
SMIP08 Seminar Proceedings 
 

63 

IDENTIFICATION OF THE BASELINE MODAL PARAMETERS OF THE 
CARQUINEZ SUSPENSION BRIDGE USING AMBIENT VIBRATION DATA 

 
 

Raimondo Betti and Ah Lum Hong 
 

Department of Civil Engineering and Engineering Mechanics 
Columbia University, New York 

 
 

Abstract 
 

The identification of modal parameters has been performed for the New Carquinez 
suspension bridge in California. By using multiple ambient vibration data sets recorded through a 
wind-motion monitoring system in the bridge, the baseline modal parameters were obtained in 
order to investigate dynamic behavior of the bridge in operating conditions. For the modal 
parameters identification, the data-driven stochastic subspace identification technique was 
implemented. For each data set, the modal parameters for structural modes were estimated by 
examining the estimation error between measured data and reconstructed one from the identified 
modes. Based on the results, variability of the identified modal parameters was also investigated. 
 

Introduction 
 

The Newly built Carquinez suspension bridge (NCB) linking Vallejo with Crockett in 
California is located in a windy area and near three active earthquake faults (the San Andreas 
Fault, the Hayward Fault, and the Franklin Fault). For structural health monitoring of this bridge 
in operational condition, the Strong Motion Instrumentation Program (SMIP) has devised a 
wind-motion monitoring system as well as an earthquake monitoring system by installing 
accelerometers over the bridge. Since, in vibration based structural health monitoring, the 
evaluation of a structure’s global dynamical behavior requires past or undamaged state 
information of the structure as a baseline, having precise baseline dynamic properties of the 
structure is important in order to assess such a structure’s condition in the future.  

 
When only structural responses are available for the characterization of a structure’s 

dynamic properties, as it is in ambient vibration cases, stochastic system identification 
techniques are usually implemented to identify its modal parameters (natural frequencies, 
damping ratios, and mode shapes). Peeters and De Roeck [1] reviewed currently used stochastic 
system identification techniques in both frequency and time domains. Among such techniques, 
Frequency Domain Decomposition (FDD) technique in frequency domain and Stochastic 
Subspace Identification (SSI) technique in time domain are showing great promise, especially in 
detecting closely spaced modes [2]. However, despite of attempts to further improve efficiency 
of such techniques [3][4], they are still in need of improvement since results from both the 
techniques are quite sensitive to choices of certain parameters in their implementations. In 
comparing the FDD and SSI techniques, Brincker et al. [5] showed that the FDD technique has 
less uncertainty on damping estimates than the data driven SSI technique; however, the results 
from the FDD were significantly affected by the frequency resolution and so, consequently, by 
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the length of time histories. In fact, the authors concluded that at least 1 hour long time histories 
were required for a proper estimation of damping ratios.   
 

In this study, the data driven SSI technique was implemented for modal parameters 
identification in order to build baseline modal parameters of the NCB using 17 ambient vibration 
data sets recorded from the bridge in operating condition. To this end, practical issues in the 
implementation of data-driven SSI technique were first investigated and an efficient way of 
identifying modal parameters from this technique was proposed. After that, certain bounds of 
modal parameter estimates for each identified mode were provided.  

 
Ambient Vibration Data 

 
Sensor Configuration 

 
As a part of the SMIP monitoring of the NCB, 76 accelerometers were placed on towers, 

piers, abutments, anchorages, piles of the towers as well as on the bridge deck for monitoring 
earthquake induced motions of this bridge. Among such 76 accelerometers, a set of ten 
accelerometers on the northern half of the deck also belongs to the wind-motion monitoring 
system, with a supplement of an anemometer placed at the mid-span. Figure 1 displays the 
locations of such ten accelerometers (six in vertical, three in transverse, and one in longitudinal 
directions) in the wind-motion monitoring system. The purpose of this wind-motion monitoring 
system is to record the dynamic behavior of this bridge under ambient excitations (i.e. wind and 
traffic loadings).  
 

