOM. Therefore, these 
data were removed from further analyses when the differences between CCM and NIOM were 
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greater than 30%. This screening process reduced the percentage of erroneous data (i.e. the 
difference greater than 30% from the measured velocity) from 9% to 2%.  

Table 3. Earthquakes recorded at geotechnical downhole arrays (CE68206 and CE68259) 
 

Earth
quake 
Name 

Origin Time 
(Year-Mo-DyTHr:Mn:Sc) 

Earthquake Location 
Latitude 

(°N) 
Longitude 

(°E) 
Depth 
(km) 

M 

1 2006-08-03T03:08:12.86 Glen Ellen 38.3635 -122.589 8.55 4.5 

2 2006-12-21T03:12:28.76 Berkeley 37.85717 -122.245 8.643 3.6 

3 2007-03-02T04:40:00.75 Lafayette 37.8965 -122.111 15.981 4.23 

4 2007-07-20T11:42:22.36 Oakland 37.804 -122.193 5.262 4.2 

5 2007-10-31T03:04:54.81 Alum Rock 37.4335 -121.774 9.741 5.45 

6 2008-06-04T02:29:04.15 Green Valley 38.24183 -122.184 10.065 3.96 

7 2008-09-06T04:00:15.25 Alamo 37.862 -122.008 16.328 4.1 

8 2011-01-08T00:10:16.74 Seven Trees 37.28717 -121.658 9.593 4.1 

9 2011-08-24T16:57:44.12 San Leandro 37.74517 -122.151 8.632 3.38 

10 2011-10-20T21:41:04.26 Berkeley 37.857 -122.253 7.989 3.95 

11 2011-10-21T03:16:05.26 Berkeley 37.86083 -122.257 7.939 3.84 

12 2011-10-27T12:36:44.46 Berkeley 37.86666 -122.261 7.99 3.62 

13 2012-02-16T02:09:14.05 Crockett 38.07667 -122.233 8.827 3.55 

14 2012-02-16T17:13:20.58 Crockett 38.07817 -122.234 8.247 3.54 

15 2012-03-16T02:56:49.65 Crockett 38.07367 -122.23 7.464 2.48* 

16 2014-01-14T04:18:17.60 Vallejo 38.0985 -122.238 8.157 2.76* 

17 2014-04-28T21:53:24.41 Vallejo 38.093 -122.253 8.024 2.23* 

18 2014-08-24T10:20:44.07 American Canyon 38.21517 -122.312 11.12 6.02 

19 2014-08-24T12:47:12.55 Napa 38.23833 -122.343 8.439 3.6 

20 2014-08-26T00:02:34.67 Napa 38.24033 -122.341 6.927 2.79* 

21 2014-08-26T12:33:16.84 American Canyon 38.1785 -122.301 12.577 3.9 

22 2014-08-26T12:35:52.99 American Canyon 38.17567 -122.307 11.473 2.7* 

23 2014-08-26T13:12:19.96 American Canyon 38.17933 -122.297 10.006 2.71* 

24 2014-08-31T08:56:20.83 Napa 38.23583 -122.329 9.55 3.24 

25 2014-09-01T01:41:14.29 American Canyon 38.17717 -122.31 9.141 2.47* 

26 2014-09-04T10:56:23.17 American Canyon 38.18033 -122.303 10.937 2.93* 

27 2014-09-29T07:17:01.22 American Canyon 38.177 -122.303 11.711 2.5* 

28 2015-04-01T14:07:47.16 San Pablo 37.97017 -122.352 4.85 2.67* 

29 2015-04-02T07:06:03.87 San Ramon 37.792 -121.987 9.89 3.61 
*Magnitude is obtained from Md. 
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Apparent Vs were calculated by varying the azimuthal angles (rotated by 1°) from the two 
horizontal time series. Figures 6(a) and (b) show the variation in apparent Vs near the ground 
surface with azimuthal angle for CE68206 and CE68259, respectively. The results show the clear 
negative correlation of apparent velocities with the PGA along the rotated azimuthal angle in the 
mainshock. Figure 7(a) and (b) show the variation of apparent wave velocity with PGA for the 
two geotechnical arrays from all the earthquakes. It shows that the wave velocity decreases near 
the ground surface as PGA increases, which may indicate nonlinear soil behavior due to strong 
shaking. ETFs are also calculated at CE68206 and CE68259 and compared with the theoretical 
transfer functions (TTF) in Figure 8(a) and (b), respectively. The figure shows good agreement 
between these two transfer functions, especially for the resonance modes, although the 
amplification factors are different between these due to differences in damping. During the South 
Napa mainshock, there is a clear broadening of resonance periods near 6-10 Hz at CE68206.   

 
Figure 5. Comparison of apparent wave velocities (a) with field measurements (b) between CCM and 
NIOM. 

Figure 6. Variation in apparent Vs depending on rotation angle with PGA at (a) CE68206 and (b) 
CE68259 during the 2014 South Napa earthquake. 
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Figure 7. Variation in apparent Vs against PGA at (a) CE68206 and (b) CE68259. 

 

  
Figure 8. Empirical transfer functions at (a) CE68206 and (b) CE68259. 

Identification of Velocity Pulses for Near-Fault Records 

Pulses in the velocity time history were observed at near fault stations during the 
mainshock of the 2014 South Napa earthquake (Kishida et al. 2014a). After the development of 
the ground motion database, the entire database was analyzed to identify pulse-like records. The 
methodologies developed by Hayden et al. (2014) and Shahi and Baker (2014) were 
implemented and compared. Table 4 shows a summary of the recordings identified as pulse-like 
records in South Napa database; all pulse-like recordings were from the mainshock. A pulse was 
identified at 7 stations by at least one of the two methods.  Differences exist in the calculated 
pulse period as well as the pulse azimuth (i.e., azimuth of max pulse and azimuth of max peak-
to-peak for the Shahi and Baker 2014 and Hayden et al. 2014 methods, respectively) presented in 
Table 4.  

Figure 9 shows example velocity time series, which were identified as pulse-like 
recordings by both methods. The time series were rotated to the azimuthal angle in which the 
pulse characteristics were identified. This figure shows maximum velocities of approximately 80 
cm/s and clear velocity pulses in both recordings. Figure 10 shows the locations of the stations 
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where the pulse-like records were identified by either method. Most of the stations were located 
in the forward directivity region of the fault rupture (e.g. Dreger et al. 2015), whereas the Vallejo 
– Broadway & Sereno recording site was located in the backward directivity region. The Vallejo 
– Broadway & Sereno station has a calculated pulse period less than 1.0 s for both methods 
whereas the other stations in the forward directivity region have pulse periods greater than 1.0 s. 
The distribution of stations in Figure 10 largely overlaps the station distributions with large 
positive residuals of PSA (3.0s) in Figure 1(f).  

