
SMIP17 Seminar Proceedings 
 

63 

INVESTIGATION OF THE SPATIAL VARIABILITY OF SEISMIC INPUT MOTIONS 
FOR CSMIP-INSTRUMENTED BRIDGES DURING THE 2014 SOUTH NAPA 

EARTHQUAKE—THE CASE OF GOLDEN GATE BRIDGE 
 
 

S. F. Ghahari1, H. Ebrahimian2 and E. Taciroglu1 
 

1.Department of Civil & Environmental Engineering, University of California, Los Angeles 
2. Department of Mechanical and Civil Engineering, California Institute of Technology 

 
 

Abstract 
 

This paper presents interim results from a study on the identification of spatial variability 
in bridge Foundation Input Motions (FIMs) observed during the 2014 South Napa Earthquake. 
Bridges are especially prone to the spatial variability of ground motions because they extend 
over relatively long distances. The primary objective of this project has been to develop a 
framework to identify FIMs from response signals recorded at instrumented bridges, because, in 
general, FIMs cannot be measured directly. In this progress paper, we present the development 
and verification of a framework developed for this purpose and its application to a real-life case 
study—namely, the Golden Gate Bridge. This bridge was chosen, because initial analysis 
suggested that its behavior is not significantly affected by inertial soil-structure interaction 
effects, and thus, the identified FIMs could be—at least partially—validated. Results obtained 
from both verification (identification using simulated response signals) and validation 
(identification using real-life data) confirmed the applicability of the developed framework, 
which will be applied to the other long-span bridges affected by the 2014 South Napa 
Earthquake in a follow-up study.  

Introduction 

In order to accurately estimate the response of bridge structures under earthquake ground 
motions, highly detailed and accurate Finite Element (FE) models are necessary; but they are not 
sufficient by themselves. While presently available commercial/open-source software packages 
enable accurate response predictions for bridges, our inability to apply physically 
accurate/consistent input motions remains a major challenge. This issue is even more challenging 
for long-span bridges due to the spatial variability of input motions [1]. In current practice, 
California Department of Transportation (Caltrans), for example, takes spatial variability into 
account by computationally producing ground motions at each pier of the bridge using one-
dimensional site-response analyses. That is, the seismic motion estimated on the bedrock is 
transferred to the surface at each pier using specific soil properties at each pier’s site. In the 
presence of kinematic Soil-Structure Interaction (SSI) effects, these Free-Field Motions (FFMs) 
must also be converted to the so-called Foundation Input Motions (FIMs) (see Figure 1). 
Therefore, while ground motions at the bedrock of the bridge site may be uniform, a long bridge 
may still experience differing excitations at different piers. This procedure assumes vertically 
propagating horizontally polarized waves, which is not necessarily true. The deconvolution 
procedures used for estimating the bedrock motions from ground surface records also introduce 
various numerical errors (including unrealistically large motions at the bedrock). Conversion of 
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FFMs into FIMs is another source of potentially significant error, and at the present time, there is 
no validated procedure to carry out the said conversion.  

 

 

Figure 1. Schematic representation of dynamic analysis of a long bridge. 

The back-calculation of FIMs from real-life data is a key capability to study spatial 
variability effects and to validate (or to refute) new or existing procedures that predict the 
foundation input motions. In our previous study [2], we showed some evidences of spatial 
variability in data recorded on the foundation level of bridges during 2014 South Napa 
earthquake. However, due to possible inertial soil-structure interaction effects, these foundation 
level measurements may not be representative of FIMs. To resolve this issue, we proposed a 
framework to recover FIMs from recorded response of bridge structures instrumented through 
California Strong Motion Instrumentation Program (CSMIP) [3]. In the present paper, we verify 
and validate the proposed framework through both simulation and real-life data obtained from 
the Golden-Gate Bridge. There is almost no overlap between this paper and our previous study in 
SMIP16, so the readers should refer to [2] for more details about the definitions, objective, and 
overall plan. Also, the methods developed to recover bedrock motion and site effect transfer 
function from identified FIMs are discussed in [2] which are not discussed here for the sake of 
space. Details of these methods can be found in [4] and [5].  

Data Selection 

As mentioned above, this project will use data recorded during the 2014 South Napa 
earthquake. To be able to select earthquake data sets in systematic way, a Matlab [6] toolbox, 
called CSMIP-BRIDGE, is developed, which is able to connect to the Center for Engineering 
Strong Motion Data (CESMD)1 [7], collects meta data of all bridges instrumented through 
CSMIP. An overview of this toolbox is shown in Figure 2. Current version of this toolbox has a 
database which can be updated manually by the user. Also, there is search form through which 
bridges with specific characteristics can be identified. As seen in Figure 2, currently there are 81 
instrumented bridges in the database. 17 of the 80+ instrumented bridges recorded the South 
Napa earthquake. In our previous study [2], we described a process through which 7 bridges 
(CSMIP 68184, 68185, 68322, 68682, 58632, 58700, and 67771) can be subject of the current 

                                                            
1 www.strongmotioncenter.org 
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project based on some criteria like level of vibration, sensor distribution, having nearby FFM, 
etc.  

 
Figure 2. CSMIP-BRIDGE toolbox. 

Identification Method 

Our objective is to estimate jointly the model parameters and the time history of the 
foundation input motions (FIMs) using the recorded dynamic response of a bridge structure 
during an earthquake. For this purpose, we adopted the output-only Extended Kalman Filter 
(EKF) presented by Huang et al. [8] in our SMIP16 paper [2]. We successfully verified that 
approach through a simple 39-DOF synthetic example shown in Figure 3 where 6 parameters of 
the structure (modules of elasticity of the deck beam, two Rayleigh damping parameters, and 
three soil-foundation springs) along with three FIMs were unknown. We were able to identify 
unknown parameters and FIMs with measured response simulated at only five locations as 
shown in Figure 4 and Figure 5, respectively. However, that method is not suitable for real-life 
structures that exhibit significant nonlinearities (material and/or geometry). In the present study, 
we have developed a joint parameter and input estimation approach based on the unscented 
Kalman filtering method [9]. The estimation approach is briefly described in this section. 
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Figure 3. Synthetic bridge model with multiple support excitation. 

 
Figure 4. Error convergence rate. 

