The tsunami inundation area is mapped using digital orthophotographic and topographic data, as shown by tics and coordinates. The map reflects updated digital orthophotographic and topographic data. The map is maintained and distributed in California Albers (meters), NAD 83, ~1:72k. Coverage is provided down to ~1:4k for the continental United States. Tsunami inundation line boundaries are maintained by the California Geological Survey (CGS). The current inundation mapping is updated because the earlier modeling incorporated landslides capable of significant seafloor displacement and tsunami generation.

The bathymetric/topographic data used in the tsunami models consist of a series of nested elevation grids. Deep ocean modeling is prepared using SRTM30+ (2000-2003) and SRTM30_PLUS (2009). The SRTM30_PLUS dataset is from the University of Texas at Brownsville and the National Center for Earth-surface Dynamics, University of Minnesota. The SRTM30 dataset is from the National Geophysical Data Center, U.S. Geological Survey.

In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data collected by the AECOM Technical Services) for areas where the topographic and bathymetric data are limited. In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data). We also use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data) for areas where the topographic and bathymetric data are limited.

The tsunami inundation area is mapped using digital orthophotographic and topographic data, as shown by tics and coordinates. The map is maintained and distributed in California Albers (meters), NAD 83, ~1:72k. Coverage is provided down to ~1:4k for the continental United States. Tsunami inundation line boundaries are maintained by the California Geological Survey (CGS). The current inundation mapping is updated because the earlier modeling incorporated landslides capable of significant seafloor displacement and tsunami generation.

The bathymetric/topographic data used in the tsunami models consist of a series of nested elevation grids. Deep ocean modeling is prepared using SRTM30+ (2000-2003) and SRTM30_PLUS (2009). The SRTM30_PLUS dataset is from the University of Texas at Brownsville and the National Center for Earth-surface Dynamics, University of Minnesota. The SRTM30 dataset is from the National Geophysical Data Center, U.S. Geological Survey.

In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data collected by the AECOM Technical Services) for areas where the topographic and bathymetric data are limited. In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data). We also use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data) for areas where the topographic and bathymetric data are limited.

The tsunami inundation area is mapped using digital orthophotographic and topographic data, as shown by tics and coordinates. The map is maintained and distributed in California Albers (meters), NAD 83, ~1:72k. Coverage is provided down to ~1:4k for the continental United States. Tsunami inundation line boundaries are maintained by the California Geological Survey (CGS). The current inundation mapping is updated because the earlier modeling incorporated landslides capable of significant seafloor displacement and tsunami generation.

The bathymetric/topographic data used in the tsunami models consist of a series of nested elevation grids. Deep ocean modeling is prepared using SRTM30+ (2000-2003) and SRTM30_PLUS (2009). The SRTM30_PLUS dataset is from the University of Texas at Brownsville and the National Center for Earth-surface Dynamics, University of Minnesota. The SRTM30 dataset is from the National Geophysical Data Center, U.S. Geological Survey.

In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data collected by the AECOM Technical Services) for areas where the topographic and bathymetric data are limited. In order to enhance the results from the 10-meter resolution inundation data, we use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data). We also use higher-resolution digital topographic and elevation data (e.g., 1-meter resolution LiDAR data) for areas where the topographic and bathymetric data are limited.