Pulse-like recordings were strongly related to directivity effects in these plots. Similar 
identifications of pulse-like recordings were performed for the NGA-West2 database (Ancheta et 
al. 2013). Figure 11 shows scatter plot (Rrup versus M) of identified pulse-like recordings in the 
South Napa and NGA-West2 databases. The pulse-like recordings were observed generally 
within Rrup less than 10 km for M 5. There was a trend for Rrup to increase as M increases which 
could be used to define the near-fault region for design practice.        

Table 4. Pulse Identification for recordings from the 2014 South Napa Mainshock 

 Hayden et al. (2014) Shahi and Baker (2014) 

Station Name RSN 
Pulse 

Identified 

Azimuth 
of Max 

PPV* (°) 

Pulse 
Period 

(s) 

Pulse 
Identified 

Azimuth 
of Max 

Pulse (°) 

Pulse 
Period 

(s) 

Napa College 51 No 160 1.6 Yes 154 2.0 

Huichica Creek 89 Yes 171 5.5 Yes 166 2.8 

Lovall Valley Loop Rd. 212 Yes 61 3.8 Yes 69 3.6 

Fire Station No. 3 217 Yes 62 3.8 Yes 29 4.4 

Main St. Napa 219 Yes 56 3.4 No 60 3.9 

Atlas Peak 702 Yes 103 2.0 No 177 2.4 
Vallejo - Broadway & Sereno 1318 Yes 45 0.6 No 50 0.6 

* PPV = Peak-to-Peak Velocity (Hayden et al. 2014) 

 

 
Figure 9. Example of pulse-like time series 
recorded in the South Napa mainshock. 

 
Figure 10. Locations of stations with pulse-like 
records identified in the 2014 South Napa mainshock. 
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Figure 11. Distribution of pulse-like recordings in the NGA-West2 and South Napa database

 

 

Figure 12. Inelastic-Response Model 

Pulse-Motion Characteristics by Inelastic Spectra 

Inelastic response spectra were computed for the pulse motions to determine whether the 
presence of the pulse affected the response of an inelastic system and whether the period shift 
associated with inelasticity affected the response. The generalized inelastic SDOF model that 
was used in the analysis is shown in Figure 12, with the analyses performed using OpenSees 
(McKenna, 1997). This generalized model is consistent with what is assumed in ASCE 7-16. 
This model was chosen because it represents the critical characteristics of inelastic response – 
nonlinearity, hysteresis, strength and stiffness degradation due to cycling and ductility. The 
inelastic spectra were computed for a range of periods and strengths, as shown in Figure 12. 

The strength parameter that was used in the analysis is the Estimated-Strength Reduction 
Factor, Rd, defined as the ratio between the elastic lateral-force demand for design (2/3 MCER) 
and the yield strength of the structure, Vy. This value is equivalent to a combination of the 
strength-reduction factor R and the strength-amplification factor  used in design. (Rd Range: 
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0.5-10) (Rd >1: structure will yield below 2/3 MCER, Rd <1: structure will remain elastic below 
2/3 MCER). It is important to note that with this definition of Rd, the estimated yield strength of 
the structure is defined as a function of the site-specific design spectrum.  The MCER spectrum 
was computed for each recording station. A graphical representation of the effect of Rd on the 
design spectra is shown in Figure 13. Because inelastic response of very-stiff structures may 
yield questionable results, the inelastic spectra were computed for a period range between 0.1 
and 10 seconds. 

The spectral displacement computed in the inelastic response spectra was normalized to a 
ductility value to make a graphic comparison over all periods. The inelastic-spectra for two 
recording stations, “Napa College, RSN 51, JB Dist=3.1 km” and “Lovall Valley Loop Rd, RSN 
212, JB Dist=5.0 km”, are shown in Figure 14 and 15, respectively, because they display 
interesting response characteristics. The Napa College record has a pulse at a period between 1 
and 2 seconds. This pulse is identified by both identification methods and is evident in the elastic 
response spectrum, in the Fault-Parallel direction, as shown in Figure 14, top-left figure. The 
remaining graphs in the figure plot the displacement ductility versus initial elastic period for the 
Fault-Normal and Fault-Parallel directions, as well as for the azimuth direction for both the 
Hayden and Shahi pulse characterizations. Each of these inelastic spectra plots the response for 
different cases of Estimated-Strength Reduction Factor. Figure 14 show that the pulse shape is 
identified for the cases where the response is near yield (ductility=1, Rd<2). However, for the 
cases of larger strength reduction, the pulse shape is no longer observed and high ductility 
demands are evident in all periods below 3 seconds. 

 

 

Figure 13. Inelastic Design Spectra 
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Figure 14. Inelastic Spectra for Napa College, RSN 51, JB Dist=3.1 km 

 

Figure 15. Inelastic Spectra for Lovall Valley Loop Rd, RSN 212, JB Dist=5.0 km 
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The inelastic spectra for the Lovall Valley Loop Rd record show that the pulse at between 
3 and 4 seconds, identified by both methods and observed in the Fault-Normal response, does 
affect the inelastic response in that period range. The low levels of ductility demand for the cases 
of the structures with the lowest strength, however, indicate that the pulse does not cause 
collapse of the structure, unless its ductility capacity is very low. An evaluation of all inelastic 
response spectra, however, do indicate that the structures at highest risk at the shorter-period 
structures. This assessment needs to be verified through a rigorous comparison with the response 
of records without pulse characteristics. 

Effect of Pulse-Presence in Inelastic Demands 

The larger-magnitude records from the Napa Earthquake were combined with records 
from the PEER NGAWest-2 Ground-Motion Database with similar magnitude and distance 
characteristics. The two sets of ground-motion records were flagged based on whether they had a 
pulse or not, irrespective of the orientation of the pulse, and a record was considered to have a 
pulse if it me either of the velocity-pulse definitions was met. The records were used in the as-
recorded orientation and in the Fault-Normal and Fault-Parallel. As a result, four time histories 
were used for each database record.  