 
 
 

Figure 1. Locations of the sensors belonging to the wind-motion monitoring system 
 

Measurement Properties 
 

A total of 21 data sets of ambient vibration responses were recorded through either the 
wind-motion or earthquake monitoring systems. Table 1 indicates the recording date, start time, 
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and duration of each data set as well as wind information in terms of the mean wind direction 
(Dv) and the mean of wind speed (Vv) along the mean wind direction. Data sets #1 to 4 were 
measured on windy days and data sets #5 to 8 at the same time (10:00pm) for four days in 
February. Furthermore, in order to examine a change in modal parameters during the day and 
night time, data sets #9 to 21 were recorded at different times from afternoon to midnight for 
three days in May. The data sets also have various record lengths from 54 sec (data set #3) to 
1068 sec (data set #10).  

 
Among the 21 data sets, structural responses of data sets #3 and 8 were measured through 

the earthquake monitoring system with the sampling frequency of 200 Hz while the other sets 
through the wind-motion monitoring system with 20 Hz of the sampling frequency. Since the 
anemometer does not belong to the earthquake monitoring system, wind information was not 
provided for data sets #3 and 8. 

 
In this study, only 17 data sets that have the record lengths of at least 10 minutes were 

considered for the identification of the NCB’s modal parameters.  
 

Table 1. Ambient vibration data information 
Data Date Time Length Wind 
Set # Vv [m/s] Dv[o] 

1 27-Feb-06 19:18:55 350 sec 11.11 209.9 
2 25-Mar-06 12:34:44 99 sec 11.58 244.3 
3 20-Jun-06 18:31:16 54 sec - - 
4 04-Jan-08 10:53:35 641 sec 13.81 196.0 
5 22-Feb-08 21:59:38 797 sec 3.44 282.8 
6 23-Feb-08 21:59:37 804 sec 3.63 180.2 
7 24-Feb-08 21:59:42 776 sec 3.63 230.5 
8 27-Feb-08 21:59:38 300 sec - - 
9 14-May-08 13:11:03 607 sec 1.86 312.3 
10  13:59:41 1068 sec 1.40 289.1 
11  14:59:38 794 sec 1.46 339.6 
12  15:59:38 789 sec 1.23 291.8 
13  23:59:38 790 sec 1.29 258.8 
14 21-May-08 13:59:38 779 sec 7.46 248.7 
15  14:59:37 793 sec 9.18 267.9 
16  15:59:37 793 sec 9.30 262.2 
17  23:59:38 800 sec 6.43 297.5 
18 22-May-08 13:59:37 799 sec 5.90 182.8 
19  14:59:40 779 sec 6.46 170.2 
20  15:59:38 782 sec 6.09 170.7 
21  23:59:37 805 sec 7.25 261.3 

 
Response Measurements 
 

The 17 data sets analyzed in this study to build baseline modal properties of the NCB 
cover various characteristics of structural responses in time and frequency domains. For instance, 
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the peak accelerations of the data sets vary from 3.08 to 26.56 cm/sec2 in vertical direction (at Ch 
32 and Ch33) and from 0.41 to 4.16 cm/sec2 in transverse direction (at Ch 35) at mid-span, and 
from 0.39 to 2.99 cm/sec2 (at Ch15) in longitudinal direction.  
 

Figures 2 and 3 present typical time histories of accelerations having different features. In 
comparison with the time histories from data set #4 in Figure 2, those from data set #21 in Figure 
3 exhibit a nonstationary property of having time-varying mean square values. The appearance of 
such large peaks in a predominantly small amplitude signal is responsible for the nonstationarity 
of the signal and is linked to the high frequency contents in the signals. Figures 4(a) and (b), 
which displays normalized power spectral density estimates of the time histories in Figures 2 and 
3, respectively, indicate that structural responses of data set #4 are characterized mostly by low 
frequencies of less than 1 Hz while those of data set #21 are under significant influence of the 
frequencies between 0 and 1Hz as well as between 3 and 5Hz.  
 

In this study, since the analysis is focused on the identification of primary structural 
modes, usually in the frequency range of less than 1Hz, the measurements were filtered by using 
a Butterworth low-pass filter of the ninth order with a cutoff frequency of 1.1Hz.  