 
Figure 5. Comparison between exact and identified FIMs. 
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The response of the Finite Element (FE) model of a bridge structure at each time step to a 
multi-support earthquake excitation can be expressed as a (nonlinear) function of the model 
parameter vector, ࣂ, and the time history of the base input motions, ሷ࢛ ଵ:௜

௚ , i.e.,   

ෝ࢟௜ ൌ ݄௜൫ࣂ, ሷ࢛ ଵ:௜
௚ ൯, 

1)
where ݄௜ሺ. ሻ is the nonlinear response function of the FE model at time step ݅, 

encapsulating all the dynamics of the model from time step 1 to ݅. The measured response vector 
of the structure, ࢟௜, is related to the FE predicted response, ෝ࢟௜, as 

࢜௜൫ࣂ, ሷ࢛ ଵ:௜
௚ ൯ ൌ ࢟௜ െ ෝ࢟௜൫ࣂ, ሷ࢛ ଵ:௜

௚ ൯, 
2)

in which ࢜௜ ∈ R
௡࢟ൈଵ  is the simulation error vector and accounts for the misfit between 

the measured and FE predicted response of the structure. The simulation error is ideally modeled 
as a zero-mean Gaussian white noise vector (i.e., ࢜௜~ܰሺ૙,  ሻ) by neglecting the effects of܀
modeling error [10]. The objective of the estimation problem is to find the estimates of the 

unknown parameter vector, i.e., ࣒௜ ൌ ቂ்ࣂ, ሷ࢛ ଵ:௜
௚ ்

ቃ
்
, for which the discrepancies between the 

measured and FE predicted responses are minimized in a probabilistic sense. Since the 
estimation problem is highly nonlinear, a sequential estimation approach is used in this study to 
improve the estimation efficiency. In this approach, the time domain is divided into successive 
overlapping time windows, referred to as the estimation windows. The estimation problem is 
solved at each estimation window to estimate the unknown parameter vector. Assume that the 
݉-th estimation window spans from time step ݐଵ

௠ to time step ݐଶ
௠. Therefore, the unknown 

parameter vector at this estimation window is defined as ࣒௠ ൌ ቂ்ࣂ, ሷ࢛ ௧భ೘:௧మ೘
௚,௠ ்

ቃ
்
, where ࣒௠ ∈

R൫௡ࣂା௧೗ൈ௡ ሷ࢛ ೒൯ൈଵ , in which ݐ௟ ൌ ଶݐ
௠ െ ଵݐ

௠ is the estimation window length, and ݊ ሷ࢛ ೒ is the number 
of unknown components of the base input motions. The unknown parameter vector, ࣒௠,  is 
estimated using a parameter-only Kalman filtering method. To this end, the unknown parameter 
vector is modeled as a random vector, the evolution of which is characterized by a Gaussian 
Markov process – also known as a random walk. Then, a state space model is set up, in which 
the state equation governs the evolution of the random parameter vector and the measurement 
equation corresponds to the discrepancies between the measured and FE predicted structural 
responses [11], i.e., 

࣒௠,௞ାଵ ൌ ࣒௠,௞ ൅ (௠,௞, 3ࢽ

࢟௧భ೘:௧మ೘ ൌ ෝ࢟௧భ೘:௧మ೘,௞ାଵ൫࣒௠,௞ାଵ൯ ൅ ࢜௧భ೘:௧మ೘,௞ାଵ, 4)

in which ࢽ௠,௞~ܰሺ૙, ,ሻ, ࢜௧భ೘:௧మ೘,௞ାଵ~ܰሺ૙ۿ ෩܀ ෩ሻ, where܀ ∈ R൫௧೗ൈ௡࢟൯ൈ൫௧೗ൈ௡࢟൯ is a block 
diagonal matrix, whose block diagonals are the simulation error covariance matrix ܀. In Eqs. (3) 
and (4), ݇ denotes the iteration number. As can be observed, the estimation process at each 
estimation window is iterative, i.e., the mean vector and covariance matrix of the unknown 
parameter vector is iteratively updated based on the discrepancies between the time histories of 
the measured and estimated responses.  

An Unscented Kalman Filtering (UKF) method is used to update the unknown parameter 
vector at each iteration. In this method, the nonlinear FE model is evaluated separately at a set of 
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deterministically selected realizations of the unknown parameter vector, which are referred to as 
the sigma points (SPs) denoted by ࣖ௝. The sigma points are selected around the prior mean 
estimate ෡࣒ି. In this study, a scaled Unscented Transformation (UT) based on 2࣒݊ ൅ 1 sigma 
points (i.e., ݆ ൌ 1,2, … ,2࣒݊ ൅ 1) is used, where ࣒݊ denotes the size of the extended parameter 
vector. The mean and covariance matrix of the FE predicted structural responses, and the cross-
covariance matrix of ࣒ and ࢟ are respectively computed using a weighted sampling method as  

ഥ࢟ ൌ ෍ ௠ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

ෝ࢟௜൫ࣖ௝൯, 5)

෡࢟࢟۾ ൌ ෍ ௘ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

ൣෝ࢟௜൫ࣖ௝൯ െ ഥ࢟൧ൣෝ࢟௜൫ࣖ௝൯ െ ഥ࢟൧
்
൅ ,܀

6)

෡࣒࢟۾ ൌ ෍ ௘ܹ
௝

ଶ௡࣒ାଵ

௝ୀଵ

ൣࣖ௝ െ ෡࣒ି൧ൣෝ࢟௜൫ࣖ௝൯ െ ഥ࢟൧
்
,

7)

where ௠ܹ
௝  and ௘ܹ

௝ denote weighting coefficients [12]. Now, the UKF prediction-
correction procedure can be employed to estimate the posterior parameter mean vector ෡࣒ା௠,௞ାଵ 

and covariance matrix ۾෡࣒,௠,௞ାଵ
ା  at each iteration. The identification algorithm is summarized in 

Table 1. 

Table 1. Identification algorithm for joint estimation of the model parameters and the FIM time history. 

1. Set the estimation window length ݐ௟, and the start and end points of each estimation window. 
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as 

෡࣒ା
଴ ൌ ቂࣂ෡଴

்
, ሷ࢛

௧భ
బ:௧మ

బ
௚,଴ ்

ቃ
்
, and ࣒۾,଴

ା ൌ ቈ
଴,ࣂࣂ෡۾ ૙

૙ ෡۾ ሷ࢛ ೒,బ
቉.  

