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Abstract  

This paper presents progress made towards the identification of spatial variability in 

bridge Foundation Input Motions (FIMs) in a project funded by the California Geological 

Survey. The term spatial variability denotes here the differences in amplitude and phase of 

seismic motions recorded over extended areas, and it is well accepted that lifeline structures, 

such as long bridges, are prone to its effects, because they extend over relatively long distances. 

The specific objective of the project is to identify FIMs from response signals recorded by 

instrumented bridges during the South Napa 2014 earthquake, decompose them to bedrock 

motions and site effects, and finally quantify the spatial variability for each bridge structure. In 

this progress paper, we present initial observations, data selection, and the theoretical basis of the 

methodology that will be employed to process the recorded data. The overall methodology 

comprises two novel approaches (i) for output-only identification of bridges under multiple 

support excitations, and (ii) for blind identification of bedrock motions and site effects from two 

(or more) ground-surface motions (FIMs). The said two methods are briefly described and 

numerically verified in the present paper. The first method will be employed to extract FIMs 

from spatially sparse measurements of bridge responses, while the second one will be used to 

further identify the site effects and bedrock motions from the recovered FIMs. 

Introduction 

Today, highly detailed and accurate Finite Element (FE) models of bridges are created 

routinely, using broadly available commercial software. However, accurate seismic response 

predictions for bridges are still constrained by our ability to apply physically accurate/consistent 

input motions. Long-span bridges are known to be prone to the so-called “spatially variability” 

effects, which is a term used for collectively denoting the differences in amplitude and phase of 

seismic motions recorded over extended areas (Zerva & Zervas, 2002), due to their longitudinal 

extents (Zerva, et al., 1988; Hao, et al., 1989; Nazmy & Abdel-Ghaffar, 1992; Lupoi, et al., 

2005; Burdette, et al., 2008).  

In current practice, California Department of Transportation (Caltrans), for example, 

takes spatial variability into account by synthetically producing ground motions at each pier of 

the bridge using one-dimensional site-response analyses. That is, the seismic motion estimated 

on the bedrock—which is typically a “de-convoluted” version of the Free-Field Motion (FFM)—

is transferred to the surface at each pier using specific soil properties at each pier’s site. In the 

presence of kinematic soil-structure interaction effects1, these Free-Field Motions (FFMs) must 

                                                           
1 Kinematic interaction is caused by the stiffness contrast of the foundation system from its surrounding soil media. 
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also be converted to the so-called Foundation Input Motions (FIMs) (see Figure 1). Therefore, 

while ground motions at the bedrock of the bridge site may be uniform, a long bridge may still 

experience differing excitations at different piers. While, several other factors—such as local soil 

nonlinearity and path effects—may be involved in spatial variability, the approach currently used 

by Caltrans only attempts to take the site effects into account. Even in this particular issue, the 

procedure employed has numerous shortcomings. To wit, the procedure assumes vertically 

propagating horizontally polarized waves, which is not necessarily true. Also, the deconvolution 

procedure may introduce numerical errors (including unrealistically large motions at the 

bedrock). Furthermore, conversion of FFMs into FIMs may introduce significant errors— 

especially when local nonlinearities and other spatial variability effects are present—, and at the 

present time, there is no validated procedure to carry out this task.  

 

                                         

Figure 1. Current approach to bridge analysis under multiple support excitations. 

Given these difficulties, the back-calculation of FIMs from real-life data is a key 

capability to study spatial variability effects and to validate (or to refute) new or existing 

procedures that predict the foundation input motions. Under the general umbrella of seismic 

monitoring, a specific motivation for instrumenting long-span bridges in California was indeed 

to provide a quantitative basis for evaluating how these structures respond to spatially varying 

ground motions (Kurata, et al., 2012). Simple comparisons of pier to pier motions recorded at the 

foundation level will not illuminate the subject matter, as these records are polluted by kinematic 

and inertial interaction effects, and therefore, will only provide a limited 

understanding/quantification of spatial variability of seismic input motions for bridges. In the 

current project—the first-half progress of which is presented in this paper—a novel approach is 

devised to: 

(1) back-calculate FIMs from sparsely measured acceleration signals recorded during the 

2014 South Napa earthquake at several CSMIP-instrumented bridges; 

(2) back-calculate bedrock motions and site effects at each pier (under specific 

conditions). 

To carry out the first step, we adopt a time-domain output-only identification method 

originally developed by Huang et al. (Huang, et al., 2010) for our problem. To achieve the 
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second goal, we devise a novel blind identification method (Ghahari, et al., 2016) through which 

the bedrock motions and site effects can be back-calculated using FIMs identified in the first 

step.  

In what follows, we first present a review of available bridge data from the South Napa 

event, identify those recorded motions that exhibit evidence of the presence of spatial variability, 

and select the data sets suitable for the current study. We then provide the details of both of the 

identification methods mentioned above, as well as their verification through synthetic data sets.  

Available Data  

As mentioned above, this project will use data recorded during the 2014 South Napa 

earthquake. This Mw-6.0 earthquake occurred on August 24, 2014 near the well-known West 

Napa Fault. The epicenter was at 38.216N and 122.312W—i.e., approximately 9 km SSW of 

Napa, California and 82 km WSW of Sacramento, California. It was the most significant event in 

Northern California since the M6.9 Loma Prieta earthquake of 1989 (Shakal, et al., 2014). 

17 of the 80+ instrumented bridges recorded the South Napa earthquake, which are listed 

in Table 1. The locations of these bridges and the earthquake’s epicenter are displayed on 

Figure 2. The table also provides the approximate lengths of the 17 bridges, 11 of which are at 

least 1km-long. This means that they are ideal candidates for studying and quantifying the effects 

of spatially variability. Incidentally, the Peak Structural Accelerations (PSAs) recorded on most 

of these bridges during the 2014 South Napa earthquake are significant, which provides an 

opportunity to work with favorable Signal-To-Noise (SNR) ratios. Moreover, more than half of 

the 17 bridges have a nearby ground motion station that recorded Free-Field Motions (FFMs). 

Data from these stations will enable the calculation of Transfer Functions between the FFMs and 

FIMs. 

 

Figure 2. Geographic distribution of the 17 instrumented bridges around the epicenter of the 

2014 South Napa Earthquake. 
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 Table 1. List of all bridges that recorded the 2014 South Napa Earthquake. 

No. Name 
Station 

No. 

Length 

(m) 

Epic. 

Dist. 

(km) 

Fault 

Dist. 

(km) 

PGA 

(g) 

PSA 

(g) 

1 
Vallejo - Carquinez/I80 

East Bridge 
68184 1021 18.9 19.4 0.149 1.085 

2 
Vallejo - Carquinez/I80 

West Bridge 
68185 1056 18.9 19.3 0.085 0.790 

3 
Benicia - Martinez/I680 

East Bridge 
68322 2265 25.5 25.7 0.063 0.122 

4 
Hopland - Hwy 

101/Railroad Bridge 
69760 94.5 107.0 98.2 0.062 0.017 

5 
Benicia - Martinez/I680 

West Bridge 
68682 1894 25.7 25.9 0.031 0.343 

6 
San Francisco - Bay 

Bridge/West 
58632 3137 46.6 47.2 0.031 0.146 

7 
Novato -Hwy37 

/Petaluma River Bridge 
68778 665 19.7 20.6 0.024 0.062 

8 
Oakland - SF Bay 

Bridge/East: YBITS 
58602 NA 44.8 45.5 0.024 0.047 

9 
San Francisco - Golden 

Gate Bridge 
58700 2789 46.1 46.8 0.012 0.181 

10 
Oakland - SF Bay 

Bridge/East: Skyway 
58601 2085 43.9 44.5 0.002 0.054 

11 
Rohnert Park - Hwy 

101 Bridge 
68717 86 37.6 33.6 NA 0.119 

12 
Oakland - Hwy 580/13 

Interchange Bridge 
58656 86 49.4 49.9 NA 0.027 

13 
San Francisco Bay - 

Dumbarton Bridge 
58596 2620 80.7 81.2 NA 0.055 

14 
Vallejo - Hwy 37/Napa 

River Bridge 
68065 1000 11.1 11.6 NA 0.657 

15 
Oakland - Hwy 580/24 

Interchange Bridge 
58657 1000 43.1 43.7 NA 0.092 

16 
Oakland - SF Bay 

Bridge/East: SAS 
58600 NA 44.5 45.2 NA 0.162 

17 
Antioch - San Joaquin 

River Bridge 
67771 2874 53.9 -- NA 0.092 

Initial Observation 

Since the FIMs are not directly available due to reasons mentioned earlier, and need to be 

back-calculated, we study here the spatial variability of input motions by using only the recorded 

signals on foundations and on the ground surface as a preliminary investigation. To this end, we 

calculate the cross-covariance among different locations for each bridge. We use the cross-

correlation technique in the time-domain to quantify the similarity between two delayed 

accelerograms (Bendat & Piersol, 1980). This common signal processing technique is frequently 

used in a variety of engineering applications. The cross-covariance function is the correlation 

between series (acceleration records) shifted against one another as a function of delay or lag. 