The inelastic models presented in the previous section, with a spectrum of elastic periods 
and lateral-strength capacities, were subjected to the large number of ground motions. For each 
SDOF analysis, the inelastic displacement ductility demand was computed as the ratio between 
the maximum displacement and the structure’s yield displacement. When this ductility demand is 
computed versus the elastic pseudo-spectral acceleration of the record at the same period 
(including the scale factor), we can observe the effects of the presence of a velocity pulse in the 
record, as shown for different Effective-Strength Ratios in Figure 16 and Figure 17, Rd=4.44 and 
Rd=2.0, respectively. The data show a methodology for determining the effects of the velocity 
pulse. There are cases where there are cases where there is a bias toward a higher ductility 
demand in records containing a pulse, but for the case 1D analysis, such as this one, it is 
important to determine a consistent azimuth for the pulse for better record classification. It is 
worth noting that the effect of the pulse is observed even in the response of systems with a low 
elastic period, as expected when period elongation is taken into account.  
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Figure 16. Effect of Velocity Pulse on Ductility Demand vs. Elastic Spectral Ordinate, Rd=4.44 

 

Figure 17. Effect of Velocity Pulse on Ductility Demand vs. Elastic Spectral Ordinate, Rd=2.0 
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Conclusions 

Ground motion characteristics of the 2014 M6.0 South Napa earthquake have been 
investigated. The ground motion database was developed by collecting the time series from one 
foreshock, mainshock and three aftershocks from various agencies. Shear wave velocity profiles 
were also measured by the Spectral Analysis of Surface Wave Dispersion (SASW) technique at 
15 selected strong-motion stations. Combining these data, a ground motion database was 
developed, and compared to GMMs in NGA-West2 studies. The results show the stronger 
attenuation of PGA for these events compared to the median of NGA-West2 models, indicating 
regional attenuation in this region of northern California Bay Area is greater than predicted by 
the average GMM. This observation was similar to those by Baltay and Boatwright (2015). The 
study also reviewed time histories from the two geotechnical downhole arrays operated at the 
south side of the Carquinez Bridge (I-80), which recorded PGAs of approximately 1g and 0.42g, 
respectively, during the 2014 South Napa mainshock. The apparent wave velocities computed 
from the downhole arrays show the clear reduction in Vs during mainshock, indicating that 
reduction of soil stiffness occurred due to strong shaking. The ETFs were also computed from 
downhole records and compared to the TTF from Vs profiles. The comparison shows good 
agreement of resonance periods especially at CE68206, where the maximum PGA of 1g was 
recorded. The ETF also shows the clear broadening of resonance periods at CE68206 during 
mainshock, which is consistent to the reduction of Vs in apparent wave velocities. Therefore, 
evaluations based on one-dimensional wave propagation reasonably explain the downhole array 
observations in mainshock, which is consistent with the results of Çelebi et al. (2015).  The 
pulse-like velocity time series were investigated by using Hayden et al. (2014) and Shahi and 
Baker (2014) approaches and utilizing the South Napa and NGA-West2 databases developed in 
this study. In the South Napa earthquakes, 7 records from mainshock are identified as pulse-like, 
where most of these stations were located in the forward directivity region. The pulse periods 
estimated by these two methods were mainly between 2.0 – 4.4 s. The distributions of these 
stations were consistent with the regions where the positive residuals were observed for 
PSA(3.0s) compared with GMMs from NGA-West2 studies. The comparison of near-fault 
regions by pulse-like records between South Napa earthquake and NGA-West2 database also 
showed that these are reasonably consistent, and increase as magnitude increases. Inelastic 
response spectra for the recorded ground motions can be used to gain further insight into the 
expected response of structures with different stiffness (period) and strength characteristics. With 
a more consistent definition of the pulse azimuth, further studies beyond the scope this project 
are recommended so that the inelastic-response analyses can be used to compute fragility 
functions that take into account the presence of a velocity pulse. 
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Abstract 
 

This study evaluates several possible parameters used to quantify the intensity of grouns 
motions and its correlation with strong nonlinear structural response and collapse. In particular, it 
compares the dispersion of structural collapse capacities obtained using four different ground 
motion intensity measures (IMs): (1) Sa(T1); (2) Sa(T1) adjusted using ; (3) an IM consisting 
spectral acceleration averaged over a period range (Saavg); and (4) a new IM termed filtered 
incremental velocity (FIV). Results suggest that Sa(T1) is the least efficient IM whereas Saavg and 
FIV are the best IM parameters. Additionally, this paper investigates the influence that record 
scaling has on estimating probabilities of collapse of SDOF and MDOF systems. Results suggest 
that a systematic bias is introduced by scaling ground motions and that the bias is strongly 
dependent on the period of vibration and the lateral strength of the system. 

 
Introduction 

 
The use of nonlinear response history analyses is starting to become more common in 

structural engineering practice due to the adoption of Performance Based Earthquake 
Engineering, PBEE. This type of analysis is believed to be the most reliable analytical tool to 
estimate the seismic performance of a structure. 

 
The process of selection and scaling of ground motions using an intensity measure (IM) 

is of paramount importance as it will influence the accuracy with which the structural response is 
estimated. Even when some guidelines suggested to assemble a ground motion set using records 
with causal parameters that are consistent with those that control the desired design spectrum, 
early studies conducted by Prof. Cornell and his students (Bazzurro and Cornell 1994, 2002; 
Bazzurro et al. 1998; Jalayer and Cornell, 2003; Luco and Cornell, 2007; Shome et al., 1998) 
pointed out that selecting records based on causal parameters requires a very large number of 
ground motions in order to provide adequate results. The reason behind this is the associated 
significant record-to-record variability in the structural response. Therefore, they proposed to use 
the five percent damped spectral acceleration at the fundamental period of the structure, Sa(T1), 
as the IM and to scale the records to the same spectral ordinate when computing the structural 
response. By following this procedure, they observed a reduction in record-to-record variability 
and, therefore, reduced the number of ground motions required to achieve a certain level of error 
in the estimate of the response. After analyzing a couple multiple-degree-of-freedom (MDOF) 
structures, they noted that scaling records to the same value of Sa(T1) lead to an average 
reduction of 40% in the dispersion of peak interstory drift ratios when compared to the results 
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obtained from records selected based on a relatively narrow range of Mw and source-to-site 
distances. 