3. Define the process noise covariance matrix ۿ and the simulation error covariance matrix	܀. Set up matrix ܀෩. 
4. For the ݉-th estimation window: 

4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown parameter 
vector from the last estimation window (i.e., ෡࣒ା௠ିଵ, and ࣒۾,௠ିଵ

ା ). Set up ෡࣒ା௠,଴ and ࣒۾,௠,଴
ା  based on


1ˆ mψ  and ࣒۾,௠ିଵ

ା . 

4.2. Iterate (݇ = 1, 2, …): 
a. Set ෡࣒ି௠,୩ାଵ ൌ ෡࣒ା

௠,୩, ࣒۾,௠,௞ାଵ
ି ൌ ௠,௞,࣒۾

ା ൅  .ۿ

b. Generate sigma points. Run the FE model for ሺ2࣒݊ ൅ 1ሻ sigma points. Derive  ഥ࢟, ۾෡࢟࢟, and ۾෡࣒࢟ 
using Eqs. (5)-(7). 

c. Compute the Kalman gain matrix: ۹ ൌ ෡࢟࢟൯۾෡࣒࢟൫۾
ିଵ

. 
d. Find the corrected estimates of the mean vector and covariance matrix of the unknown parameter 
vector: 

 ෡࣒ା௠,୩ାଵ ൌ ෡࣒ି
௠,୩ାଵ ൅ ۹ ൫࢟௧భ೘:௧మ೘ െ ഥ࢟൯, ࣒۾,௠,௞ାଵ

ା ൌ ௠,௞ାଵ,࣒۾
ି െ ۹൫۾෡࢟࢟ ൅  .෩൯۹்܀

e. Check for convergence:   if ቚ ෡࣒ା௠,௞ାଵ െ ෡࣒ା
௠,௞ቚ ൏ 0.02 ൈ ෡࣒ା

௠,௞ିଵ or ݇ ൅ 1 ൐ 10, then move to the 

next estimation window (݉	 ൌ ݉ ൅ 1, go to step 4); otherwise, iterate again at the current estimation 
window (݇	 ൌ 	݇	 ൅ 	1, go to step 4.2).  
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Verification and Validation 

To verify and validate output-only identification method, we use both simulated and real-
life data obtained from the Golden Gate Bridge (GGB), respectively. GGB is chosen for this 
pilot study because it was the only bridge with structural drawings available to us at the present 
time. Also, we expected to have negligible inertial SSI effects due to the flexibility of the bridge, 
so foundation responses would be representative of FIMs and thus could be used to validate the 
identified FIMs. 

The Structural System 

The Golden Gate (Figure 6) is a strait that connects he San Francisco Bay to the Pacific 
Ocean. The GGB is a suspension bridge over Golden Gate, which connects San Francisco to 
Marin County. GGB was the longest (main span) suspension bridge in the world until 1964. It 
has been also declared one of the wonders of the modern world by the American Society of Civil 
Engineers (ASCE). 

 

 
Figure 6. Golden Gate. 

The GGB was completed and opened to traffic on May 28, 1937 [13]. The total length of 
the GGB from abutment to abutment is 2737 m (8981 ft), with other detailed dimensions of the 
bridge as shown in Figure 7. Summarizing from [14], the structural system is briefly reviewed 
here (Geometrical and mechanical properties of these elements can be fund, for example, in [15], 
[16] and not discussed here for brevity). As a suspension bridge, the GGB consists of several 
structural systems. To have a visual understating, Figure 8 is presented. The approach viaducts 
are of steel girder, truss and arch construction. Anchorage blocks (south one is not shown in 
Figure 8), piers, and pylons are of reinforced concrete construction. The towers, deck, and 
cables (main cable and hangers) are of steel construction. The towers are funded directly on the 
underlying rock. The deck, which was originally of reinforced concrete and replaced by 
orthotropic steel plate at the center and reinforced concrete sidewalks in 1980’s, is carried on 
floor beams every 25 ft. These beams are connected to stiffening trusses at both sides. In original 
construction, stiffening trusses were connected to each other with only a top lateral bracing 
system. Later, in 1950’s, a bottom lateral bracing system was added to make the roadway 
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supporting system a closed box and consequently reduce deck’s torsion/twist. The entire 
mentioned stiffening system is suspended every 50 ft with hangers on each side, were replaced in 
1970’s. The main span is fixed laterally and vertically to the towers at its both ends, has a limited 
amount of free movement in the longitudinal direction, and fully released for rotation at its both 
ends through joints.    

While the GGB has experienced several retrofit stages as mentioned above, prompted by 
the 1989 Loma Prieta earthquake, the GGB, Highway and Transportation District2 initiated a 
series of studies of the bridge which concluded necessity of a massive retrofit including [17]: 

 installation of dampers between the stiffening trusses and the towers,  

 replacement of one-quarter of the stiffening truss lateral braces with new ductile 
members,  

 stiffening of the bridge towers to prevent undesirable plate buckling,  

 strengthening of the bridge piers,  

 strengthening of the saddles supporting cables on the tops of the towers,  

 strengthening of the wind-locks connecting the suspended structure and the towers,  

 and strengthening of the pedestals supporting the orthotropic deck. 

The retrofit started in 1997 and was initially planned to be ended in 2012, which was later 
changed several times (lately to 2021). Retrofit carried out in three phases due to several factors 
like level of vulnerability, provided fund, and traffic closure. In Phase 1 (1997-2002), the Marin 
(North) approach viaduct was retrofitted. In Phase 2 (2002-2007), San Francisco (South) 
approach viaduct, anchorage housing, arch, and pylons were retrofitted. Phase 3 (2008-2021) 
was conducted in two sub phases A and B. In Phase 3A (2008-2014), North Anchorage housing 
and pylon were retrofitted. In Phase 3B, main suspension span, main towers, South tower pier 
and fender is going to be retrofitted. This phase is the most challenging part and mainly due to 
this reason the completion date of retrofit project has been extended to 2021. Another reason for 
such extension was to increase the strength of the bridge against factors beyond earthquakes, like 
terrorism attacks. As a summary, details of the retrofit measures conducted at each phase are 
shown in Figure 9.  

 

 
Figure 7. Dimensions of the bridge [18]. 