The function exhibits distinct peaks at the lag value that corresponds to the precise time-delay 

between two otherwise similar accelerograms. The expression for the cross-covariance function 

for two discrete-time 𝑠𝑖[𝑛] and 𝑠𝑗[𝑛] accelerograms at lag 𝑘 is calculated as 

http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68184&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68184&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68185&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68185&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68322&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68322&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE69760&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE69760&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68682&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68682&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58632&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58632&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68778&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68778&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58602&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58602&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58700&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58700&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58601&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58601&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68717&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68717&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58656&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58656&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58596&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58596&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68065&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE68065&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58657&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58657&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58600&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE58600&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE67771&network=CGS
http://www.strongmotioncenter.org/cgi-bin/CESMD/stationhtml.pl?stationID=CE67771&network=CGS
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𝑐𝑖𝑗[𝑘] =
1

𝑁
 ∑(𝑠𝑖[𝑛] − �̅�𝑖)

𝑁−𝑘

𝑛=0

 (𝑠𝑗[𝑛 + 𝑘] − �̅�𝑗) 
(

1) 

where 𝑘 = 0, 1, ⋯ , 𝑁 − 1, and 𝑁 is number of time samples. Here, �̅�𝑖 and �̅�𝑗 indicate the mean 

values of the two signals. It is also possible to calculate 𝑐𝑖𝑗[𝑘] for negative lags, which are easily 

obtained by changing the 𝑖 and 𝑗 sub-indices at the summation above. 𝑐𝑖𝑗[𝑘] are usually 

normalized with the square-root of 𝑐𝑖𝑖[0] and 𝑐𝑗𝑗[0] to keep the value of covariance between −1 

and +1. This normalized value is termed the cross-correlation. A cross-correlation equal to −1 or 

+1 denotes two signals that are identical except with a time lag, whereas a cross-correlation close 

to zero means that that they are not similar.  

As an example, we present results of correlation analysis for one of the bridges listed in 

Table 1  (similar results were observed for other bridges and are omitted here for the sake of 

brevity).  Figure 3 displays the instrumentation layout for CSMIP station No. 68184. The 

sensors that are marked with circles on this figure indicate those for which we calculated the 

cross-correlation values. Maximum values of cross-correlations are also shown in Figure 3 for 

both longitudinal and transverse directions. As seen, except for those sensors that are very close 

to each other, the cross-correlation values are very small. This is more significant for the 

transverse direction. In the longitudinal direction—for example channels 5 and 47—, the higher 

values of cross-correlation are actually related to the system’s response, but not the ground 

motions. 

  
(a) Longitudinal direction (b) Transverse direction 

 
(c) Instrumentation layout 

Figure 3. Spatial variability observed in CSMIP68184. 
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Data Selection 

Not all of the 17 bridges introduced earlier are suitable for our study. No data are 

available for bridge No. 4 (CSMIP69760) in CESMD2. Two other bridges (CSMIP68717 and 

58656) are very short, so they are not useful for studying spatial variability. Since having 

instruments on the foundation level is a crucial factor in the present study, bridge No. 7 

(CSMIP68778) is also excluded as it does not have any sensor on its foundation level. The same 

limitation exits for bridges No. 14 and No. 15 (CSMIP68065 and 58657, respectively), and thus, 

they are also excluded. The level of vibration recorded on bridge No. 13 (CSMIP58596) is too 

small; the PSA is ~0.05g and is measured on channels 37 and 38 (i.e., two vertical channels at 

the edge of the main span). This indicates that the recorded motions are mostly free vibration, 

and thus, this bridge cannot be processed through the proposed identification method. As such, it 

is excluded as well. The level of vibration on two other bridges CSMIP58601 and 58602 is also 

very small. However, these two bridges—along with a third one (CSMIP58600)—create a 

system of connected bridges as shown in Figure 4. According to CESMD, a maximum structural 

acceleration of 0.162g is recorded on CSMIP58600, which makes the analysis of this bridge 

system a worthy attempt. However, no data appears available for the important channels (see 

Figure 5 for instrumentation layout)3. As such, this bridge is also excluded.  

Having excluded bridges mentioned above, there are then 7 bridges left, whose data 

recorded during the 2014 South Napa earthquake can be analyzed to investigate spatial 

variability of FIMs. These 7 bridges are: CSMIP 68184, 68185, 68322, 68682, 58632, 58700, 

and 67771. 

 

 

 
Figure 4. Eastern Oakland – San Francisco Bay Bridge. 

                                                           
2 www.strong motioncenter.org   
3 For example, there is no data for channels 1 to 6 (foundation level of Pier W2), channels 25 to 30 (foundation level 

of Pier W2), and channels 68 to 73 (foundation level of Pier W2). Moreover, some channels on the deck—namely, 

channels 7 to 11, 12 to 15, 31 to 34 or 64 to 67—are missing data (last update 09/24/2016). 

58602 

58600 

58601 
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Figure 5. Instrumentation layout of CSMIP Station 58600. 

Identification Methods 

Part I: FIMs Estimation through Quadratic Sum-Squares Error 

Dynamic Equation of Motion of Soil-Foundation-Structure System under Several FIMs 

A schematic representation of the problem under study is shown in Figure 6. As seen, the 

bridge structure is subjected to several and different unknown Free-Field Motions (FFMs) at its 

piers. These FFMs are first converted to FIMs through unknown Kinematic Interaction (KI) 

filters and excited the bridge supported on flexible soil-foundation Impedance Functions (IFs). 

Herein, we assume that an initial (uncertain) Finite Element (FE) model of the bridge supported 

on uncertain IFs is available. Also, responses of the system at several locations on the bridge and 

foundation are measured as absolute accelerations through sensors. In what follows, a method is 

described, with which unknown FIMs, IFs, and unknown parameters of the superstructure are all 

identified simultaneously along with their uncertainties. 
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Figure 6. Lumped model of a multi-span bridge. 

The equation of dynamic equilibrium for all the Degrees-Of-Freedom (DOFs) (𝑛 

structure-foundation and 𝑛𝑔 foundation-soil DOFs) is written in partitioned form as (Chopra, 

2001) 

[
𝐌 𝐌𝑔

𝐌𝑔
𝑇 𝐌𝑔𝑔

] {
�̈�(𝑡)

�̈�𝒈(𝑡)
}  + [

𝐃 𝐃𝑔

𝐃𝑔
𝑇 𝐃𝑔𝑔

] {
�̇�(𝑡)

�̇�𝒈(𝑡)
} + [

𝐊 𝐊𝑔

𝐊𝑔
𝑇 𝐊𝑔𝑔

] {
𝒙(𝑡)

𝒙𝒈(𝑡)
}  = {

𝟎
𝑷𝑔(𝑡)} 

(

2) 

where 𝐌, 𝐃, and 𝐊 are 𝑛 × 𝑛 mass, damping and stiffness matrices of the foundation-structure, 

respectively. Matrices 𝐌𝑔, 𝐃𝑔, and 𝐊𝑔 are 𝑛 × 𝑛𝑔 mass, damping, and stiffness matrices of the 

foundation-soil interface, while 𝐌𝑔𝑔, 𝐃𝑔𝑔, and 𝐊𝑔𝑔 matrices are related to soil’s DOFs. In Eq. 

(2), 𝒙(𝑡) is a vector that contains the absolute displacement response of all 𝑛 structure-

foundation DOFs, while �̇�(𝑡), and �̈�(𝑡) are their corresponding velocity and acceleration vectors. 

𝒙𝑔(𝑡) = [𝑥𝑔,1(𝑡) ⋯ 𝑥𝑔,𝑛𝑔
(𝑡)]

𝑇
 and whose time derivatives �̇�𝑔(𝑡) and �̈�𝑔(𝑡) are vectors 

containing prescribed the Foundation Input Motions (FIMs) as displacement, velocity, and 

acceleration at all 𝑛𝑔 foundation-soil interface DOFs. As there is no external force on the 

structure-foundation DOFs, the only forces needed for applying FIMs is 𝑷𝑔(𝑡), as shown in Eq. 

(2). 