 
One important shortcoming of the use of Sa(T1) as the intensity measure is that its 

efficiency rapidly decreases as the level of nonlinearity in the structure increases. Thus, several 
researchers have proposed alternative IMs. For example, Baker and Cornell (2005) proposed the 
use of a vector IM that consists of Sa(T1) and the ground motion parameter . The ground motion 
parameter  is defined as the number of logarithmic standard deviations a pseudo acceleration 
spectral ordinate of ground motion deviates from the median ordinate predicted by a ground 
motion prediction equation (GMPE). They observed that ε could be used as a proxy to the 
spectral shape and when used together with Sa(T1) it could lead to an improved estimate of the 
seismic response of a structure.  

 
Taking advantage of the bias reduction in structural responses that is obtained when  is 

considered. Haselton et al. (2009) proposed a simplified procedure for correcting the collapse 
capacity of a structure when the spectral shape is not considered in the selection of the records by 
applying an -dependent correction factor. Their method uses a general ground-motion set, 
selected without regard to ε values, and then corrects the calculated structural response 
distribution to account for the mean ε expected for the specific site and hazard level. This 
procedure, which has now also been incorporated into the ATC-63 project and the FEMA P-695 
document (FEMA, 2009), avoids having to consider the joint probability distribution of Sa(T1) 
and ε. Unfortunately, the procedure focuses on correcting the bias and not in the reduction of the 
variability/dispersion of the collapse intensities. As a matter of fact, and contrary to popular 
belief, considering ε does very little in terms of reducing the record-to-record variability and 
therefore the vector IM consisting on Sa(T1) and ε remains a relatively inefficient intensity 
measure. This means that it does not lead to a significant reduction in dispersion and hence, 
although it corrects the bias, it still requires a large number of response history analyses in order 
to estimate the response of the structure with an acceptable level of confidence.  

 
The reason why the consideration of ε does not lead to a significant reduction in 

dispersion is because ε is not a direct measure of spectral shape but only a proxy as a single 
spectral ordinate relative to the intensity measured by a ground motion prediction model cannot 
provide a measure of spectral shape. Moreover, several studies have shown that ε is ineffective in 
accounting for spectral shape in the case of near-fault pulse-like ground motions (Baker and 
Cornell, 2008; Bojorquez and Iervolino 2011). In fact, Haselton et al. (2009) when proposing 
their approximate method to consider the effect of ε explicitly wrote in their paper: “the 
approach proposed in this paper should not be applied to near-fault motions with large forward-
directivity velocity pulses”. This is very important because this type of ground motions is 
precisely the one that is more likely to produce the collapse of structures. 
 

As clearly demonstrated by Shome et al. (1998), having an intensity measure that is 
strongly correlated with strong nonlinear deformations and collapse of structures has enormous 
practical consequences for structural engineers. Namely, the level of record-to-record variability 
achieved in the level of structural response is related to the number of records that the engineer 
must use for obtaining a reliable estimate of the structural response. In particular they noted the 
required number of ground motions, n, required to estimate the median structural response within 
a factor of X (e.g., ± 0.1) with 95% confidence would be given by 
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n  4

X









2

 
 
(1)
 

where  is the level of dispersion in the response when using a certain intensity measure IM 
expressed as the logarithmic standard deviation. From this equation it can be seen that for the 
same level of desired accuracy, the reduction in the necessary ground motions is proportional to 
the square of the reduction in dispersion. This is extremely important because there is a 
considerable computational effort involved in each nonlinear response history analysis. 
 

Besides analyzing the efficiency of Sa and Sa(T1)+, in this study we propose a couple of 
new intensity measures. The first one is called Saavg which is based on averaged spectral 
accelerations but taking into account spectral ordinates that correspond to periods that are both 
shorter and longer than the fundamental period of the structure. The second IM is termed FIV 
and is based on a period-dependent version of the incremental velocity (IV) originally proposed 
by Anderson and Bertero (1985). Note that this new IM is not based on the concept of spectral 
shape but rather on time-domain features of a ground motion. 

 
The objectives of this study are: (1) the assessment of current and recently proposed 

intensity measures that are well correlated with strong nonlinear behavior and the collapse of 
structures. In particular, the proposed study develops a new ground motion intensity measure 
(IM) that has a better correlation with large inelastic deformations in structures and with collapse 
than the correlation provided by intensity measures being used today, namely, Sa(T1), or the 
more recently proposed vector IM consisting of Sa(T1) and ; and (2) the evaluation of scaling 
bias using Sa(T1) in structural response of degrading systems, specially focusing in the 
estimation of the probability of collapse of a structure. In case a bias is introduced, this study will 
identify the situations in which it is more critical and the use of scale factors should be limited. 

 
Structural Model and Ground Motion Records for the Efficiency Evaluation 

 
MDOF system 
 

The structure used in this study is a four-story steel special moment frame building with 
reduced beam sections designed by Lignos et al. (2012) according to the 2003 International 
Building Code and the 2005 AISC seismic provisions. The design base shear coefficient is V/W 
= 0.082. The first three modal periods of the structure are T1 = 1.33s, T2 = 0.43s and T3 = 0.22. 
 

The nonlinear behavior of the structure is characterized by concentrated plasticity 
elements at the ends of beams and columns whose hysteretic behavior is governed by a bilinear 
response with a modified version of the Ibarra-Medina-Krawinkler (IMK) deterioration model 
calibrated for steel moment frame structures (Ibarra et al. 2005, Lignos et al. 2010). All the 
nonlinear analyses are conducted using OpenSees (McKenna 2009). 
 
Ground motion records 
 

The ground motions were selected from the Center for Engineering Strong Motion Data 
(strongmotioncenter.org) and the PEER Next Generation Attenuation NGA2 database (Ancheta 
et al. 2014) without any special consideration on spectral shapes. The 265 selected records have 
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magnitudes varying between 6.93 and 7.62, while the Joyner-Boore distance range is between 0 
and 27km, and correspond to recordings from stations located on NEHRP site class C or D. 

The ground motion set used in this study is a subset of the MRCD137 set used by Eads et 
al. (2014) but some records were excluded when the scale factors that were required to trigger 
collapse exceeded a value of 20. Additionally, the two components of the Lamont 375 Station 
during the 1999 Duzce earthquake were also excluded due to extremely unusual high-frequency 
content. For the complete list and main information of the records used, the reader is referred to 
the final report of this project in the SMIP17 seminar webpage or Eads et al. (2014). 