 
 

 
 

Figure 2. The time histories of acclerations in data set #4 
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Figure 3. The time histories of acclerations in data set #21 
 
 

  
 

(a) data set #4                         (b) data set #21            
 

Figure 4. Normalized power spectral density 
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In addition, the statistical properties of the filtered output observations were examined 
since the SSI technique presumes that a structural process be Gaussian process. Figure 5 presents 
the peak acceleration, kurtosis, and skewness of Chs 33 (vertical), 35(transverse), and 15 
(longitudinal). Based on the fact that for the Gaussian distribution, the kurtosis and skewness are 
supposed to be 3 and 0, respectively, vertical and transverse measurements generally show 
characteristics similar to those of a Gaussian distribution while longitudinal measurements 
appear to have large values of kurtosis. Since Ch 15 is placed on the deck, at a location where the 
deck is connected to the tower with the rocker links, it might induce noticeable outliers so to 
result in a large measure of kurtosis.  

 

 
(a) Peak Acceleration 

 

 
(b) Kurtosis 

 

 
(c) Skewness 

 
Figure5. Statistical properties of response measurements 



SMIP08 Seminar Proceedings 
 

69 

 
Data-Driven Stochastic Subspace Identification 

 
Mathematical Models 
 

Stochastic subspace identification technique was established based on stochastic state-
space and its innovation (Kalman filter) models. An nth-order linear time-invariant stochastic 
system with m output observations can be represented in the form of a stochastic discrete-time 
state-space model such as 
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where x(k)∈ℜn×1 and y(k)∈ℜm×1 are state and output vectors at time k, respectively, and A∈ℜn×n 

and C ∈ℜm×n are, respectively, system and observation matrices. The vectors w(k)∈ℜn×1 and v(k) 
∈ℜm×1 represent process and measurement noises, respectively, and are assumed to be zero-mean 
white Gaussian processes with covariance matrices: E[w(k)wT(j)]=Qδ(k-j), E[v(k)vT(j)]=Rδ(k-j), 
and E[w(k)vT(j)]=Sδ(k-j), where δ(k-j) is an identity matrix when k=j and zero when k≠j.  
 

When the state vector needs to be estimated with only output observations in the absence 
of input information, an optimal estimate of x(k), denoted by )(ˆ kx , might be the one that has the 
minimum variance with respect to x(k). Such an optimal state estimate, can be derived by 
applying a Kalman filter to Eq. (1) in the following forms [6] 
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where K∈ℜn×m indicates a Kalman filter gain matrix and e(k)∈ℜm×1 is the output residual vector 
having a property of being a zero-mean, white noise process. From Eq. (2), it can be readily 
observed that the Kalman state vector at the current time k is expressed by a linear combination 
of the past output vector sequence so to be defined on the past output space. 
 
Data-driven Stochastic Subspace Identification 
 

Considering that the Kalman state vector )(ˆ kx demands past i output observations (i.e. 
y(j), j=k-1, k-2,…, k-i) for its estimation, past and future output block matrices can be formed [7], 
respectively, as  
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where the index j is assumed to be infinite because, in the derivation of the SSI method, certain 
statistical properties (e.g. output covariance) need to be computed directly from Yp and Yf  under 
the assumption that the sequence of output observations in each row of both Yp and Yf  be an 
ergodic process. Then, the orthogonal projection of the row space of Yf onto the row space of Yp 
can be formulated in terms of the so-called observability matrix (Γi) and the Kalman state vector 
sequence ( iX̂ ) such as 
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Eq. (4) implies that the rank of Oi is equal to the dimension of the state vector, the column space 
of Oi equal to the column space of Γi, and the row space of Oi equal to the row space of iX̂ . 
Hence, the observability matrix and the Kalman state vector sequence can be identified by 
properly decomposing the projection matrix Oi.   
 