The absolute displacement of the bridge (structure-foundation) can be written as the 

superposition of displacement produced by the static application of the prescribed FIMs at each 

time instant 𝒖𝑠(𝑡) and dynamic response with respect to the statically deformed position 𝒖(𝑡) as 

  {
𝒙(𝑡)

𝒙𝑔(𝑡)
} = {

𝒖𝑠(𝑡)

𝒙𝑔(𝑡)
} + {𝒖

(𝑡)
𝟎

} 
(

3) 

As 𝒖𝑠(𝑡) is produced by static deformation of the bridge under static application of 

𝒙𝑔(𝑡), their relationships are governed by static equilibrium as follows 

  [
𝐊 𝐊𝑔

𝐊𝑔
𝑇 𝐊𝑔𝑔

] {
𝒖𝑠(𝑡)

𝒙𝑔(𝑡)
} = {

𝟎
𝑷𝑔

𝑠 (𝑡)} 
(

4) 

where 𝑷𝑔
𝑠(𝑡) is needed force at each time to impose 𝒙𝑔(𝑡). It is trivial that 𝑷𝑔

𝑠(𝑡) would be zero 

if the system is statically determinate or all foundation-soil interface nodes move in compatible 

manner (e.g., identical horizontal FIMs).  



SMIP16 Seminar Proceedings 

 

119 

The first partition of the Eq. (2) can be rewritten using mentioned above static and 

dynamic parts as 

𝐌 �̈�(𝑡) + 𝐃 �̇�(𝑡) + 𝐊 𝒖(𝑡) = −[𝐌 �̈�𝑠(𝑡) + 𝐌𝑔�̈�𝑔(𝑡)] − [𝐃 �̇�𝑠(𝑡) + 𝐃𝑔�̇�𝑔(𝑡)] 
(

5) 

The term [𝐊 𝒖𝑠(𝑡) + 𝐊𝑔𝒙𝑔(𝑡)] has been removed from right-hand-side of the equation above, 

because it is zero, based on the first partition of Eq. (4). In Eq. (5), it is more favorable to replace 

the quasi-static velocity and acceleration using their FIMs’ counterparts, because 𝐊 𝒖𝑠(𝑡) +
𝐊𝑔𝒙𝑔(𝑡) = 𝟎. So, Eq. (5) can be rewritten as 

𝐌 �̈�(𝑡) + 𝐃 �̇�(𝑡) + 𝐊 𝒖(𝑡) = −[𝐌 𝐋 + 𝐌𝑔]�̈�𝑔(𝑡) − [𝐃 𝐋 + 𝐃𝑔]�̇�𝑔(𝑡)  
(

6) 

where 𝐋 = −𝐊−1𝐊𝑔 is 𝑛 × 𝑛𝑔 influence matrix. Each column of the matrix 𝐋, say 𝒍𝑙, is a vector 

that assigns the influence of each input acceleration, 𝑥𝑔,𝑙(𝑡), on the system’s response; and is a 

function of internal and boundary stiffnesses. Damping term in Eq. (6) is usually small relative to 

the inertia term, and may be dropped (it is exactly zero when damping matrices are stiffness 

proportional). Moreover, for lumped mass systems, the mass matrix is diagonal and off the 

diagonal matrix 𝐌𝑔 will be zero. So, Eq. (6) can be written in its final form as 

𝐌 �̈�(𝑡) + 𝐃 �̇�(𝑡) + 𝐊 𝒖(𝑡) = −𝐌 𝐋�̈�𝑔(𝑡) 
(

7) 

Finally by replacing 𝒖(𝑡) by 𝒙(𝑡) − 𝒖𝑠(𝑡) in Eq. (7), equation of motion can be expressed in 

absolute framework as 

𝐌 �̈�(𝑡) + 𝐃 �̇�(𝑡) + 𝐊 𝒙(𝑡) = 𝐃 𝐋 �̇�𝑔(𝑡) + 𝐊 𝐋 𝒙𝑔(𝑡) 
(

8) 

The Identification Method 

Eq. (8) can be written in the state-space as 

�̇�(𝑡) = 𝐀𝑐 𝒛(𝑡) + 𝐁𝑐 𝒇(𝑡) + 𝒘(𝑡) 
(

9) 

where 𝒛(𝑡) = [𝒙(𝑡)𝑇 �̇�(𝑡)𝑇]𝑇 is 2𝑛 × 1 state vector, 𝒇(𝑡) = [𝒙𝑔(𝑡)𝑇 �̇�𝑔(𝑡)𝑇]
𝑇
 is 2𝑛𝑔 × 1 

excitation vector and continuous-time transition and input matrices 𝐀𝑐 and 𝐁𝑐 are defined as 

𝐀𝑐 = [
𝟎 𝐈

−𝐌−1𝐊 −𝐌−1𝐃
] 

(

10) 

𝐁𝑐 = [
𝟎

[𝐌−1𝐊 𝐋,𝐌−1𝐃 𝐋]
] 

(

11) 

𝒘(𝑡) is a model noise (uncertainty) vector with zero mean and covariance matrix 𝐐. Absolute 

acceleration at any discrete-time instant 𝑖 can be related to the state and FIMs as 

 𝒚[𝑖] = 𝐄 𝒛[𝑖] + 𝐅 𝒇[𝑖] + 𝒗[𝑖] 
(

12) 

where 
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𝐄 = 𝐕 [−𝐌−1𝐊 −𝐌−1𝐃] 
(

13) 

𝐅 = 𝐕 [𝐌−1𝐊 𝐋 𝐌−1𝐃 𝐋] 
(

14) 

in which 𝐕 is an 𝑙 × 𝑛 matrix containing 1s and 0s to show which DOFs are measured. 𝒗[𝑖] is a 

measurement noise vector assumed to be Gaussian zero-mean white with covariance matrix 𝐑. 

𝒗[𝑖] represents difference between exact prediction, 𝒉[𝑖] = 𝐄 𝒛[𝑖] + 𝐅 𝒇[𝑖] and real-life 

measurement 𝒚[𝑖], i.e., 𝒗[𝑖] = 𝒚[𝑖] − 𝒉[𝑖]. According to the assumptions considered for this 

measurement noise, its Probability Distribution Function (PDF) can be expressed as 

𝑃(𝑣) =
1

(2𝜋)𝑙/2|𝐑|0.5
𝑒−

1
2
𝒗𝑇𝐑−1𝒗 

(

15) 

where |. | denotes determinant. Let’s put all of the system’s uncertain parameters (superstructure 

and IF parameters) into a vector 𝜽 = [𝜃1 ⋯ 𝜃𝑛𝜃]
𝑇. The unknown FIMs (𝒇) and system’s 

parameters (𝜽) can be identified by maximization of joint PDF of 𝒇 and 𝜽 given measured 

responses. According to the Bayes’ rule (Bayes, 1763), this a posteriori PDF can be expressed as 

 𝑃(𝜽, 𝒇|𝒚) = 𝑐 𝑃(𝒚|𝜽, 𝒇) 𝑃(𝜽, 𝒇) 
(

16) 

where 𝑃(𝒚|𝜽, 𝒇) is the likelihood function, 𝑃(𝜽, 𝒇) is the joint a priori PDF, and 𝑐 is a constant. 

Assuming independences between 𝜽 and 𝒇 along with uniform PDFs for them (no initial 

information), maximization of 𝑃(𝜽, 𝒇|𝒚) reduces to the maximization of likelihood function 

𝑃(𝒚|𝜽, 𝒇) (Ebrahimian, et al., 2015). This PDF at time instant 𝑘 + 1 can be calculated as 

𝑃(𝒚[1: 𝑘 + 1]|𝜽[𝑘 + 1], 𝒇[1: 𝑘 + 1]) = ∏ 𝑃(𝒗[𝑖])

𝑘+1

𝑖=1

 
(

17) 

which can be rewritten as 

𝑃(𝒚[1: 𝑘 + 1]|𝜽[𝑘 + 1], 𝒇[1: 𝑘 + 1]) = ∏
1

(2𝜋)𝑙/2|𝑹|0.5
𝑒

−
1

2
𝒗[𝑖]𝑇𝑹−1𝒗[𝑖]

𝑘+1

𝑖=1

 
(

18) 

To maximize equation above, it is more convenient to minimize its negative natural 

logarithm—i.e., the following objective function: 

𝐽[𝑘 + 1] = 1.83
𝑙(𝑘 + 1)

2
+

1

2
∑|𝐑|

𝑘+1

𝑖=1

+
1

2
∑ 𝒗[𝑖]𝑇𝐑−1𝒗[𝑖]

𝑘+1

𝑖=1

 (19) 

Two first terms on the right-hand side do not play a role in the objective function, 

because they are not updated. Thus, the objective function can be simplified as 

𝐽[𝑘 + 1] = ∑ 𝒗[𝑖]𝑇𝐑−1𝒗[𝑖]

𝑘+1

𝑖=1

 
(

20) 
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As 𝒉[𝑖] is a nonlinear function of 𝜽, it should be linearized through Taylor’s expansion 

so that the objective function becomes a quadratic function of 𝜽 and 𝒇. To do so, we can 

approximate 𝒉[𝑖] as 

𝒉[𝑖] ≈ �̂�[𝑖] + 𝐇𝜽[𝑖](𝜽[𝑖] − �̂�[𝑖 − 1]) + 𝐇𝒇[𝑖](𝒇[𝑖] − �̂�[𝑖 − 1]) 
(

21) 

where 

�̂�[𝑖] = 𝒉 [�̂�[𝑖|𝑖 − 1], �̂�[𝑖 − 1], �̂�[𝑖 − 1]] 
(

22) 