                                                            
2 This is a special district of the state of California formed in 1928. 
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Figure 8. Various parts of the GGB (3D model is taken from Google Earth). 

 
Figure 9. GGB retrofit measures (http://goldengatebridge.org/projects/retrofit.php). 

Prior Identification Studies 

The oldest study on vibration-based identification of the GGB goes back to 1947 when 
Nishkian measured vertical movement of the bridge deck during its operation [19]. Later, 
Vincent carried out similar measurements using more accurate sensors and compared real-life 
data and model prediction [20], [21]. He used data recorded in a 15 years period by suspended 
mass accelerometers and identified first asymmetric, first and second symmetric vertical natural 
frequencies of the deck as 0.095, 0.125, and 0.158 Hz, respectively. He also reported torsional 
frequency of deck as 0.20 Hz. The rate of studies (not specifically on system identification topic) 
on this bridge got accelerated in 90’s. Tanaka and Davenport [22] re-examined data used by 
Vincent [20]. They also experimentally tested a taut-strip model in laboratory under wind 
turbulence and concluded that at low speed wind first asymmetric mode is the dominant one. 
Abdel-Ghaffar and Scanlan [15], [16] conducted extensive experimental investigations on the 
bridge to determine natural frequencies, mode shapes, and damping ratios from ambient data. 
They used spectral peak picking for natural frequency identification, cross-spectrum analysis for 
mode shape identification, and half-power bandwidth method for damping ratio estimation. They 
could identify 20 vertical, 18 torsional, 33 lateral, and 20 longitudinal modes of the suspended 
span in the frequency range of 0 to 1.5 Hz and 20 longitudinal, 15 torsional, and 11 lateral modes 
of the towers in the frequency range of 0 to 5 Hz. 

Pakzad et al. [23] designed and implemented a scalable wireless sensor network and used 
it for modal identification of GGB from ambient data collected in summer of 2006. They limited 
their analysis to modes below 5 Hz. As they used wireless sensor network, they could measure 
vibration using various instrumentation layouts. Through their study, it is clearly understood that 
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for such large and flexible structure, identification could be subjected to spatial aliasing3 if the 
number of measurement nodes is small. Based on their results, first vertical, transverse and 
torsional modes are at  0.106, 0.228, and 0.230 Hz, respectively, where all these modes are 
asymmetric [24]. This valuable dataset were later used several times for verification and 
validation of some identification methods and frameworks. For example, Pakzad et al. [25] 
verified the performance of the distributed modal identification approach through this dataset. 
Chang and Pakzad [26] verified their modified Natural Excitation Technique (NExT) using same 
data. Also in 2014, same data was analyzed by Matarazzo and Pakzad [27] through pseudo 
mobile sensing data4 and they used structural identification using expectation maximization 
(STRIDE) [28] to identify modal properties of the GGB from ambient data. Their results were as 
accurate as those identified before [24]. 

In 2012, Çelebi [18] carried out an extensive study on the GGB. He analyzed data 
recorded during three weak earthquakes (Bolinas 1999, Yountville 2000, and Alum Rock 2007). 
He employed spectral analysis [29] for output-only and Auto-Regressive with eXogenous input 
(ARX) [30] for input-output identification purposes. This study is the first one in which modal 
characteristics are identified from earthquake data. He filtered out frequencies below 0.05 and 
above 50 Hz. While this study provides us with precious information, it suffers from some 
definiteness. It is done before 2014 South Napa earthquake. Amplitude spectra are not a reliable 
method for identification of earthquake data, while input-out ARX technique suffers from the 
fact that it cannot consider multiple support excitations. Even under uniform excitation 
assumption, any input-output identification technique gives us modal characteristics between 
only input and output locations. So, any flexibility provided by boundaries, like soil, is excluded. 

Recorded Earthquake Data 

Following the 1989 Loma Prieta earthquake, it was recommended to instrument large 
bridges in the California [31]. The seismic instrumentation was planned in 1992 by the CSMIP 
and the GGB, Highway and Transportation District in cooperation with an appointed seismic 
instrumentation advisory board [3]. In 1995 (prior to retrofit), 72 accelerometers (15 on the north 
viaduct and anchorage housing; 33 on the suspension bridge; 22 on the south viaduct and 
anchorage housing and Fort Arch; 3 at the south free-field; 3 at a downhole under the south 
viaduct) and 4 relative displacement sensors were installed [32]. After completion of the Phase 1 
of the retrofit, 18 sensors were installed on the north viaduct and anchorage housing and a 
geotechnical array with 6 sensors was installed near the north viaduct. Finally, 22 more sensors 
were added after completion of the Phase 2. The current locations5 of the sensors on the 
suspension bridge are shown in Figure 10.    

 

 

                                                            
3 This is not explicit conclusion of that study, and is concluded by this paper’s authors based on the results presented 
in [23]. Also, the term spatial aliasing is not a common term in signal processing. 
4 Pseudo mobile sensing data is the data without actually implementing mobile sensor network and is extracted 
directly from a fixed sensor data matrix provide that the paths of the mobile sensors are known.  
5 Last update: 10/31/2016 
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Figure 10. Locations of strong-motion sensors on the suspension span of 
the Golden Gate Bridge (www.strongmotioncenter.org, last accessed 

1/1/2017). 

Figure 11. Geographical distribution 
of earthquake centers around the 

Golden Gate Bridge. 

Several earthquakes have been recorded by the GGB instrumentation system by today 
(see, Table 2 and Figure 11 for these earthquakes’ properties and geographical distribution 
around the GGB); however, a few of them are publicly available through the CESMD. As it will 
be discussed in the next section, earthquake data up to 2007 are already studied by Çelebi [18]. 
Herein, we only study the latest earthquake, i.e., 2014 South Napa earthquake. Note that data of 
Elcerrito earthquake is not available in CESMD. As it can be seen in Table 2, Peak Structural 
Acceleration (PSA) is highest in the South Napa earthquake in comparison with other prior 
earthquakes. 