 
Structural Model and Ground Motion Records for the Scaling Factor Bias Evaluation 

 
SDOF systems 
 

Two 5%-damped SDOF systems with -3% postelastic stiffnesses were used in the 
analyses. The short period SDOF corresponded to a system with a period of vibration of 0.25s 
and the long period system corresponded to an SDOF with a period of 1.50s. 

 
The lateral strength was varied using strength reduction factors, R, defined as 

 

y

a

F

Sm
R


  

 
(2)

where m is the mass of the system, Fy is its lateral yielding strength and Sa is the pseudo 
acceleration spectral ordinate. Depending on the SDOF, R factors ranged between 1.5 and 6. 
 
MDOF systems 
 

This study considers two MDOF systems whose structural system consists of reinforced 
concrete (RC) special moment frames (SMF) designed by Haselton and Deierlein (2007a). The 
first MDOF is a two-story building with a fundamental period of vibration T1 = 0.63s and the 
second is a four-story building with a fundamental period of vibration T1 = 1.12s. For detailed 
description of the design of these structures the reader is referred to Haselton et al. (2007a).  

 
The hysteretic behavior of the ends of the beam and column connections is governed by a 

modified Ibarra-Medina-Krawinkler model calibrated for RC structures (Ibarra et al., 2005, 
Haselton et al., 2007b). All the analyses were conducted using OpenSees (McKenna 2009). 

 
Ground motion records 
 

The ground motions used were also selected from strongmotioncenter.org and the PEER 
Next Generation Attenuation NGA2 database (Ancheta et al. 2013).  

 
SDOF systems 

 
For each SDOF system under study, two sets of 30 ground motions were assembled 

depending on the scale factors that were needed to reach the intensity of the target spectrum. 
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This target spectrum corresponds to the MCE level from a NEHRP site class C location in 
downtown Palo Alto, CA (37.452°N, -122.151°W). 

 
The first set, Set A, corresponds to ground motions whose pseudo acceleration spectral 

ordinate is similar to that of the target scenario, that is, the scale factors required to reach the 
target intensity are between 0.5 and 1.5. This set will be also called “unscaled set” and will be 
used as the benchmark set. The second set, Set B, corresponds to ground motions whose pseudo 
acceleration spectral ordinate has a value in the neighborhood of 1/10 of the spectral ordinate of 
the target scenario such that the scale factors required for these records to reach the target 
intensity are between 7.5 and 12.5. This set will be also called “scaled set”. 

 
MDOF systems 

 
For each MDOF system under study, three sets of 50 ground motions were assembled 

depending on the scale factors that were needed to reach the intensity at the fundamental period 
of vibration of the MDOF of the same target spectrum used for the SDOF systems. 

 
The first set, Set A, corresponds to ground motions whose pseudo acceleration spectral 

ordinate is similar to that of the target scenario, that is, the scale factors required to reach the 
target intensity are between 0.5 and 1.5. This set will be also called “unscaled set” and will be 
used as the benchmark set. The second set, corresponds to ground motions whose pseudo 
acceleration spectral ordinate has a value in the neighborhood of 1/5 of the spectral ordinate of 
the target scenario such that the scale factors required for these records to reach the target 
intensity are between 4.5 and 5.5. This set is called Set B. Finally, the third set corresponds to 
ground motions whose pseudo acceleration spectral ordinate has a value in the neighborhood of 
1/10 of the spectral ordinate of the target scenario such that the scale factors required for these 
records to reach the target intensity are between 9.5 and 10.5. This set is called Set C. 

 
For the complete list and main information of all the records used for each SDOF and 

MDOF systems, the reader is referred to the final report of this project in the SMIP17 seminar 
webpage. 

 
Ground Motion Intensity Measures 

 
This section evaluates the dispersion on the collapse intensities of the four-story steel 

structure subjected to the 265 ground motion records using different intensity measures. The 
intensity measures that will be considered are: 

a) Sa(T1) 
b) Sa(T1) combined with the correction using spectral shape proxy  
c) Saavg(T1) as proposed by Eads et al. (2015). 
d) A newly developed intensity measure called FIV3. 

 
The efficiency of the IMs, defined as the level of variability in the structural responses 

from a set of records having the same intensity level (Luco and Cornell, 2007), will be evaluated 
by comparing the logarithmic standard deviation, lnIM of the estimated collapse intensities. 
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Sa(T1) 
 

Given that the most commonly used intensity measure is Sa(T1), we first proceeded to 
compute the collapse capacities of the structure using this IM. Figure 1 shows the spectral 
acceleration Sa(T1) by which 265 earthquake ground motions need to be scaled to in order to 
produce the collapse of the structure. It can be seen that the ground motions intensities, when 
characterized by Sa(T1), exhibit a very large record-to-record variability with some ground 
motions producing the collapse of the structure when the record is scaled to a spectral ordinate of 
0.51g at T1 = 1.33s while others need to be scaled to spectral ordinates as large as 3.25g to 
produce the collapse of the structure. Also shown in the figure is the median collapse intensity 
which for this structure is 1.0g, the 5 percentile (ground motion intensity at which only 5% of the 
ground motions produce collapse in the structure) and 95 percentile (ground motion intensity at 
which 95% of the ground motions produce collapse). In this case the intensity corresponding to 
the 95 percentile (2.41g) is 4.47 times larger than the intensity corresponding to the 5 percentile 
(0.54g) indicating a large variability of the ground motion intensity required to produce collapse. 
The corresponding logarithmic standard deviation, LnSa , equals to 0.39. This figure 
demonstrates the high variability that exists when one is trying to characterize the collapse 
potential of the structure under a large set of ground motions using a relatively inefficient 
intensity measure such as Sa(T1). 

 

 
Figure 1. Spectral accelerations at the fundamental period of vibration, Sa(T1), by which the 
ground motions need to be scaled to in order to produce the collapse. 

 
Sa(T1) corrected by  
 

Figure 2 presents a plot of the natural logarithm of the Sa(T1) by which the 265 
earthquake ground motions need to be scaled to in order to produce the collapse of the building 
under study as a function of the corresponding  values. Also shown in the figure is a linear fit 
regressed to the data. As illustrated in the figure, and as previously noted by Baker and Cornell 
(2005), the collapse intensity tends to increase as the  value increases.  
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The collapse intensities measured using Sa(T1) were corrected by applying the procedure 
proposed by Haselton et al. (2009) to account for the effect of  . This procedure consists in 
decreasing the intensity producing collapse for records with 's larger than the target  and by 
increasing the intensity producing collapse for records with 's smaller than the target . For this 
structure designed for a site in Los Angeles, the target   equals 1.8 (Eads et al., 2014) and it 
corresponds to the ground motion intensity that has the highest contribution to the mean annual 
frequency of collapse computed via a collapse deaggregation. Please note that instead of using 
the Haselton et al. generic slope recommendation that is based on their buildings, here we apply 
the slope that is specific to this structure. 