𝐇𝒇[𝑖] =
𝜕𝒉[𝑖]

𝜕𝒇[𝑖]
|
𝒛[𝑖]=�̂�[𝑖|𝑖−1],𝜽[𝑖]=�̂�[𝑖−1],𝒇[𝑖]=�̂�[𝑖−1]

 
(

23) 

and 𝐇𝜽[𝑖] = �̅�𝜽[𝑖] + 𝐇𝒛[𝑖]𝐙𝜽[𝑖] in which 

�̅�𝜽[𝒊] =
𝝏𝒉[𝒊]

𝝏𝜽[𝒊]
|
𝒛[𝒊]=�̂�[𝒊|𝒊−𝟏],𝜽[𝒊]=�̂�[𝒊−𝟏],𝒇[𝒊]=�̂�[𝒊−𝟏]

 
(

24) 

𝐇𝒛[𝑖] =
𝝏𝒉[𝑖]

𝝏𝒛[𝑖]
|
𝒛[𝑖]=�̂�[𝑖|𝑖−1],𝜽[𝑖]=�̂�[𝑖−1],𝒇[𝑖]=�̂�[𝑖−1]

 
(

25) 

𝐙𝜽[𝑖] =
𝝏𝒛[𝑖]

𝝏𝜽[𝑖]
|
𝜽[𝑖]=�̂�[𝑖−1]

 
(

26) 

In the equations above, �̂�[𝑖 − 1] and �̂�[𝑖 − 1] are, respectively, the estimation of 𝜽[𝑖] and 

𝒇[𝑖] at the previous step, and �̂�[𝑖|𝑖 − 1] is an a priori estimation of state, which can be obtained 

by using these estimates through the state equation. That is 

�̂�[𝑖|𝑖 − 1] = �̂�[𝑖 − 1] + 𝐀𝑐∆𝑡 �̂�[𝑖 − 1] + 𝐁𝑐∆𝑡 �̂�[𝑖 − 1] 
(

27) 

where ∆𝑡 is the sampling time. 𝐙𝜽[𝑖] is the sensitivity matrix of the state vector with respect to 

the system’s parameters, and can be obtained by differentiating both sides of Eq. (27) with 

respect to 𝜽 as 

𝐙𝜽[𝑖] = 𝐙𝜽[𝑖 − 1] + ∆𝑡 {
𝜕𝐀𝑐 

𝜕𝜽[𝑖]
�̂�[𝑖 − 1] + 𝐀𝑐 𝐙𝜽[𝑖 − 1] +

𝐁𝑐

𝜕𝜽[𝑖]
 �̂�[𝑖 − 1]} 

(

28) 

By substituting the approximation of 𝒉[𝑖] into the objective function, we have  

𝐽[𝑘 + 1] = ∑(�̅�[𝑖] − 𝐇𝜽[𝑖]𝜽[𝑖] − 𝐇𝒇[𝑖]𝒇[𝑖])
𝑇
𝑹−1(�̅�[𝑖] − 𝐇𝜽[𝑖]𝜽[𝑖] − 𝐇𝒇[𝑖]𝒇[𝑖])

𝑘+1

𝑖=1

 
(

29) 

where 

�̅�[𝑖] = 𝒚[𝑖] − �̂�[𝑖] + 𝐇𝜽[𝑖]�̂�[𝑖 − 1] + 𝐇𝒇[𝑖]�̂�[𝑖 − 1] 
(

30) 
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Huang et al. (2010) showed that the objective function of Eq. (29) can be minimized 

through following recursive solution 

�̂�[𝑘 + 1] = 𝐒[𝑘 + 1]𝐇𝒇[𝑘 + 1]𝑇𝐑−1(𝑰 − 𝐇𝜽[𝑘 + 1]𝐆𝜽[𝑘 + 1])(𝒚[𝑘 + 1] − �̂�[𝑘 + 1]

+ 𝐇𝒇[𝑘 + 1]𝒇[𝑘]) 
(

31) 

�̂�[𝑘 + 1] = �̂�[𝑘] + 𝐆𝜽[𝑘 + 1]{𝒚[𝑘 + 1] − 𝐇𝒇[𝑘 + 1](�̂�[𝑘 + 1] − 𝒇[𝑘])} 
(

32) 

where 𝐆𝜽[𝑘 + 1] is the Kalman Gain Matrix (Kalman, 1960) and is calculated as 

𝐆𝜽[𝑘 + 1] = 𝐏𝜽[𝑘]𝐇𝜽[𝑘 + 1]𝑇(𝐑 + 𝐇𝜽[𝑘 + 1]𝐏𝜽[𝑘]𝐇𝜽[𝑘 + 1]𝑇)−1 
(

33) 

in which 𝐏𝜽[𝑘] is the covariance matrix of the estimation error of 𝜽, and is calculated as 

𝐏𝜽[𝑘] = (𝐈 + 𝐆𝜽[𝑘]𝐇𝒇[𝑘]𝐒[𝑘]𝐇𝒇[𝑘]𝑻𝐑−1𝐇𝜽[𝑘])(𝐈 − 𝐆𝜽[𝑘]𝐇𝜽[𝑘])𝐏𝜽[𝑘 − 1] 
(

34) 

In the equations above, 𝐒[𝑘 + 1] is also the covariance matrix of the estimation error of 𝒇 and is 

obtained as 

𝐒[𝑘 + 1] = {𝐇𝒇[𝑘 + 1]𝑇𝐑−1(𝐈 − 𝐇𝜽[𝑘 + 1]𝐆𝜽[𝑘 + 1])𝐇𝒇[𝑘 + 1]𝑇}
−1

. 
(

35) 

Once the system’s parameters and the FIMs are updated at each iteration, the state of the 

system can be updated similarly. That is, 

�̂�[𝑘 + 1|𝑘 + 1] = �̂�[𝑘 + 1|𝑘] + 𝐆𝒛[𝑘 + 1]{𝒚[𝑘 + 1] − �̂�[𝑘 + 1]} 
(

36) 

with the Kalman Gain matrix being  

𝐆𝒛[𝑘 + 1] = 𝐏𝒛[𝑘 + 1|𝑘]𝐇𝒛[𝑘 + 1]𝑻(𝐑 + 𝐇𝒛[𝑘 + 1] 𝐏𝒛[𝑘 + 1|𝑘] 𝐇𝒛[𝑘 + 1]𝑇)−1 
(

37) 

where 𝐏𝒛[𝑘 + 1|𝑘] is an estimation of state error covariance matrix, obtained from the state 

equation as 

𝐏𝒛[𝑘 + 1|𝑘] = (𝐈 + 𝐀𝑐∆𝑡 )𝐏𝒛[𝑘](𝐈 + 𝐀𝑐∆𝑡 )𝑇 + 𝐐 
(

38) 

in which 𝐏𝒛[𝑘] is the last step’s error covariance matrix calculated through 

𝐏𝒛[𝑘] = (𝐈 − 𝐆𝒛[𝑘] 𝐇𝒛[𝑘 + 1] )𝐏𝒛[𝑘|𝑘 − 1]. 
(

39) 

 

Remark 1: The size of the state vector will be very large, if it is directly applied on most 

of bridges under study in this project. However, as the method works under unknown excitation, 

it can be used through a sub-structuring approach. As an illustration, Figure 7 displays the 

Antioch - San Joaquin River Bridge, which can be divided into four segments.  The cut edges of 

each substructure are Neumann boundaries with unknown (to be estimated) excitations.    
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Figure 7. An example of proposed sub-structuring in CSMIP67771. 

Remark 2: The proposed method works when the number of measurements is greater 

than the number of unknown FIMs. While this is almost always satisfied for the bridges under 

study, we rewrite  �̂�[𝑘 + 1] in state and observation equations—as well as  other related 

equations versus acceleration—at the current time instant, and the displacement, velocity, and 

acceleration at the previous time step using Newmark’s 𝛽-method (Chopra, 2001), as in 

�̂�[𝑘 + 1] = [𝒙𝑔[𝑘 + 1]𝑇 �̇�𝑔[𝑘 + 1]𝑇]
𝑇

= [
𝐓1�̂̅�[𝑘] +

𝐓2�̂̅�[𝑘] +
] + [

𝛽∆𝑡2𝐈
𝛾∆𝑡𝐈

] �̈�𝑔[𝑘 + 1]  
(

40) 

where �̂̅�[𝑘] = [𝑥𝑔1
[𝑘], �̇�𝑔1

[𝑘], �̈�𝑔1
[𝑘], ⋯ , 𝑥𝑔𝑛𝑔

[𝑘], �̇�𝑔𝑛𝑔
[𝑘], �̈�𝑔𝑛𝑔

[𝑘]] and 

𝐓1 = [
𝝋1

𝑇

⋱
𝝋1

𝑇

]

𝑛𝑔×3𝑛𝑔

  
(

41) 

𝐓2 = [
𝝋2

𝑇

⋱
𝝋2

𝑇

]

𝑛𝑔×3𝑛𝑔

  
(

42) 

in which 𝝋1 = [1 ∆𝑡 (0.5 − 𝛽)∆𝑡2]𝑇 and 𝝋2 = [0 1 (1 − 𝛾)∆𝑡]𝑇. Thus, at the (𝑘 + 1)th 

iteration, �̂̅�[𝑘] is a known excitation and the unknown FIMs are collected in �̈�𝑔[𝑘 + 1]. This, 

then, reduces the number of unknown excitations by a factor of two. 