Table 2. Earthquakes recorded by GGB instrumentation system (Last update: 1/1/2017) 

Earthquake Date/Time UTC Magnitude Depth (km) Epicentral Dist. (km) PGA (g) PSA (g) 

Bolinas 8-17-1999/1:06 4.5 (Mw) 7.0 20.6 0.020 0.112 

Yountville 9-3-2000/8:36 5.0 (Mw) 5.0 62.1 0.009 0.039 

Gilroy 5-13-2002/05:00 4.9 (Mw) 7.6 122.5 0.010 0.071 

Alum Rock 10-30-2007/03:04 5.4 (Mw) 9.2 75.5 0.012 0.036 

Elcerrito 3/5/2012/13:33 4.0 (ML) 9.2 19.6 0.016 0.084 

South Napa 8-24-2014/10:30 6.0 (Mw) 11.3 46.7 0.012 0.181 

 
Due to very sparse instrumentation (Figure 10) it is crucial to limit frequency band to 

prevent phenomenon we can call it spatial aliasing. As it was described in the previous section, 
due to the size and flexibility of the system, there are many modes in the original frequency 
range of data (0-50 Hz). So, using such sparse instrumentation it would almost impossible to 
distinguish modes. As an example, first 8 mode shapes of the suspension part which are 
identified from ambient signals through dense instrumentation by Abdel-Ghaffar [15] are 
redrawn in Figure 12. On this figure, available sensors deployed through CSMIP which could 
measure bridge response during 2014 South Napa earthquake are shown by red circles. In the 
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best scenario, we could be only able to identify mode shapes as displayed by red solid lines. As it 
can be seen from this figure, there is no meaningful difference between first symmetric and 
fourth asymmetric modes shapes through available sensors, for example. Or, AS3 and S4 mode 
shapes are very similar to each other. Note that these modes are all lowest modes and the 
similarity of mode shapes will highly increase for higher modes. As Blind Modal Identification 
(BMID) method [33]–[36], which will be used later to identify modal properties from output 
signals, relies heavily on linear independency of mode shapes, we have to eliminate higher 
modes from our analysis. Therefore, we apply a low-pass filter to only keep a few fundamental 
modes. As studied by Pakzad and Fenves [24], there are, for example, 15 vertical modes below 1 
Hz, so we filter out frequencies higher than this value. Also, due to low frequency errors 
observed in the signals, frequencies below 0.05 Hz are also filtered out through high-pass filter. 
Recorded acceleration signals on the suspension part are shown in Figure 13 in which all records 
are shown with same scale. Also, first 20 seconds of the signals are not shown, because there is 
no significant motion. As this figure shows response of the deck in the vertical direction and 
longitudinal and transverse vibration of the towers have highest level of motion.  

 

 
Figure 12. Mode shapes identified from ambient testing [15] (black curves), permanent sensors (red circles), and 

identifiable mode shapes (red lines). 

 
Figure 13. Recorded acceleration signals on the suspension part of the GGB. 
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To make sure that the frequency range of under study contains most energy content of the 
signals, maximum displacement responses after filtering are normalized with original values and 
shown in Figure 14. As it can be seen, this ratio is higher than 0.8 for most of the channels. 
Specifically, for those channels recorded on suspension part (foundation, deck, and tower levels), 
this value is close to 0.9. Note that those few cases with value less than 0.8 are related to low 
frequency errors which are removed through high-pass filtering. 

 
Figure 14. Ratio of after filtering maximum displacement values to the original values. 

As will be discussed later, material nonlinearity will not be included in the model. 
Herein, we carried out a visual observation on observed dominant frequencies to make sure that 
there is no significant nonlinearity in the system. To do so, we present time-frequency 
representation [37] of a few signals. As a first example, time-frequency representation of 
CH27+CH28 (vertical movement of the mid-span) is presented in subplot (b) of Figure 15(left). 
Acceleration time history of the signal is also shown in subplot (a). As it can be seen, a very 
dominant frequency at 0.3067 Hz with a minor contribution from 0.6733 Hz is observed in this 
figure. High level of energy of the 0.3067 Hz component may mask contribution of other 
components. To resolve this issue, time history is scaled by its instantaneous amplitude as 
described in [38]. This figure is shown in subplot (c) of Figure 15(left). Interestingly, two other 
frequencies appear now. During first ~20 seconds, bridge is vibrating in its fundamental mode 
~0.1333 Hz due to ambient excitations. After arriving seismic waves, higher modes at 0.3067, 
0.6733, and 0.8867 Hz get excited, while mode at 0.3067 persistently exists by the end of the 
record. 

Figure 15(right) presents same graphs for deck’s torsional vibration estimated through 
CH27-CH28. Again, through time-frequency representation and with help of amplitude scaling, 
it is possible to observe contribution of different modes at different time instants. At the very 
beginning, a mode at 0.3333 Hz is dominant, then mode at 0.2333 Hz gets dominated for 20 
seconds until the arrival of severe seismic waves. After a short period of time in which a higher 
frequency of 0.8133 Hz is present, most part of the signal is affected by a mode at 0.5733 Hz. 

Frequencies named at two paragraphs above can be labeled according to the prior studies 
and frequency closeness. These labels are shown in Table 3 and are deduced from Abdel-
Ghaffar’s experimental study [15]. 
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Figure 15. Time and time-frequency representation of CH27+CH28 (left) and CH27-CH28 (right). 

Table 3. Labels of the modes observed in Figure 15 [15]. 

Frequency (Hz) 0.1333 0.2333 0.3067 0.3333 0.6733 0.5733 0.8133 0.8867 

Mode VS1 TS1 VS4 TS2 VS7 TS4 TS6 VS9 

V: Vertical; T: Torsional; S: Symmetric 
 

One of the main objectives of this study is to investigate any spatial variability in bridge’s 
FIMs. This bridge has sensors on its foundation level, so foundation response could be FIMs 
provided that there is no inertial soil-structure interaction effect. Let’s assume that there is no 
inertial SSI effects and assume foundation response as FIM. In the absence of any spatial 
variability, input excitation experienced by the ridge at its all piers must be similar with only 
possible phase delay effect. To check the similarity between two signals, say ݏ௜ሾ݊ሿ and ݏ௝ሾ݊ሿ, 
sample cross-covariance index is employed here [29], which is calculated as 

ܿ௜௝ሾ݇ሿ ൌ
1
ܰ
	෍ሺݏ௜ሾ݊ሿ െ ௜ሻݏ̅
ேି௞

௡ୀ଴

൫ݏ௝ሾ݊ ൅ ݇ሿ െ (௝൯ 8ݏ̅

where ݇ ൌ 0, 1, ⋯ ,ܰ െ 1, and ܰ is number of time samples. ̅ݏ௜ and ̅ݏ௝ indicate the mean 
of two signals. It is also possible to calculate ܿ௜௝ሾ݇ሿ for negative lags, which are indeed obtained 
by changing the ݅ and ݆ sub-indices at the summation above. ܿ௜௝ሾ݇ሿ is usually normalized with 
the square-root of ܿ௜௜ሾ0ሿ and ௝ܿ௝ሾ0ሿ to keep the value of covariance between −1 and 1. This 
normalized value is termed the cross-correlation in time series analysis. A cross-correlation 
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equal to −1 or +1 denotes two signals are identical except with a time lag, whereas a cross-
correlation close to zero means that that they are not similar. 