Once the observability matrix Γi is obtained through the decomposition process of Oi, 
the system matrix A and the observation matrix C can be easily extracted from Γi for the modal 
parameter identification. In addition, when the Kalman filter gain matrix K needs to be identified 
in order to have an innovation model of Eq.(2) completed, the matrices A and C can be obtained 
in a least-square sense from the following  
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where w′ and v′ are the Kalman filter residuals so to be able to estimate the Kalman filter gain 
from the covariances of w′ and v′. By using the identified matrices A, C, and K, output 
observations can be reconstructed from the reformulated equation of Eq.(2) as      
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where )(ˆ ky  represents reconstructed output sequence from the identified model.  
 

Subsequently, from the state and observation matrices, modal parameters can be 
obtained by considering the continuous time equivalent state matrix. When output observations 
are not contaminated by noise, the dimension of the state matrix can be clearly indicated by 
singular values of Oi in Eq. (4) and so the modal parameters for the system’s modes can be 
estimated just from a realized model. However, when output measurements are disturbed by 
noise, the projection matrix Oi has full rank and this makes it difficult to assign a certain order to 
an identified system model only based on the singular values distribution. Even though it is true 
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that having a higher order identified model helps in minimizing the error between the measured 
data and the reconstructed responses from the identified model, this error reduction could be due 
to noise modes that are now included to improve the fitting between the data sets. For this reason, 
in the application of the SSI technique using real measurements with noise, the extraction of 
modal parameters corresponding to structural modes is generally complemented by a 
Stabilization Diagram (SD). Such a diagram, which represents the identified frequencies as a 
function of the model’s order, highlights modes whose properties do not change significantly 
when varying the dimension of the state vector; such modes are considered as structural modes. 
In order to form the SD, an observability matrix is repeatedly formulated from Eq. (4) varying 
the dimension of the state, which provides different pairs of state and output matrices of 
corresponding orders. The properties of poles in a model of a certain order are compared with 
those of a two order larger model and stable and unstable modes are determined on the basis of 
the identified frequencies, damping ratios and mode shapes.  
 

Implementation of the SSI Technique 
 

The SSI technique complemented by the SD, for modal parameter estimation, involves 
three practical issues that need to be addresses in its implementation: 1) the order of realized 
state-space models necessary for a certain number of stable modes to appear in the SD could be 
extremely high; 2) even when a mode is considered stable between certain orders of realized 
models, estimates of the mode’s properties could vary depending on a selection of the model 
from which those are extracted; and 3) modal parameter estimates, especially damping ratios, are 
very sensitive to a choice of the number of block rows i in Eq. (3). In this section, we will 
discuss these issues and then propose an efficient way of implementing the SSI technique to 
accurately identify modal parameters from ambient vibration measurements.    
 

The problem related to the dimension of the state required to detect stable modes, can be 
easily controlled, to some extent, if preliminary information about the range of interest for 
natural frequencies of the structure under consideration is given. In the case of suspension 
bridges, it is known that vibrational modes contributing to their global response to ambient 
excitation are mainly confined in the frequency range from about 0 to 1 Hz and so higher 
frequency contents in measured signals can be considered as trivial information for the 
characterization of such bridges’ fundamental dynamical properties. Therefore, filtering out 
higher frequency contents and downsampling time histories (to reduce the Nyquist frequency) 
lead to a reduction of the order of a realized model to represent signal properties. In addition, 
applying a proper weighting matrix to the projection matrix in Eq. (3) also can help lowering the 
necessary dimension of the state vector. In fact, the SSI technique considers three different 
algorithms (the principal component, canonical variate, and unweighted principal component 
algorithms) which differ from the set of weighting matrices multiplied by the projection matrix. 
From a comparative study of the three algorithms in the analysis of two suspension bridges 
(Vincent Thomas Bridge and the New Carquinez Bridge), it was revealed that the principal 
component algorithm showed the best performance determining the smallest dimension model 
capable of properly representing the structure’s properties [8].  
 

After distinguishing structural modes from noise modes using the SD, one needs to 
extract modal parameters of structural modes (i.e. stable modes) from realized models: such 
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parameters can be computed either at once from one specific model which includes all the stable 
modes, or from different models for each individual mode. However, it is not always easy to find 
one specific model with all the stable modes. Indeed, modal parameter estimates, especially 
damping ratios, are significantly affected by the selection of a model’s order. 
 