Remark 3: The proposed identification method is not limited to linear systems. As long 

as the soil, foundation, and structural nonlinearities can be incorporated into the system 

equations through parametric models, the proposed method can be used to identify those 

parameters that the said nonlinearities.  

Remark 4: Having a reliable FE model of the bridge is an essential ingredient of the 

proposed identification method. For the present study, the geometry of these models for the 

studied bridges are based on SketchUp® models that are available through Google Earth®, 

which we then manually modify to obtain initial FE models. While the initial FE models are 

generally very accurate in geometry, they need to be improved by adding further details like 

constraints, connections, section properties, etc. The said details can be obtained through 

structural drawings. These modified FE are then employed along with the proposed identification 

method and data available in CESMD to identify the system parameters and FIMs. This process 

is schematically shown in Figure 8.  
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Figure 8. Initial FE modeling process. 

Numerical Verification 

To verify the proposed output-only identification method, we simulate the responses of a 

two-span bridge with continuous deck (Figure 9). It is assumed that mass of the 

foundation-bridge system is concentrated at 13 points, and there is no rotational mass moment of 

inertia. As such, stiffness and damping matrices can be statically condensed. Two horizontal 

ground motions recorded at the “Alhambra-1st & Woodward Station (CSMIP24030)” during 

2001 West Hollywood earthquake are applied the remote ends of the soil-foundation springs at 

the two abutments (left- and right-ends) of the bridge as shown in Figure 9. Also, the abutment 

motion is multiplied by 1 and applied at the middle pier. These ground motions thus produce a 

combination of both independent and delayed input motions. Modulus of elasticity and moment 

of inertia of the deck beam are set at 1 × 109 and 0.05, respectively. Lumped masses, each with 

a value of 500, are placed at every 10 units of length. The stiffness of three springs are 12000, 

12000, and 16000, respectively from left to right (all units are consistent). A Rayleigh damping 

with mass and stiffness factors of 0.2 and 0.002, respectively, is considered to create a classical 

damping matrix. Natural frequencies and modal damping ratios of this soil-foundation-bridge 

structure are listed in Table 2. As seen, the system is designed such that it is a fair representation 

of very long and flexible bridges that will be eventually studied in the present project. 

 

 

Figure 9. Synthetic bridge model with multiple support excitation. 
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Out of the 13 DOFs, only 5 channels (three foundations, left mid-span, and right mid-

span) are used for identification. Stiffnesses of all tree springs, modulus of elasticity of the 

bridge, and the two damping coefficients are assumed as the system’s unknown parameters (a 

total of 6 parameters) along with three FIM acceleration signals. Figure 10 shows the 

convergence rate of estimation error for all of 6 parameters (as well as 1 standard deviation). As 

seen, all errors converge to the zero. Standard deviation around the identified values quantifies 

how reliable these estimations are. For example, this figure indicates that while the identified 

damping parameters are very close to their exact values, the uncertainty in these identified values 

are relatively high compared to the identified spring stiffnesses and the elastic modulus.  

The most important results of the identification process are the recovered FIMs. These 

signals are plotted together with their exact counterparts in Figure 11. As seen, the identified 

FIMs are very accurate. The standard deviation curves are not shown here, because they were 

very close to the identified signals. These results indicate that the proposed method will be a 

viable ingredient for the present project, and will produce accurate estimates of FIMs.  

 

 

Figure 10. Error convergence rate. 
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Figure 11. Comparison between exact and identified FIMs. 

Table 2. Modal characteristics of the bridge model. 

Mode 

No. 
1 2 3 4 5 6 7 8 9 10 11 12 13 

𝑓𝑛(𝐻𝑧) 0.30 0.36 0.65 0.84 1.29 1.97 2.93 4.07 5.40 6.85 8.35 9.69 10.67 

𝜉𝑛(%) 5.43 4.59 2.87 2.42 2.04 2.05 2.39 2.95 3.69 4.54 5.43 6.25 6.85 

   

Part II: Decomposition of FIMs to Site Response and Bedrock Motion 

The identification of FIMs (e.g., through method described and verified in Part I above) 

enables a quantitative investigation of spatial variability in real-life ground motions. As already 

shown in Figure 1(right), these FIMs are filtered versions of a common bedrock motion4 that 

pass through site response and kinematic interaction filters. Assuming that the kinematic 

interaction is the same for all piers, which is an acceptable assumption, we can extract the 

site-response Transfer Function at each pier through a blind channel identification method that 

will be described below. This new method is based on the assumption that a common bedrock 

motion passes through different sites. This means that the recovered bedrock motion is possibly 

altered by a kinematic interaction filter. While we shall only present a formulation for two sites 

(piers), the method can be easily extended to any number of sites (piers). In what follows, the 

ground surface motions represent those FIMs identified in Part I. 

A soil deposit, e.g., Figure 1(left), can be assumed to be a Multi-Degree-Of-Freedom 

(MDOF) system with an infinite number of DOFs. Therefore, its dynamic response under rigid 

bedrock acceleration �̈�𝑏(𝑡) can be expressed using modal superposition as (Glaser, 1996) 

                                                           
4 Here, bedrock motion means motion at a location above which the response would be different at different 

locations. So, it may not be a physical bedrock, but rather a reference depth where the response is identical at 

different locations.  
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�̈�𝑠(𝑡)  = ∑ ℎ𝑚(𝑡) ∗  𝛽𝑚 �̈�𝑏(𝑡)

∞

𝑚=1

 
(

43) 

where ∗ denotes a linear convolution; �̈�𝑠(𝑡) is the absolute acceleration recorded on the ground 

surface; 𝛽𝑚 is the modal contribution factor; and ℎ𝑚(𝑡) is the IRF, which is given as (Ghahari, et 

al., 2013) 

ℎ𝑚(𝑡) =
1

𝜔𝑑𝑚

𝑒−𝜉𝑚𝜔𝑛𝑚𝑡[(𝜔𝑑𝑚
2 − 𝜉𝑚

2 𝜔𝑛𝑚
2 ) 𝑠𝑖𝑛(𝜔𝑑𝑚

𝑡) + 2𝜉𝑚𝜔𝑛𝑚
𝜔𝑑𝑚

𝑐𝑜𝑠 (𝜔𝑑𝑚
𝑡)] 

(

44) 

Here 𝜉𝑚, 𝜔𝑛𝑚
, and 𝜔𝑑𝑚

= 𝜔𝑛𝑚
√1 − 𝜉𝑚

2  denote the damping ratio, and the undamped and 

damped natural frequencies of the 𝑚-th mode, respectively. ℎ𝑚(𝑡) is an Infinite Impulse 

Response (IIR) filter. The Z-Transform (Oppenheim, et al., 1989) of its discrete-time 

representation is 

ℎ𝑚(𝑧)  = [
𝐶𝑚 + 𝐷𝑚𝑧−1

1 − 𝐴𝑚𝑧−1 − 𝐵𝑚𝑧−2
] 

(

45) 

where 

𝐴𝑚 = 2𝑒−𝜉𝑚𝜔𝑛𝑚∆𝑡 𝑐𝑜𝑠(𝜔𝑑𝑚
∆𝑡) , 𝐵𝑚 = −𝑒−2𝜉𝑚𝜔𝑛𝑚∆𝑡,  𝐶𝑚 = 2𝜉𝑚𝜔𝑛𝑚

∆𝑡, 

  

𝐷𝑚 = 𝜔𝑛𝑚
 ∆𝑡 𝑒−𝜉𝑚𝜔𝑛𝑚∆𝑡 [

𝜔𝑛𝑚

𝜔𝑑𝑚

(1 − 2𝜉𝑚
2) 𝑠𝑖𝑛(𝜔𝑑𝑚

∆𝑡) − 2𝜉𝑚𝑐𝑜𝑠 (𝜔𝑑𝑚
∆𝑡)]. 