 
Figure 2. Natural logarithm of the spectral accelerations at the fundamental period of vibration, 
Sa(T1), by which the ground motions need to be scaled to in order to produce the collapse plotted 
as a function of the  of each record. 
 

The corrected collapse intensities as a function of ε are presented in figure 3. As 
expected, the bias (the slope of the linear trend) has now been fully eliminated, but a large 
dispersion remains. Again 5, 50, and 95 percentiles, which are 0.74g, 1.34g, and 3.03g, 
respectively, are also plotted in the figure with horizontal dashed lines. By comparing figures 1 
and 3 it can be seen that, as previously mentioned, considering ε can correct the bias in the 
median collapse capacity but does not lead to a significant reduction in dispersion. As a matter of 
fact, for this structure the ratio of corrected collapse intensities corresponding to 95 percentile to 
5 percentile equals to 4.1 which is slightly smaller than the ratio of the two percentiles prior to 
correction for which was 4.47. The corresponding logarithmic standard deviation does reduce 
after the correction is applied to consider the effect of ε, but the reduction is minimal as it only 
reduces from 0.39 to 0.36. This corresponds to a reduction of approximately 6.6%. 

 
From this results it is seen that while the vector IM comprised by Sa(T1) and  can 

potentially eliminate the bias in the estimation of the median collapse capacity of the structure, it 
does not lead to a significant reduction in record-to-record variability/dispersion which is a 
desirable characteristic when nonlinear time history analyses are to be conducted. 
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Figure 3. Spectral accelerations that produce collapse in the four-story steel building after 
correction to take into account the target  of each record. 

 
Saavg 
 

The general idea of considering spectral ordinates in a range of periods as a way to 
measure the damaging potential of an earthquake can be traced back almost a century. Studies 
conducted by Benioff (1934) and Housner (1952) can be thought as early attempts to consider 
spectral ordinates from a wide range of periods as an intensity measure.  

 
To the best of our knowledge, Kennedy et al. (1984) conducted the first study that 

recommended to use a period-dependent range in the averaging of spectral ordinates. They 
considered the average spectral value between the fundamental period of vibration of the 
structure (T1) and a lengthened period. In their study, they noted that the relationship between 
this average value and the value of Sa(T1) had an important influence in the nonlinear response 
of structures. They actually observed a reduction in the variability of their results, which they 
attributed to the smoothing effect of averaging compared to the use of a single ordinate. More 
recently, several researchers (e.g. Bianchinni et al. (2009), Bojórquez and Iervolino (2010, 
2011), Tsantaki et al. (2012), DeBiasio et al. 2014) have evaluated different pseudo-acceleration 
averaging schemes focusing on ranges between T1 and a lengthened period based on the 
assumption that as the structure degrades, the period of vibration increases. All these studies 
found a reduction in the dispersion of structural responses when compared to Sa(T1). 

 
Eads et al. (2014; 2015) were the first studies that recommended to consider periods 

shorter than T1 in the averaging range of spectral ordinates. They proposed to use the geometric 
mean of Sa ordinates between [0.2T1 – 3T1] based on the fact that pulses in the ground motion 
control the spectral shape of the spectrum at both sides of T1. This report uses the Saavg definition 
proposed by Eads et al. (2015) to evaluate the collapse intensities of the four-story steel structure 
under study. 

 
Results in figure 3 show the 265 Saavg values that produce the collapse of the four-story 

steel MRF structure. The 5, 50 and 95 percentiles, which are 0.49g, 0.70g and 1.08g, 
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respectively, are also plotted in the figure with horizontal dashed lines. By comparing the record-
to-record variability in this figure with that in figures 1, 5, 9, 13, and 17, it can be seen that a 
significant reduction in dispersion is produced when using the proposed IM. In this case the ratio 
of the collapse intensities corresponding to 95 percentile to 5 percentile is now 2.21 while this 
ratio was 4.47 for the case in which Sa(T1) alone was used as an IM or 4.10 when the vector IM 
comprised on Sa(T1) and ε was used. The corresponding logarithmic standard deviation for the 
proposed scalar IM is 0.21 which is 45% smaller and 41% smaller than the case in which Sa(T1) 
alone was used and when Sa(T1) + ε was used, respectively. These reductions in dispersion mean 
that for the same level of confidence in the structural response, one needs to use approximately 
31% to 35% of the number of records that would be required when using Sa(T1) and Sa(T1) and 
the correction using , respectively. 
 

 
Figure 3. Saavg intensities by which the ground motions need to be scaled to in order to produce 
the collapse of the four-story steel structure. 
 
FIV 
 

The filtered incremental velocity, FIV, is also based on the concept of incremental 
velocity, but instead of just focusing on acceleration pulses with large areas, FIV is a period 
dependent intensity measure, hence capturing different intensities for structures with different 
periods of vibration. The fact that this IM is period dependent and computed from a filtered time 
acceleration time series aids FIV in capturing in a better way damaging pulses for different 
structures as it focuses on pulses with durations that can induce large inelastic incursions in the 
structure and disregard high frequency spikes that, depending on the fundamental period of 
vibration, the structure might not significantly respond to. Moreover, instead of considering only 
the period-dependent acceleration pulse segment with the largest area, FIV considers several 
pulse segments in the same side of the accelerogram that have the largest area and therefore are 
more related to large inelastic excursions and structural collapse. Note that FIV does not exactly 
capture the complete damaging acceleration pulses but rather attempts to capture damaging pulse 
segments. The parameters of FIV were determined after several iterations considering variations 
on the time duration used in the area summation, the number of pulses, and the type and order of 
the filter. 
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Figure 4 presents the FIV collapse capacities computed. The dashed lines represent the 5, 
50, and 95 percentiles with correspond to 253.9cm/s, 359.6cm/s, and 567.8cm/s, respectively. 
The ratio of the collapse intensities corresponding to 95 percentile to 5 percentile for FIV3 is 
2.23 and the corresponding logarithmic standard deviation for the proposed scalar IM is 0.20 
which is 47% smaller and 44% smaller than the case in which Sa(T1) alone was used and when 
Sa(T1) + ε was used, respectively. Reductions in the logarithmic standard deviation of FIV with 
respect the one computed using Sa(T1) and Sa(T1) +  mean that by using FIV, one needs to use 
approximately only 27% to 31% of the number of records that would be required when using 
currently recommended IMs in order to achieve the same level of confidence. 
 