Figure 16 shows ܿ௜௝ሾ݇ሿ versus tame lags for ݅, ݆ ൌ CH47, CH33, CH 18, and CH12, 
which are four transverse channels at four piers. Peak value of the cross-correlation is depicted 
by using a vertical dashed line and the absolute value of time lag corresponding to these peaks 
are written on each subplot. Several significant observations are deduced from this figure. First, 
all peak values are at negative time lags showing that if there is wave propagation, it is from 
North (Marin) to South (San Francisco) direction. Second, the peak level of correlation is very 
low between all pairs of channels, showing there is significant incoherency [39]. Third, assuming 
plane waves with similar incident angle, the average value of the surface apparent wave velocity 
obtained by dividing horizontal distance between each two channels by these time lags is around 
4400 m/s. 

Similar figures for Longitudinal and Vertical channels are produced but not shown for the 
sake of space. For Longitudinal direction, channels 45, 31, 16, and 10, and for the Vertical 
direction channels 46, 32, 17, and 11 are used. It was observed that similar comments can be 
made on these directions two. If we calculate the surface apparent wave velocity corresponding 
to the observed delays, it could be around 6000 and 7000 m/s for longitudinal and vertical 
directions, respectively. It is noteworthy to mention that estimation of the delay through cross-
correlation gives us an average of the group delay if the medium of the wave propagation is 
dispersive.  

 

  
Figure 16. Cross-correlation among acceleration channels on the foundation level in Transverse direction. 

Horizontal axes are time lags (in seconds) and vertical axes are cross-correlation. 

Numerical Modeling 

Up to the knowledge of the authors, first numerical study on the GGB was carried out by 
Baron et al. [40] in 1976. They created linear 2D (with 278 nodes) and 3D (with 120 nodes) 
models to investigate dynamic behavior of the bridge in longitudinal-vertical and transverse-
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torsional directions, respectively. Both models were fixed at the towers’ bases. Static, 
eigenvalue, and time history analyses were carried out in this study. The model was excited 
under both uniform and multiple support excitations. However, only wave passage effect was 
considered. Also, a Rayleigh damping matrix with mass and stiffness proportional factors of 
0.04805 and 0.0065 were used.  

Abdel-Ghaffar [41] was one of pioneering researchers who studied dynamic response of 
suspension bridges. He employed frequency-domain random vibration approach to analyze GGB 
under multi-support excitations. Both vertical (induced by vertical and longitudinal excitations) 
[42], [43] and lateral [44], [45] earthquake-induced response of the GGB under multiple support 
excitations were studied. 2D linearized Finite Element models developed by Abdel-Ghaffar 
which were later used in several studies [15], [16] consisted of 283 beam elements with 193 
movable nodes, resulting in a system with 1146 degrees of freedom. Axial tension effects of the 
cables were included by the addition of a geometric stiffness matrix to the elastic stiffness matrix 
[46]. In the most fundamental symmetric and ten asymmetric vertical, torsional, and transverse 
modes, there was a very good agreement between numerical and experimental mode shapes and 
natural frequencies. He also showed that his simpler 2D models work as accurately as 3D model 
developed by Baron et al. [40].  

As mentioned earlier, after 1989 Loma Prieta earthquake, a series of studies for the 
purpose of seismic evaluation and possible retrofit were initiated. The district engaged T. Y. Lin 
International (TYLI) to perform these evaluation studies [47], while sub-consultants Imbsen & 
Associates, Inc. (IAI) and Geospectra, Inc. (GI) were also engaged. The 3D model of the main 
bridge used in that evaluation had been originally developed for TYLI’s Transit Feasibility study 
[48]. This model was composed of 9933 frame elements connecting 4775 nodes, which was 
reduced by using a super-element formulation such that the total number of active degrees of 
freedom was around 4000 [14]. Similar to Abdel-Ghaffar’s studies, dynamic loads and responses 
was regarded as disturbances to the dead-load configuration, so the analysis problem was 
linearized with response respect to the dead-load state of the structure. Also, geometrical 
nonlinearity was considered by using geometric stiffness matrices. This global model went under 
several analyses including linearized time history analysis under multiple-support earthquake 
excitation. In addition to this global model, several more detailed linear and nonlinear analyses 
were carried out by local modes, e.g., tower-to-pier connection. Results of these studies were 
later published in several papers and reports [17], [49]–[54]. In a very recent work, Game et al. 
[55] created a 3D model of the GGB in Strand7 [56]. While they kindly shared their model with 
us, the model was not accurate in geometry and details.  

In the present study, a new 3D model is created. To create such model with highest 
accuracy in geometry, the geometry was taken from Google Earth which was already shown in 
Figure 8. This model was taken to the ABAQUS [57] to convert faces and lines to a 3D model 
with solid elements. This model is shown in Figure 17(a). A model with solid elements is 
computationally very expensive and cannot be used in output-only identification framework 
described in the previous section. Hence, solid elements were replaced with structural elements 
in SAP2000 [58], which is shown in Figure 17(c). To create this model, publicly available 
details [13] on this bridge, sample of which is shown in Figure 17(b), were taken into account 
along with all quantitative and qualitative description found in other researcher’s studies 
reviewed in prior sections. Finally, to take advantage of parallel processing, this SAP2000 model 
was transformed to OpenSEES [59] using a Matlab [6] interface developed by the authors, which 
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uses SAP Application Programming Interface (API) to communicate to SAP2000. This Matlab 
code enables us to repeat the process for any other structure. The final OpenSEES model is 

shown in Figure 18.  