(

46) 

The Z-Transform helps to express the IRF in terms of the so-called poles (𝑝𝑚 and 𝑝𝑚
∗ ), 

and zeros (𝑧𝑚) as in 

ℎ𝑚(𝑧)  = 𝐶𝑚 (𝑧 − 𝑧𝑚) [(𝑧 − 𝑝𝑚)(𝑧 − 𝑝𝑚
∗ )]⁄  

(

47) 

where the superscript ∗ denotes a complex conjugate, and  

𝑧𝑚 = −𝐷𝑚/𝐶𝑚,                      𝑝𝑚, 𝑝𝑚
∗ =

𝐴𝑚 ± √𝐴𝑚
2 + 4𝐵𝑚

2
 

(

48) 

Indeed, the poles reflect the internal couplings within the system, while the zeros reflect 

the way the internal variables are coupled to the input and output signals (Åström, et al., 1984). 

Due to the frequency band of the bedrock motion, modal summation introduced in Eq. (43) is 

always finite; and the ground surface response signal can be well approximated by using a few 

fundamental modes, say 𝑛𝑚. So, Eq. (43) can be rewritten as 

�̈�𝑠(𝑡)  ≅ ℎ̃(𝑡) ∗  �̈�𝑏(𝑡) 
(

49) 

where ℎ̃(𝑡) = ∑ 𝛽𝑚ℎ𝑚(𝑡)
𝑛𝑚
𝑚=1 . Based on the pole-zero representation mentioned above, we have 
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ℎ̃(𝑧)  =
∑ [𝛽𝑚𝐶𝑚(𝑧 − 𝑧𝑚)∏ (𝑧 − 𝑝𝑙)(𝑧 − 𝑝𝑙

∗)
𝑛𝑚
𝑙=1,𝑙≠𝑚 ]

𝑛𝑚
𝑚=1

∏ (𝑧 − 𝑝𝑚)(𝑧 − 𝑝𝑚
∗ )

𝑛𝑚
𝑚=1

 
(

50) 

The Proposed Algorithm 

a. Decomposition 

As shown in Figure 1(right), both sites (piers) are subject to an identical bedrock motion. 

So Eq. (49) can be written in discrete-time for both sites as 

�̈�𝑠1
[𝑛] ≅ ℎ̃1[𝑛] ∗  �̈�𝑏[𝑛] 

(

51) 

�̈�𝑠2
[𝑛] ≅ ℎ̃2[𝑛] ∗  �̈�𝑏[𝑛] 

(

52) 

Thus, it is straightforward to show that the following cross-relation holds: 

�̈�𝑠1
[𝑛] ∗ ℎ̃2[𝑛] = �̈�𝑠2

[𝑛] ∗ ℎ̃1[𝑛] 
(

53) 

By applying a Z-Transform to both sites of the equation above, we can write 

�̈�𝑠1
[𝑛] ℎ̃2(𝑧) = �̈�𝑠2

[𝑛] ℎ̃1(𝑧) 
(

54) 

Based on Eq. (50), each ℎ̃𝑝(𝑧) (𝑝 = 1, 2) can be expressed as 𝑁𝑝(𝑧) 𝐷𝑝(𝑧)⁄  where 𝑁𝑝(𝑧) 

and 𝐷𝑝(𝑧) are polynomial functions of 𝑧. So, Eq. (54) can be restated as 

�̈�𝑠1
[𝑛] 𝑁2(𝑧)𝐷1(𝑧) = �̈�𝑠2

[𝑛] 𝑁1(𝑧)𝐷2(𝑧), 
(

55) 

which can be further restated in a simplified form as 

�̈�𝑠1
[𝑛] 𝑔1(𝑧) = �̈�𝑠2

[𝑛] 𝑔2(𝑧) 
(

56) 

where 𝑔1(𝑧) = 𝑁2(𝑧)𝐷1(𝑧) and 𝑔2(𝑧) = 𝑁1(𝑧)𝐷2(𝑧) are two Finite Impulse Response (FIR) 

filters. The order of polynomial 𝑔1 (𝑔2) is equal to the sum of the orders of 𝑁2 (or 𝑁1) and 𝐷1 

(𝐷2), which is nominally 2𝑛𝑚,1 + 2𝑛𝑚,2 − 1.  

From the definition of the Z-Transform, Eq. (56) can be written by the discrete-time 

samples of �̈�𝑠[𝑛] and the coefficients of polynomials 𝑔(𝑧)—i.e.,  𝑔𝑝(𝑧) = 𝑔𝑝[0] + 𝑔𝑝[1]𝑧−1 +

⋯+ 𝑔𝑝[1]𝑧−(𝐿−1) —as follows 

[𝐗1 −𝐗2] [
𝒈1

𝒈2
] = 𝟎 

(

57) 

where 𝒈𝑝 = [𝑔𝑝[0] 𝑔𝑝[1] ⋯ 𝑔𝑝[𝐿 − 1]]𝑇 (for 𝑝 = 1, and 2) and 
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𝐗𝑝 =

[
 
 
 
 
�̈�𝑠𝑝

[𝐿 − 1] �̈�𝑠𝑝
[𝐿 − 2] ⋯ �̈�𝑠𝑝

[0]

�̈�𝑠𝑝
[𝐿] �̈�𝑠𝑝

[𝐿 − 1] ⋯ �̈�𝑠𝑝
[1]

⋮ ⋮ ⋱ ⋮
�̈�𝑠𝑝

[𝑁] �̈�𝑠𝑝
[𝑁 − 1] ⋯ �̈�𝑠𝑝

[𝑁 − 𝐿 + 1]]
 
 
 
 

(𝑁−𝐿+1)×𝐿

for   𝑝 = 1, 2  
(

58) 

where 𝐿 = 2𝑛𝑚,1 + 2𝑛𝑚,2, and 𝑁 denotes the number of recorded samples. Eq. (57) is a classical 

equation in the field of Single-Input-Multiple-Output (SIMO) blind channel identification (Xu, et 

al., 1995; Moulines, et al., 1995; Gürelli & Nikias, 1995). It is a system of (𝑁 − 𝐿 + 1) linear 

homogenous equations with 2𝐿 unknowns, which can have a unique solution (up to an arbitrary 

scaling factor), provided that the number of sample points are adequate 𝑁 ≥ 3𝐿 − 1 (which is 

always satisfied in our cases). Indeed, the matrix [𝐗1 −𝐗2] is rank deficient by 1, and the 

solution, [𝒈1 𝒈2]𝑇, would be the one-dimensional null space of the matrix, which can be 

identified as its right singular vector corresponding to the zero singular value.  

In real-life, due to the presence of noise and modeling errors, Eq. (57) is only 

approximately valid. In other words, the matrix [𝐗1 −𝐗2] is full-rank, because the theoretical 

zero singular value is lost within the noise-corrupted singular values. So, there is no null 

subspace in the space created by the columns. Therefore, [𝒈1 𝒈2]𝑇 will be the right singular 

vector corresponding to the smallest singular value. 

Once 𝒈1 and 𝒈2 are identified, the site’s Transfer Functions can be easily reconstructed, 

provided that we can accurately decompose 𝒈1 (𝒈2) to 𝑁1(𝑧) (𝑁2(𝑧)) and 𝐷1(𝑧) (𝐷2(𝑧)). In the 

following section, we describe an algorithm for the said decomposition.  

b. Zero-Pole Pairing, Order Estimation, and Identification of Modal Contribution Factors 

Let’s assume that we have overestimated the number of modes at each site as �̃�𝑚,1 =

𝑛𝑚,1 + �̅�𝑚,1 and �̃�𝑚,2 = 𝑛𝑚,2 + �̅�𝑚,2. Therefore, 𝐿 is overestimated as �̃� = 𝐿 + �̅� where �̅� =

2(�̅�𝑚,1 + �̅�𝑚,2). In other words, polynomials 𝑔1(𝑧) and 𝑔2(𝑧) obtained via Eq. (57) have �̅� 

extraneous zeros. But, to satisfy Eq. (56), these �̅� extraneous zeros must appear at the same 

locations5 for both 𝑔1(𝑧) and 𝑔2(𝑧). Thus, in the absence of noise, �̅� can be identified as the 

dimension of the null space of [𝐗1 −𝐗2] minus one.  

Measurement noise is inevitable, especially in the FIMs recovered from real-life data. As 

such, the number of zero singular values of [𝐗1 −𝐗2] would not be helpful to determine the 

number of extraneous zeros (i.e., �̅�) or their locations. Here, we make use of stability diagrams 

(Bodeux & Golinval, 2001) to circumvent this problem. We solve Eq. (57) for a range of �̃� (in 2 

incremental steps) and repeat the following steps for each case: 

1. Calculate the natural frequencies and damping ratios via equations below for all 

recovered roots without regarding to these roots being poles, zeros, or extraneous zeros 

(this information is yet known). 

𝜔𝑛𝑚
= |

𝑙𝑛 𝑝𝑚

∆𝑡
|  

(

59) 

                                                           
5 We assume here that the two sites have dissimilar poles and zeros. 
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𝜉𝑚 = −𝑅𝑒 {
𝑙𝑛 𝑝𝑚

∆𝑡
} 𝜔𝑛𝑚
⁄   

(

60) 

2. Exclude those roots that predict unusual damping ratios—i.e., negative or higher than 

%100.  

