Tsunami Inundation Map for Emergency Planning
Point Mugu (East) Quadrangle

State of California
County of Ventura

METHOD OF PREPARATION

Initial tsunami modeling scenarios were developed by the University of Southern California (USC) Center for Earthquake Engineering Research (CEER) for the National Tsunami Hazard Mitigation Program. The tsunami modeling scenarios documented the potential tsunami profiles. These scenarios were used to create tsunami inundation maps for the State of California. The maps were created using a series of modeling grids. Data were added to the modeling grids (Bradley and Cundill, 1991; You and Synolakis, 1996).

The methodology and limitations used in the inundation maps consist of a series of modeling grids. Data were added to the modeling grids (Bradley and Cundill, 1991; You and Synolakis, 1996).

For a list of tsunami sources used for modeling, representing realistic probability of occurrence, see Table 1. Source data for Table 1 were taken from various sources (Titov and Synolakis, 1998; Titov and Gonzalez, 1997; 1998). These sources were chosen to reflect different tsunami sources and their probability of occurrence. The sources considered include great subduction zone events that are known to occur around the Pacific Ocean "Ring of Fire." The great subduction zone events that were considered include the 1993 Alaska earthquake, the 1964 Alaska earthquake, and the 1960 Chile earthquake.

In order to estimate the run-up of 1500 to 2000 meters inundation guidelines, a method was developed to transform model results into geographic areas (1:24,000 or higher). The major steps in this process were to:

1. Determine the location and source of inundation. The source area is the location of the source event. This information is obtained from the literature and other sources.
2. Determine the range of inundation (run-up) for each event. The range of inundation is the distance from the coast where the inundation stops. This information is obtained from the literature and other sources.
3. Transform model results into geographic areas. The geographic areas are the areas that are inundated by the tsunami. This information is obtained from the literature and other sources.
4. Use the geographic areas to estimate the run-up. The run-up is the distance from the coast where the inundation stops. This information is obtained from the literature and other sources.

The accuracy of the results depends on the availability of the data used. This methodology is consistent with other similar methodologies. The methodology is based on the assumption that the tsunami source events are the same as those that occurred in the past. Therefore, the methodology is consistent with the assumption that the tsunami source events are the same as those that occurred in the past.

This methodology can be used to estimate the run-up of the 1500 to 2000 meters inundation guidelines. This methodology is consistent with other similar methodologies.

The methodology is consistent with other similar methodologies.