 
Figure 4. FIV intensities by which the ground motions need to be scaled to in order to produce 
the collapse of the four-story steel structure. 
 

Figure 5 presents the normalized collapse capacities using Sa(T1), Sa(T1) adjusted by 
considering the spectral shape proxy , using Saavg, and using FIV. As it has been mentioned, the 
reduction in dispersion achieved by either Saavg or FIV is remarkable. 

 

 

Figure 5. Normalized collapse capacities using different IMs. From left to right: Sa(T1), Sa(T1) 
adjusted using , Saavg(T1), FIV3. 
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Scaling factor bias evaluation 
 

The use of scale factors is undoubtedly the most common approach to conduct nonlinear 
time history analyses at different intensities. The scaling process consists of scaling the 
acceleration time series until the desired level of the intensity measure is reached. This IM is 
usually the 5%-damped pseudo acceleration spectral ordinate at the fundamental period of 
vibration of the structure, Sa(T1). 

 
Several studies have found contradictory conclusions regarding a possible bias in 

structural responses that can be introduced by the use of scaling factors. While several assert that 
the bias in fact exists (e.g., Watson-Lamprey and Abrahamson, 2006; Luco and Bazzuro, 2007; 
Baker 2007) others have found little evidence to support that claim (e.g., Shome et al., 1999; 
Iervolino and Cornell, 2005; Zacharenaki et al., 2014).  

 
The following subsections evaluate the scaling factor bias using degrading SDOF and 

MDOF systems. 
 
SDOF systems 
 
Short period SDOF 
 

The comparison of the median spectrum from the “scaled” and “unscaled” sets is 
presented in figure 6 which shows a clear difference in the median spectral shapes from both 
sets. The higher ordinates at all periods (except T = 0.25s) mean that, on average, there is a 
higher content of all frequencies in the records from Set B which might lead to larger structural 
responses. This observation is in agreement with those previously reported in Luco and Bazzurro 
(2007) and Baker (2007). 

 

 

Figure 6. Median Spectra from both ground motion sets used for the Tn=0.25s SDOF 
 

Figure 7 presents the inelastic displacements of the short period SDOF having different 
strength reduction factors and a positive postelastic stiffness equal to -3% subjected to all records 
from both sets. This negative postelastic slope is used to capture dynamic instability (Miranda 
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and Akkar, 2003). Whenever no record caused collapse, the information presented is the same as 
in figure 7, but when some record triggered collapse, the corresponding probabilities of collapse 
of each set are reported. In these cases, the dots at the horizontal dashed red lines represent the 
collapsing cases. Similar conclusions can be made from the results of the degrading SDOF in the 
sense that the fraction of ground motions that cause collapse in the Set that requires scale factors 
around 10 is significantly higher than the fraction of collapses obtained using Set A (i.e., ground 
motions with scale factors close to one). As an example, consider the T = 0.25s SDOF with R = 
2.5, if one uses the Set with scale factors close to one, the probability of collapse (P(C)) is equal 
to zero whereas it corresponds to 23% if the records from Set B are used. Similarly, the 
probability of collapse for the T = 0.25s SDOF having a R = 4 equals 30% if the records from Set 
A are used and 63% if one uses the records with scale factors around 10, that is, Set B.  
 

      
Figure 7. Inelastic displacements of a T=0.25s SDOF with several R factors and =-3% when 
subjected to the MCE intensity (blue: SF between 0.5 and 1.5; and green: SF between 7 and 13). 
The collapse displacement is represented with a horizontal red dashed line. 
 
Long period SDOF 
 

The comparison of the median spectrum from each Set is presented in figure 8 where the 
difference in the median spectral shapes from both sets is clear. As it was the case for the shorter 
period SDOF, the higher ordinates at all periods (except T = 1.5s) mean that, on average, there is 
a higher content of all frequencies in the records from Set B and this might lead to larger 
structural responses.  

The results from the degrading SDOF with T = 1.5s are presented in figure 9. In this case, 
there is a bias in the estimation of inelastic displacements and probabilities of collapse 
introduced by the use of scale factors. The bias in inelastic displacements seems to increase with 
reductions in the lateral strength of the system. As it was the case for the shorter period SDOF, 
important overestimations in structural responses are obtained when the Set with scale factors 
close to 10 is used. 
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Figure 8. Median Spectra from both ground motion sets used for the Tn=1.5s SDOF 
 

      
Figure 9. Inelastic displacements of a T=1.5s SDOF with several R factors and = -3% when 
subjected to the MCE intensity (blue: SF between 0.5 and 1.5; and green: SF between 7 and 13). 
The collapse displacement is represented with a horizontal red dashed line. 
 
MDOF systems 
 

Figure 10 presents the median spectra of each of the three Sets used in the evaluation of a 
possible bias introduced by the use of scale factors. Recall that Set A requires scale factors of 
approximately 1, Set B scales factor of approximately 5, and Set C scale factors of 
approximately 10 to reach the target intensity. Panel a) presents the median spectra of each set 
before scaling and Panel b) presents the median spectra of each set normalized by the spectral 
ordinate at T1 = 0.63s. As it was the case for the SDOF systems, these median spectral shapes 
also reflect the fact that records that have low spectral ordinates and therefore have to be scaled 
by larger factors to reach the target intensity, have a higher high- and low-frequency content than 
records whose intensity was already in the neighborhood of the target intensity. 

 
Figure 11 presents the maximum interstory drift ratio (IDR) of the structure when 

subjected to the 50 ground motions of each set at a target intensity of Sa(T1) = 1.13g. Results 
plotted over the red dashed line indicate ground motions that triggered collapse. It is seen that the 
probability of collapse increases as the scale factors used in the ground motions increase. One 
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could estimate that the structure has an 18% chance of collapsing at the MCE intensity if scale 
factors around 10 are used when the ‘true’ probability of collapse equals only 4%. Even when 
scale factors of approximately 5 are used to reach the target intensity, the probability of collapse 
is overestimated by more than a factor of 2. 