3. Find the closest natural frequency from the previous step for each natural frequency, and 

calculate the following frequency and damping ratio errors: 

𝐸(𝜔𝑚) =
|𝜔𝑚,�̃�𝑖

− 𝜔𝑚,�̃�𝑖−1
|

𝜔𝑚,�̃�𝑖−1

,          𝐸(𝜉𝑚) =
|𝜉𝑚,�̃�𝑖

− 𝜉𝑚,�̃�𝑖−1
|

𝜉𝑚,�̃�𝑖−1

 
(

61) 

4. Accept those modes having frequency and damping errors that are less than pre-specified 

thresholds as stable roots of 𝐷1(𝑧) and 𝐷2(𝑧).  

By plotting the stable roots versus frequency, the actual modes will be revealed, as they 

will appear as vertical lines on these (stability) plots. So, not only 𝑛𝑚,1 and 𝑛𝑚,2 are identified as 

being the number of stable vertical lines on stability diagram, but also the poles can be picked. 

Finally, the modal contribution factors can be estimated through the method described (Ghahari, 

et al., 2016). 

c. Bedrock Motion Estimation 

Having fully identified ℎ̃(𝑧) of both sites, the bedrock acceleration, �̈�𝑏[𝑛], can now be 

recovered from any of the recorded ground surface signals by inverting ℎ̃(𝑧), provided that such 

inversion produces a stable system. Nevertheless, there is no guarantee that our systems will 

have zeros inside the unit circle, so we have to design Finite Impulse Response (FIR) de-

convolution filters 𝑊1(𝑧) and 𝑊2(𝑧) such that 

 �̈�𝑏[𝑛] = 𝑊1(𝑧) �̈�𝑠1
[𝑛] + 𝑊2(𝑧) �̈�𝑠2

[𝑛]. 
(

62) 

In what follows, the process to calculate these FIR deconvolution filters is described. 

Assuming that the numerator polynomials 𝑁1(𝑧) and 𝑁2(𝑧) have no common zeros, we can find 

polynomials 𝑉1(𝑧) and 𝑉2(𝑧) for which the following Diophantine polynomial equation is valid 

𝑁1(𝑧) 𝑉1(𝑧) + 𝑁2(𝑧) 𝑉2(𝑧) = 1.  
(

63) 

The solution of the Diophantine polynomial equation above—i.e., determination of the 

coefficients of the polynomials 𝑉1(𝑧) and 𝑉2(𝑧)—is achieved through the inversion of the 

following linear system 

[𝐌1

𝐌2

𝟎2(𝑛1−𝑛2)×𝑛2

] [
𝑽1

𝑽2
] = [

𝟏
𝟎(𝑛1+𝑛2)×1

] 
(

64) 

where 𝑽1 = [ 𝑉1[0]  𝑉1[1] ⋯  𝑉1[𝑛1 − 1]]𝑇, 𝑽2 = [ 𝑉2[0]  𝑉2[1] ⋯  𝑉1[𝑛2 − 1]]𝑇, and 

𝐌1 and 𝐌2 are the Sylvester matrices defined as below 
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𝐌1 =

[
 
 
 
 
 
 

 𝑁1[0] 0

⋮  𝑁1[0]

 𝑁1[𝑛1 − 1] ⋮ ⋱

 𝑁1[𝑛1 − 1]  𝑁1[0]

⋱ ⋮
0  𝑁1[𝑛1 − 1]]

 
 
 
 
 
 

(2𝑛1−1)×𝑛1

 
(

65) 

𝐌2 =

[
 
 
 
 
 
 

 𝑁2[0] 0

⋮  𝑁2[0]

 𝑁2[𝑛2 − 1] ⋮ ⋱

 𝑁2[𝑛2 − 1]  𝑁2[0]

⋱ ⋮
0  𝑁2[𝑛2 − 1]]

 
 
 
 
 
 

(2𝑛2−1)×𝑛2

 
(

66) 

In the equations above, 𝑛1 = 2𝑛𝑚,1 + 1 and 𝑛2 = 2𝑛𝑚,2 + 1 (𝑛1 ≥ 𝑛2) denote the number of 

coefficients of the polynomial 𝑁1(𝑧) and 𝑁2(𝑧), respectively. Now, by multiplying both sides of 

Eq. (63) with �̈�𝑏[𝑛], we get 

 �̈�𝑏[𝑛] 𝑁1(𝑧) 𝑉1(𝑧) +  �̈�𝑏[𝑛] 𝑁2(𝑧) 𝑉2(𝑧) =  �̈�𝑏[𝑛]   
(

67) 

and by replacing  �̈�𝑏[𝑛] 𝑁1(𝑧) and  �̈�𝑏[𝑛] 𝑁2(𝑧) by �̈�𝑠1
[𝑛] 𝐷1(𝑧) and �̈�𝑠2

[𝑛] 𝐷2(𝑧), respectively, 

we have 

 �̈�𝑠1
[𝑛] 𝐷1(𝑧) 𝑉1(𝑧) + �̈�𝑠2

[𝑛] 𝐷2(𝑧) 𝑉2(𝑧) =  �̈�𝑏[𝑛]   
(

68) 

By comparing Eqs. (62) and (68) it can be concluded that the FIR deconvolution filters 

𝑊1(𝑧) and 𝑊2(𝑧) are 

𝑊1(𝑧) =  𝐷1(𝑧) 𝑉1(𝑧) 
(

69) 

𝑊2(𝑧) =  𝐷2(𝑧) 𝑉2(𝑧) 
(

70) 

It is expedient to note here that the recovered bedrock motion is identified to within a scaling 

ambiguity. Due to this scaling ambiguity, it is possible to extract two bedrock motions by either 

𝑊1(𝑧) �̈�𝑠1
[𝑛] or 𝑊2(𝑧) �̈�𝑠2

[𝑛]. 

Numerical Verification 

To verify the proposed method, we modeled two sites with different properties as shown 

in Table 3. We considered a cubic variation of shear wave velocity with respect to depth in one 

site to keep the simulation as realistic/complex as possible. Natural frequencies and modal 

contribution factors of modes below 10 Hz are shown in Table 4. We limited our simulation 

below 10 Hz, which is typically the frequency range of interest in earthquake engineering 

applications. Figure 12 displays the exact Transfer Functions of two sites within the frequency 

range of interest, which exhibit four and three modes that are contributing to the responses of 

Sites 1 and 2, respectively. As seen in this figure, the modes of both sites are very close to each 
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other. This brings more realism to the simulation, because it is reasonable to observe close 

modes for two neighboring sites. 

Ground surface responses are generated by assuming vertically propagating shear waves 

from rigid bedrock. To make the problem as realistic as possible, ground accelerations recorded 

by the Corona I-15/Hwy-91 geotechnical array (CSMIP Station 13186) during the 2008 Chino 

Hills Earthquake at a depth of 42 meters are used as the bedrock motion. Based on the P-S 

logging test data available at the Center for Engineering Strong Motion Data (CESMD) database, 

the recorded signal at this level mimics accurately a rock motion. Figure 13 displays the 

acceleration time-history of the selected bedrock excitation. In addition to the noise-free 

simulated data, we also analyzed a noisy case by adding Gaussian distributed white noise with 

Root-Mean-Square of ~10% of the generated ground surface signals (equivalent SNR = 20).  

  

Figure 12. Exact Transfer Functions of 

two sites under study. 

Figure 13. Bedrock acceleration (last accessed on 

2/17/2016 at www.strongmotioncenter.org). 

Table 3. Soil profiles at two sites. 

Site 𝜌 (kg/m3) 𝐻 (m) 
Surface 

𝑉𝑠  (m/s) 

Bottom  

𝑉𝑠  (m/s) 

𝑉𝑠  

Variation 
𝜉 (%)* 

1 2000 50 150 300 Cubic 5.00 

2 2300 50 300 300 Constant 8.00 

* The proposed method works for general case of having different modal damping ratios, but it is believed soil’s 

damping is constant for all modes (Park & Hashash, 2004).  

Table 4. Natural frequencies (Hz) and modal contribution factors at two sites. 

 Site 1 2 3 4 

Natural 

Frequency (Hz) 

1 1.19 3.18 5.24 7.30 

2 1.50 4.50 7.50 --- 

Contribution 

Factor 

1 1.37 −0.57 0.35 −0.26 

2 1.27 −0.42 0.25 --- 

 

We first assume that we know the exact number of contributing modes at each site. So, 

Eq. (57) is solved in one step and the roots of the polynomials 𝑔1(𝑧) and 𝑔2(𝑧) are identified. 

http://www.strongmotioncenter.org/
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Figure 14 shows the comparison between the actual poles and zeros of the two sites and the 

identified values. As the type of the roots (poles or zero) is not yet known, the identified roots are 

shown by circles. This figure shows that for the noise-free case, the identified roots match the 

actual roots perfectly. In the presence of noise, the locations of the poles are still accurate, but the 

zeros are identified with significant errors. Before employing stability diagram to classify roots 

as zeros and poles, it is useful to see what we would get if we consider all of the recovered roots 

as poles; and this comparison should clarify the utility of the algorithm described in §b above. 