 

Figure 17. (a) Abaqus model, (b) samples of available structural details, and (c) SAP2000 model. 

 

 
Figure 18. OpenSEES model of the GGB. 

The OpenSEES model is composed of more than 20000 Degrees-Of-Freedom (DOFs) 
with more than 8000 frame elements and 2000 area elements. In the original SAP2000 model, 
cables and hangers were modeled as cable elements and main cables’ geometry was determined 
iteratively such that after imposing dead load they have internal stress and maximum sag as 
reported by Abdel-Ghaffar [15]. In the OpenSEES, cables and hangers are modeled using 
Co-rotational truss element with material which can accept initial stress. While there is no 
material nonlinearity (except zero compression in cables and hangers) in the model, geometrical 
nonlinearity was considered, because it is crucial for suspension bridges.  

Identifiability 

The first step in any identification is to figure out possible sources of uncertainties and 
identifiability of these uncertainties. As we did not have access to the actual details of the GGB 
and also this bridge experiences several retrofit stages during its life as reviewed in prior 
sections, almost all material properties are uncertain.  In addition, all connections (like spans’ 

a) 

b)

c)
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connections to the towers) and boundaries (like soil-abutment and soil-foundation systems) are 
modeled by appropriate linear springs with expected values which must be updated through 
identification process. Also, parameters of Rayleigh damping (the best possible strategy for 
damping modeling right now) are considered as other potential updating parameters. 

In total, there are 66 parameters which are potential candidates for the updating along 
with FIMs. However, it is not needed/possible to consider all of these parameters in the 
identification process. Through two sifting steps, the number of updating parameters is much 
reduced as follows. In the first step, it was identified which parameters have indeed value and 
which are free or fixed. For example, according to the structural drawings and prior studies, 
towers do not have relative translation with respect to the main and side spans, so we fixed these 
connections and excluded them from identification process. Assuming non-fixed connections 
makes the modal properties of the model deviate from what reported in previous studies. While it 
is expected not to have significant inertial SSI effects (based on this fact we choose GGB to be 
able to validate FIMs, indeed), we considered translational and rotational springs of soil-
foundation systems as unknowns. However, values of these springs’ stiffnesses must be very low 
to make these springs effective, which are not physically meaningful with respect to the GGB’s 
properties. So, we fixed them too. We also excluded initial tension in cables and hangers, 
because they have been already considered by applying gravity loads. Based on these facts, 28 
parameters out of initial 66 parameters can be potential updating parameters, which are listed in 
Table 4. However, all of these parameters might not be identifiable through available 
instrumentation layout. To specify identifiability of these parameters, which is second sifting 
step, we carried out sensitivity analysis to calculate total information for each parameter ߠ௜ as 
[60] 

I௜ ൌ ∑ ቀ
డ௬ೕ
డఏ೔
ቁ
ଶ

௠
௝ୀଵ     for     ݅ ൌ 1…28 

9)

where ߲ݕ௝ ⁄௜ߠ߲  is the sensitivity of response at ݆-th channel with respect to the ߠ௜ and ݉ 
is the number of all recorded channels. We perturbed ߠ௜ around its nominal value and used Finite 
Difference to calculate ߲ݕ௝ ⁄௜ߠ߲ . Figure 19(a) shows information entropy for all these 28 
parameters. Assuming a threshold of 1, for example, 7 parameters are the most informative 
parameters. This figure shows that from this model and instrumentation layout, it is not possible 
to infer any reliable information about abutment’s springs, mainly because it is a very flexible 
bridge.  

Even, not all of 7 parameters can be uniquely identified. By looking at mutual 
information among parameters shown in Figure 19(b), it is seen that some parameters are highly 
correlated with each other. For example, Modulus of elasticity of Chords is correlated with 
modulus of elasticity of diagonal Bars. So, we fix one (diagonal Bar’s) of them and consider the 
other one as updating parameter (Chord’s). Also, because Hanger’s and deck’s modules of 
elasticity are also highly correlated with diagonal bar’s modules of elasticity, we also fix them.  

Finally, we have 4 important parameters (Tower’s, Cable’s, Chord’s, and Bottom 
Bracing’s modules of elasticity) which are identifiable through the present instrumentation 
layout. While damping parameters are not very informative in comparison with respect to others, 
we consider them too, because they do not have any correlation with others. So, we carry out the 
identification with 6 unknown parameters along with 6 time-series of FIMs (3 components at 
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each pier). We assume same FIMs in south and north abutments as south and north piers, 
respectively.   

 

 

 

Table 4. Candidate parameters after first sifting step. 

No. Element Parameter
1 Bottom Bracing Elastic Modules
2 Cable Elastic Modules
3 Chord Elastic Modules
4 Deck Elastic Modules
5 Diagonal Bar Elastic Modules
6 Floor Beam Elastic Modules
7 Hanger Elastic Modules
8 Kneebrace Elastic Modules
9 Top Bracing Elastic Modules

10 Tower Elastic Modules
11 Track Girder Elastic Modules
12 Transverse Strut Elastic Modules
13 Vertical Rod Elastic Modules
14 Vertical Bar Elastic Modules
15 South Tower-South Side Span Spring Stiffness, M2 
16 North Tower-North Side Span Spring Stiffness, M2 
17 South Abutment Spring Stiffness, P 
18 South Abutment Spring Stiffness, V2 
19 South Abutment Spring Stiffness, V3 
20 South Abutment Spring Stiffness, T 
21 South Abutment Spring Stiffness, M2 
22 North Abutment Spring Stiffness, P 
23 North Abutment Spring Stiffness, V2 
24 North Abutment Spring Stiffness, V3 
25 North Abutment Spring Stiffness, T 
26 North Abutment Spring Stiffness, M2 
27 Damping Alpha
28 Damping beta
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(a) Information entropy (b) Mutual information 

Figure 19. Identifiability analysis. (a) information entropy for each parameter, (b) mutual information among 
parameters, and (left) list of parameters. 