 
The second MDOF under study is a four-story structure with a period of vibration of 

1.12s. Figure 12 presents the median spectra of each of the three Sets used in the scaling factor 
bias evaluation. Panel a) presents the median spectra of each set before scaling and Panel b) 
presents the median spectra of each set normalized by the spectral ordinate at T1 = 1.12s. Again, 
the median spectral shapes show that records that originally have low spectral ordinates end up 
having a higher high- and low-frequency content after scaling than records whose intensity was 
close to the target intensity which in this case corresponds to 0.8g. 

 

      
Figure 10. (a) Median spectra of the three sets used for the Tn = 0.63s MDOF without scaling; 
and (b) Normalized median spectra of the three sets. 
 

 

Figure 11. Inelastic displacement demands and collapse probabilities of the T=0.63s two-story 
MDOF when subjected to the MCE intensity (blue: SF between 0.5 and 1.5; red: scale factors 
between 4.5 and 5.5; and green: SF between 9.5 and 10.5). The collapse IDR is represented with 
a horizontal red dashed line. 
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Figure 12. (a) Median spectra of the three sets used for the Tn = 1.12s MDOF without scaling; 
and (b) Normalized median spectra of the three sets. 

 

The results of the maximum IDR computed with the three sets scaled to the MCE intensity 
are presented in figure 13. Again, results suggest that the use of scale factors introduce a bias in 
the collapse risk estimation. For example, using the records with scale factors of approximately 5, 
the probability of collapse of this structure would be 26% which corresponds to an overestimation 
by a factor of 2.25. In this case, this ratio is the same if the records from Set C are used. 
 

 

Figure 13. Inelastic displacement demands and collapse probabilities of a T=1.12s four-story 
MDOF when subjected to the MCE intensity (blue: SF between 0.5 and 1.5; red: scale factors 
between 4.5 and 5.5; and green: SF between 9.5 and 10.5). The collapse interstory drift ratio is 
represented with a horizontal red dashed line. 
 

Conclusions and recommendations 
Efficiency 
 

This study presented an evaluation of the efficiency of two intensity measures that are 
commonly used: Sa(T1) and Sa(T1) adjusted using the spectral shape proxy , and two other 
alternate scalar IM candidates: Saavg and FIV. 

0 1 2 3
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

Period [s]

A [g]

 

 
a)

SF  1
SF  5
SF 10

0 1 2 3
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

Periods [s]

A/A(T
1
)

 

 
b)

SF  1
SF 5
SF  10

0 2 4 6 8 10 12
0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

SF

S
a
(T

1
) = 0.8g

P(C)=0.26P(C)=0.26P(C)=0.08

Max. IDR



SMIP17 Seminar Proceedings 
 

142 

A four story special moment frame steel structure was subjected to a set of 265 ground 
motions to evaluate the dispersion in the collapse capacities obtained with each of the IM 
candidates. From the results, the following conclusions can be drawn: 

 
1) Sa(T1) is the IM that leads to the largest dispersion in the collapse capacities estimated, 

indicating that of the parameters evaluated is also the least correlated with collapse 
intensities. 

2) Even when the bias that is introduced by ignoring the spectral shape of the records when 
Sa(T1) is used as the IM is partially reduced by taking into account , this correction does 
very little in reducing the dispersion in the collapse capacities. Furthermore, it is 
concluded that  is not a good measure of spectral shape. 

3) The scalar intensity measure Saavg proved to be a much better option than Sa(T1) and also 
when this parameter is combined with the spectral shape proxy . By considering the 
spectral ordinates of a wide range of periods, Saavg indirectly accounts for the underlying 
pulses in the ground motion record that produce the response spectrum and therefore 
practically eliminates the bias induced when the spectral shape is ignored. The reduction 
in the logarithmic standard deviation when Saavg is 45% and 41% when compared to the 
one computed using Sa(T1) alone or with the adjustment using , respectively. This 
reduction mean that, to obtain the desired structural response parameter with the same 
confidence, if Saavg is chosen as the IM, one needs to use only one third of the number of 
records that are required if Sa(T1) is used, hence leading to a substantial reduction in the 
computational effort to estimate the probability of collapse of a structure. 

4) A new intensity measure termed FIV was proposed and it was seen that its efficiency is 
slightly higher than the one using Saavg. This new IM is based on a period-dependent 
incremental velocity computed from a low-pass filtered ground motion and considers the 
three pulse segments that added together have the largest area. 

5) The use of either Saavg or FIV is strongly recommended for seismic collapse estimation as 
those two IM candidates gave collapse capacities with the least dispersion. 

 
Scaling factor bias 

The scaling factor bias evaluation was conducted using both, SDOF and MDOF 
structures with positive post elastic stiffnesses as well as degrading systems. Following common 
practice, the intensity measure used in this evaluation was Sa(T1). Results suggest that: 

1) The use of scale factors introduces a systematic bias in the peak inelastic displacement of 
SDOF systems with positive postelastic stiffness. This bias tend to increase as the lateral 
strength of the SDOF is decreased. More importantly, the bias is clearly seen and much 
larger in the short period spectral region (e.g., in an SDOF with T1 = 0.25s) than 
structures with long periods of vibration (e.g., SDOFs with T1 = 1.50s). 

2) In the case of the degrading SDOFs, the bias seems to appear on all SDOFs regardless of 
their period of vibration, but the bias is larger in SDOFs in the short period region. 

3) Both MDOF studied presented a clear bias in both, inelastic displacement estimates and 
collapse probabilities. In general, the bias increases as the scale factor used increases. 
After analyzing the responses of two MDOF structures with periods of vibration of 0.63s 
and 1.12s at two high intensity levels, using scale factors of approximately 10 led, on 
average, to an overestimation of the probability of collapse of a factor of 3.65. Even when 
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the scale factors required to reach the target intensity are approximately 5, an 
overestimation of a factor of 2.8 was also be computed. 

4) The bias is also higher as the structure is subjected to larger intensity levels. This means 
that the overestimation caused by the use of large scale factors is higher on the 
probability of collapse than on the estimation of inelastic displacement demands, 
especially in mildly inelastic systems. 

5) As noted previously by some researchers, ignoring the spectral shape of the records has a 
major influence in the overestimation of the structural responses. 

6) Based on these results, we recommend limiting scale factors to a maximum value of 2.0, 
recognizing that even those scale factors can introduce a small overestimation of inelastic 
displacements and collapse probabilities. 
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