 

Figure 14. Comparison of the poles and zeros of two systems and roots of 𝑔1(𝑧) and 𝑔2(𝑧) that 

are recovered through Eq. (57) for (a) noise-free and (b) noisy cases. 

Assuming that all of the recovered roots are poles, we can calculate the natural 

frequencies and damping ratios using Eqs. (59) and (60), respectively. These values are reported 

in Table 5 and Table 6 for the noise-free and the noisy cases, respectively. As seen, the zeros 

labeled as poles result in unusual damping ratios (see columns 5, 6, 7, 8, and 13 for Site #1 and 

columns 3, 4, 7, 8 9, 10, and 13 for the Site #2 in Table 5). While unusual damping values are 

observed for most of the spurious poles for the noisy case, there are a few cases that have 

reasonable damping ratios, which renders the pole picking step inevitable. 

Table 5. Candidates of natural frequencies and damping ratios (noise-free case). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

 Identified Modal Parameters from 𝑔1(𝑧) 

𝑓𝑛(𝐻𝑧) 1.19 1.19 3.18 3.18 4.36 4.36 5.13 5.13 5.24 5.24 7.30 7.30 10.43 
𝜉𝑛(%) 5 5 5 5 −58.8 −58.8 87.4 87.4 5 5 5 5 −28.4 

 Identified Modal Parameters from 𝑔2(𝑧) 

𝑓𝑛(𝐻𝑧) 1.50 1.50 2.35 3.57 4.50 4.50 5.19 5.19 5.28 5.28 7.50 7.50 13.26 
𝜉𝑛(%) 8 8 100 −100 8 8 −48.3 −48.3 50.7 50.7 8 8 −65.7 
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Table 6. Candidates of natural frequencies and damping ratios (noisy case). 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

 Identified Modal Parameters from 𝑔1(𝑧) 

𝑓𝑛(𝐻𝑧) 1.19 1.19 3.13 3.13 3.18 3.18 5.26 5.26 7.08 7.08 7.81 7.81 7.92 
𝜉𝑛(%) 5 5 −73.2 −73.2 5.5 5.5 5.2 5.2 2.0 2.0 1.4 1.4 −100 

 Identified Modal Parameters from 𝑔2(𝑧) 

𝑓𝑛(𝐻𝑧) 1.50 1.50 1.91 1.91 4.50 4.50 5.02 5.14 5.14 7.07 7.07 7.90 7.90 
𝜉𝑛(%) 8.3 8.3 −63.7 −63.7 7.5 7.5 100 −31.5 −31.5 3.3 3.3 2.1 2.1 

 

In addition to the observations above, we assumed, up to now, that we know the exact 

number of modes of two sites, which is often not possible in real-life. Also, due to presence of 

noise, it is necessary to increase the number of roots of 𝑔1(𝑧) and 𝑔2(𝑧) and then to discard the 

extraneous roots. As such, we carry out the procedure described in §b. We solve Eq. (57) for a 

range of �̃� from 14 (exact for the noise free) up to 40. 

Figure 15 displays all singular values of the matrix [𝐗1 −𝐗2] corresponding to each 

order value. Instead of L ̃, we use L ̅+1 for the X-axis, because the number of small singular 

values for each case must be theoretically equal to L ̅+1. As seen from this figure, such 

relationship is observed for the noise-free case wherein the X-axis denotes the number of small 

singular values. Yet, a similar observation cannot be made for the noisy case. As such, we cannot 

determine the exact order of the problem by counting the number of small singular values. 

Instead, we take advantage of the stability diagram shown in Figure 16. In this figure, the roots 

that have rational/justifiable damping ratios (between zero and %100) are shown by cross marks. 

As seen, for the theoretical value of L=14, two close frequencies are identified for both sites for 

the last mode (See Table 5 and Table 6) in the noisy case, and none of them are correct. 

By applying the stability criteria 𝐸(𝜔𝑚) ≤ %1 and 𝐸(𝜉𝑚) ≤ %156, stable modes are 

detected, which are marked by red circles. As seen, four and three stable vertical lines are clearly 

detected for Sites #1 and #2, respectively, for both the noise-free and the noisy cases. Also, 

values of the natural frequencies and damping ratios of these 7 modes are easily obtained from 

the stable modes at the last �̃� value. These values are reported in Table 7. Also, using approach 

described in (Ghahari, et al., 2016), the modal contribution factors are identified. As seen, the 

natural frequencies, damping ratios, and modal contribution factors are highly accurate. To 

visualize the accuracy of the identified results, the exact and reconstructed transfer functions of 

the noisy case are shown in Figure 17 (noise-free transfer functions are perfectly matched). 

 

                                                           
6 It is well accepted that estimated damping ratios are highly unstable, so we allow much larger variation for 

damping compared to the natural frequency. 
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Figure 15. Distribution of singular values versus �̅� + 1 for (a) noise free and (b) noisy cases.  

 

Figure 16. Stability diagrams for (a) Site #1, noise-free, (b) Site #2, noise-free, (c) Site #1, 

noisy, and (d) Site #2, noisy cases. 
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Table 7. Comparison between exact and identified modal properties through stability approach. 

 Site #1 Site #2 

 𝑓𝑛(𝐻𝑧) 𝜉𝑛(%) 𝛽𝑛 𝑓𝑛(𝐻𝑧) 𝜉𝑛(%) 𝛽𝑛 

Mode 

No. 
0* 1† 2‡ 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 

1 1.19 1.19 1.19 5 5 4.9 1.37 1.37 1.37 1.50 1.50 1.50 8 8 8.3 1.27 1.27 0.97 

2 3.18 3.18 3.14 5 5 5.8 −0.57 −0.56 −0.52 4.50 4.50 4.53 8 8 7.4 −0.42 −0.41 −0.51 

3 5.24 5.24 5.23 5 5 4.8 0.35 0.34 0.38 7.50 7.50 7.42 8 8 5.2 0.25 0.25 0.18 

4 7.30 7.30 7.33 5 5 3.3 −0.26 −0.25 −0.19 --- --- --- --- --- --- --- --- --- 

* Exact, † Identified from noise-free data, ‡ Identified from noisy data 

 

 

Figure 17. Comparison between the exact and the reconstructed Transfer Functions obtained 

from noisy data using the stability approach for (a) Site #1 and (b) Site #2. 

Now, by having both sites’ Transfer Functions identified using the stability diagram 

approach, we can recover the bedrock motion from recorded ground surface accelerations 

through approach proposed in §d. The recovered bedrock motion using the said approach is 

compared with the exact bedrock motion in Figure 18 in the frequency domain. It is not 

surprising to see a near-perfect match for the noise-free case, because both the recorded signals 

and identified systems are exact. For the noisy cases, there are two sources of error observed 

between the exact and the identified results. First, as it was shown in Figure 17, the systems are 

not identified perfectly and thus we expect to see some errors, especially around 1Hz (see also 

Figure 17b). Second, the recorded signals are highly noisy, so the recovered bedrock motion is a 

noisy version of the actual bedrock motion. This source of error is mostly observed for high 

frequencies, where the system’s Transfer Function has little amplification.  
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Figure 18. Comparison between Fourier spectrum of exact and recovered bedrock motion for (a) 

noise free and (b) noisy cases.  

Conclusions 

This study presented the theoretical basis for an ongoing CGS-funded project whose 

ultimate objective is to quantify the spatial variability in bridge Foundation Input Motions 

(FIMs) using data recorded during the 2014 South Napa Earthquake. This aspect comprised the 

development and verification of two distinct (and new) methods. The first of these was an 

output-only system identification method that yields time-history estimates of FIMs at all bridge 

piers from accelerations recorded on the bridge. The second was a blind channel identification 

method that enables the identification of local site effects at each pier provided that all FIMs are 

caused by a single excitation source and the kinematic interaction is similar at all piers. While 

these assumptions (especially the latter) can be relaxed, as needed, in future studies, the two 

methods will combine to produce quantified estimates of spatial variability in real-life ground 

motions. The accuracy of these two key methods was verified in the present study through 

synthetic, albeit realistic, datasets.  

In addition to developing and verifying the two methods required to achieve the project’s 

objectives, the present study allowed the determination of datasets from the 2014 event that are 

amenable to detailed analyses (short bridges, and bridges with missing data were excluded). It 

also provided preliminary evidence—simply by using signals recorded at the foundation levels of 

instrumented bridges—that there is indeed significant spatial variability in real-life ground 

motion. The results of the application of the proposed approach to the real-life data recorded 

during the 2014 event will be presented in SMIP17.   
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