METHOD OF PREPARATION

This tsunami inundation mapping was performed by the University of Southern California (USC), California Geological Survey (CGS), and the California Emergency Management Agency (CalEMA). This mapping was developed using the Digital Elevation Model (DEM) data provided by the National Imagery and Mapping Agency (NIMA). The method is based on的带领下:

- Study of historical, regional, and global tsunamis
- Understanding of tsunami generation mechanisms
- Evaluation of the coastline and topography

The inundation map was derived by combining the DEM data with other digital datasets, such as digital orthophotographic data and topographic data. The inundation line was determined by using the MOST (Method of Splitting Tsunamis) computational program developed at the University of Southern California – Marine Science Center

This map should not be used for real estate transactions or for an estimate of tsunami runup values in an area.

Preliminary

Intermap Technologies, Inc., 2002

National Geological Survey (USGS), 1993

National Imagery and Mapping Agency (NIMA), 2000

National Oceanic and Atmospheric Administration (NOAA), 2004

Intermap NEXTmap document on 5-meter resolution data, 112 p.


STATE OF CALIFORNIA - TYPICAL MAP SCALE 1:24,000

TSUNAMI INUNDATION MAP
FOR EMERGENCY PLANNING
State of California – County of Alameda
SAN LEOANDRO QUADRANGLE
July 31, 2009

PURPOSE OF THIS MAP

The tsunami inundation map was prepared to assist cities and counties in identifying those areas most at risk for tsunami inundation, for use in local emergency planning purposes. This map is not intended for use in real estate transactions or for an estimate of tsunami runup values in an area.

This map was prepared for the general public to assist in emergency planning for the San Leandro area. The map was developed using the Digital Elevation Model (DEM) data provided by the National Imagery and Mapping Agency (NIMA). The inundation line was determined by using the MOST (Method of Splitting Tsunamis) computational program developed at the University of Southern California – Marine Science Center.

Please note that the following website is to be used as an information guide only and should not be used as a basis for any real estate transaction or planning.

CalEMA, the University of Southern California, and the California Geological Survey (CGS) make no representation or warranty of any kind whether express or implied, statutory or otherwise, including any warranty as to fitness for a particular purpose or as to completeness, accuracy, data quality, or data integrity. The California Emergency Management Agency (CalEMA), the University of Southern California, and the California Geological Survey (CGS) shall not be liable for any damages caused by errors or omissions in this map or by the use of this map.

MAP EXPLANATION

The inundation line represents the maximum considered tsunami runup for any tsunami source, including the effects of bathymetry, land topography, and local structures.

Table 1: Sources considered for tsunami hazard analysis.

<table>
<thead>
<tr>
<th>Source Delineation</th>
<th>Type of Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodgers Creek</td>
<td>Central Aleutians Subduction Zone #1 (M8.9)</td>
</tr>
<tr>
<td></td>
<td>Cascadia Subduction Zone</td>
</tr>
<tr>
<td></td>
<td>Kuir Islands Subduction Zone #1 (M8.8)</td>
</tr>
<tr>
<td></td>
<td>Kuir Islands Subduction Zone #2 (M8.8)</td>
</tr>
<tr>
<td></td>
<td>Kuir Islands Subduction Zone #3 (M8.8)</td>
</tr>
<tr>
<td></td>
<td>Mariana Subduction Zone (M8.6)</td>
</tr>
</tbody>
</table>

DISCLAIMER

Tsunami inundation mapping was performed by the University of Southern California (USC), California Geological Survey (CGS), and the California Emergency Management Agency (CalEMA). This mapping was developed using the Digital Elevation Model (DEM) data provided by the National Imagery and Mapping Agency (NIMA). The method is based on the understanding of tsunami generation mechanisms and evaluation of the coastline and topography.

This map was prepared for the general public to assist in emergency planning for the San Leandro area. The map was developed using the Digital Elevation Model (DEM) data provided by the National Imagery and Mapping Agency (NIMA). The inundation line was determined by using the MOST (Method of Splitting Tsunamis) computational program developed at the University of Southern California – Marine Science Center.

Please note that the following website is to be used as an information guide only and should not be used as a basis for any real estate transaction or planning.

CalEMA, the University of Southern California, and the California Geological Survey (CGS) make no representation or warranty of any kind whether express or implied, statutory or otherwise, including any warranty as to fitness for a particular purpose or as to completeness, accuracy, data quality, or data integrity. The California Emergency Management Agency (CalEMA), the University of Southern California, and the California Geological Survey (CGS) shall not be liable for any damages caused by errors or omissions in this map or by the use of this map.