Identification Results 

Verification: Simulation Data 

Before applying the proposed identification method on the real-life data, it is crucial to 
verify it through simulated data. The proposed method is able to work for a wide range of 
applications from linear to nonlinear or input-output to output-only cases. As an initial test, we 
used it for input-output identification. Such input-output identification is quite useful in real 
world, because one way to consider soil-structure interaction effects is to modify input motions 
to include feedback inertia effect. In other words, it is possible to exclude compliance beyond a 
location by imposing prescribed motion at that location. For example, Shirkhande and Gupta 
[61] followed same approach to estimate response of the GGB using a fixed-base model. In 
addition, even complexity of the output-only identification could decrease if an input-output 
identification using foundation-level measurement carried out first to estimate superstructure’s 
parameters while soil-foundation parameters. Of course this approach is only applicable if there 
is measurement on the foundation level.  
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Figure 20. Comparison between recorded (simulated) and predicted acceleration responses at select channels. 

We applied this input-output identification on the simulated data of the GGB. Figure 20 
shows comparison between recorded (synthetically simulated) and predicted (at the last iteration 
of the last updating step) responses at some selected channels. As seen, prediction is perfect. 
While we assumed 50% initial error in all 6 parameters, final results show 0.03%, 0.04%, 0.23%, 
1.59%, 2.38%, and 13.76% error at the end of updating process. As expected, damping 
parameters are not identified as accurate as others in which stiffness proportional factor is more 
erroneous, which is in agreement with Figure 19(a).   
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Figure 21. Comparison between recorded (simulated) and predicted acceleration responses at select channels. 

While it is possible to use information obtained in the input-output identification step to 
reduce parameters uncertainty in the output-only identification, we do not use it, because 
response of the foundations/abutment might not be recorded at all piers in real-life. Therefore, 
we carry out output-only identification while all 6 parameters along with FIMs are unknown. 
Assuming an initial error of 20% we obtained 4.28%,0.25%, 0.56%, 23.94%, 6.78%, and 3.25% 
for Towers’, Cables’, Chord’s, Braces’ modules of elasticity, and mass and stiffness proportional 
damping coefficients, respectively. While all results are acceptable and expected, identification 
algorithm was not successful to find modules of elasticity of bottom bracing. Comparison 
between recorded and predicted responses at some selected channels is shown in Figure 216. As 
seen, while one of parameters is not identified accurately, predicted responses are very close to 
the recorded ones.  

Finally, the most important identification results are FIMs. The identified FIM in the 
transverse direction on the South pier is shown in Figure 22 along with its exact counterpart. As 
this figure shows, the input motion is identified with a very good accuracy especially in time 

                                                            
6 We used different damping values in output-only simulation, so response signals are not identical to Figure 20. 
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windows with high levels of excitation. The other FIMs are also identified with the same level of 
accuracy, which are not shown here for brevity. 

 
Figure 22. Comparison between exact and identified FIM in transverse direction on the South pier. 

Validation: Real-Life Data 

Herein, we replace simulated signals with their real-life recorded counterparts and carry 
out input-output and output-only identification as carried out in the previous section. Figure 23 
compares recorded and predicted acceleration responses at some selected channels in the input-
output identification. As expected, results are not as good as synthetic data. However, the level 
of accuracy varies among channels. Predicted responses at channels 37, 30, 35, and 21 are very 
close to the real-life data. All these channels are on the towers or very close to the towers. 
Response prediction at the Channel 15 is acceptable, although there are some high frequency 
components which are not captured in the prediction. The major discrepancies are observed at 
channels 26, 27, and 123. All these channels are on the main span. Several reasons could be 
possible source of such inconsistencies. First off, we did not have access to all details of the 
bridge, so there could be some modeling uncertainties in addition to parameter uncertainties. 
Secondly, responses at these channels are highly affected by the other co-existing excitations like 
due to wind and moving vehicles, which are not considered here. Finally, we modeled damping 
through the Rayleigh method, which might not be able to accurately model damping for all 
modes. This could be significant for the main-span channels, because many modes are 
contributing to these signals, while channels on the tower mostly contain only a few fundamental 
modes of the system. 

While we considered wide boundaries for the updating parameters, all modules of 
elasticities are identified around 2 ൈ 10ଵଵ 	ܰ ݉ଶ⁄  except those of the bottom bracings, which are 
around 2.5 ൈ 10ଵଵ 	ܰ ݉ଶ⁄  . This indicates that perhaps the dimensions of bottom bracing 
elements were underestimated in the model. Identified Rayleigh damping parameters are both 
around 0.1.   

Predicted responses and one of identified FIMs obtained in output-only identification are 
shown in Figure 24 and Figure 25, respectively. As seen, the similarity level between recorded 
and predicted responses is close to what we observed for the input-output case (Figure 23) while 
here FIMs are also identified. One of the identified FIMs is shown in Figure 25. Assuming that 
what is recorded on the foundation is true FIM (inertial SSI is negligible), these two signals are 
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quite similar, but the amplitude of the identified FIM is higher than the recorded foundation 
response. The authors believe that this is because level of input excitation is compromised with 
overall damping of the system. This issue could be addressed in future by introducing damping 
more specifically, especially when system is going under nonlinear behavior. In other words, by 
parametrizing sources of damping, e.g., backbone curves of plastic hinges, relationship there 
would be no linear relationship between input, damping, and response, so both input and 
damping could be identified more accurately. 

 

 
Figure 23. Comparison between recorded and predicted acceleration responses at select channels. 
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Figure 24. Comparison between recorded and predicted acceleration responses at select channels. 

 
 

 
Figure 25. Comparison between recorded foundation response and identified FIM in transverse direction on the 

South pier. 
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Conclusions 

This study presented a verification and validation study whose objective is to quantify the 
spatial variability in bridge Foundation Input Motions (FIMs) using data recorded during the 
2014 South Napa Earthquake. This aspect comprised the development and verification of two 
distinct (and new) methods. The first of these was an output-only system identification method 
that yields time-history estimates of FIMs at all bridge piers from accelerations recorded on the 
bridge. The second was a blind channel identification method that enables the identification of 
local site effects at each pier provided that all FIMs are caused by a single excitation source and 
the kinematic interaction is similar at all piers. The second method was presented in our first 
phase of study at SMIP16. The applicability of the second method—i.e., the output-only 
identification method—was tested in the present paper through an extensive study on both 
simulated and real-life data from the Golden Gate Bridge. The results of this study showed that 
the proposed framework is able to recover FIMs from sparsely measured responses of a complex 
bridge.  To the best of our knowledge, this is the only study in which multiple FIMs are 
identified with real-life recordings from a bridge structure. 
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