Figure 6(a) presents a stabilization diagram (with i=100 in Eq. (3)) using the six time 
histories of vertical accelerations from data set #4 as well as the Power Spectral Density (PSD) 
plots of the measurements. Such a diagram was built by comparing frequencies, damping ratios,  
 

 
(a) Stabilization diagram 

 

  
(b) Variations in frequency and damping ratio estimates along model’s order  

 
Figure 6. Stabilization diagram and variation in modal parameter estimates 
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and modes shapes, for each model order, with the corresponding values of a two-order higher 
model: the frequencies are first compared and modes that have differences of 1% or less in the 
identified frequencies are retained. Then, the corresponding damping factors and mode shape 
vectors are compared with stability criteria of 3% difference for the damping and 1% for the 
mode shape (i.e. MAC>0.99), respectively. In Figure 6(a), a mode that satisfies all the criteria is 
represented with a ‘star’, a mode that only satisfies the frequency and mode shape criteria with a 
‘v’, and a mode that only satisfies the frequency and damping ratio criteria with a ‘d’. Even 
though the SD in Figure 6(a) clearly displays modes that are consistent with the frequency peaks 
of the PSD plots, there is no specific model that includes all the stable modes appearing in Figure 
6(a). Moreover, even when modal parameters of stable modes are estimated from different 
models, a proper selection of a specific model should be made for each mode since the selected 
model’s order can results in large variations of the identified parameters, especially the damping. 
To explain this, let’s consider Figure 6(a) that shows that the mode with the corresponding 
frequency of about 0.258 Hz is a structural mode. When modal parameters are calculated for 
such a mode, any model of order ranging between 6 and 56 will provide consistent values of 
frequency as well as mode shape vector, but not of the damping ratio. Figure 6(b) shows a 
significant variation in the identified damping ratios ranging from 0.41% to 0.66% as the order 
of the model decreases. Because damping ratio estimates are more affected by the model’s order 
than the frequency and mode shape, a less restrictive stability criterion is generally assigned to 
the damping ratio. In this way, the SD is capable of detecting stable modes that satisfy all the 
criteria; however, because of the loose criterion on the damping, there is an increased possibility 
of identifying less accurate damping ratios.  
 

For the selection of the order of a realized model for the estimation of the modal 
parameters, realized system models of different orders were divided into groups, for each mode, 
in each of which all the modal parameters, including the damping ratio, were consistently 
stabilized. Among the group covering the largest range of models’ orders, the model with the 
largest dimension of the state vector was selected for the parameter estimation. 
 

With regard to the selection of the number of block rows i, Pridham and Wilson [9] 
showed that significant variations occurred in the damping ratio estimates for different pairs of i 
and j in Eq. (3) in the ambient vibration analysis of the Vincent Thomas suspension bridge and 
also remarked that no definite rule to find an optimal pair of them could be derived from the 
analysis. For the optimal estimation of damping ratios, the same authors [10] proposed a method 
that consists in optimizing realized state-space models from the SSI technique through the 
expectation maximization algorithm. In order to select the best initial models, they found ten 
models that contain the maximum number of stable modes by taking into account possible 
combinations of i, j, and n (the system’s order).  
 

In this study, rather than obtaining clearly stable modes on the SD by changing the value 
of i, a relatively simple way of selecting i is proposed based on the error between measured data 
and reconstructed one from the identified structural modes. Note that, in the theoretical 
implementation of the SSI technique, the number of block columns j is assumed to be infinite. 
However, data sets analyzed in this study have record lengths of about 10 min., which cannot be 
considered long in the ambient vibration analysis, and, consequently, j is automatically 
determined by the value of i ( j=nd-2×i+1 where nd is the number of data points); hence, only an 
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effect of change in i was examined in this study.  
 

The error between measured data and reconstructed one from the identified structural 
modes can be calculated in the following way. Eq. (6) can be restated in modal coordinates such 
as  
 

)(ˆ)(ˆ)()(ˆ 1 kxCkxCky mm=ΨΨ= −                                         (7) 
 
where Ψ is the eigenvector matrix of the state matrix A (A= Ψ ΛΨ-1) and Cm and )(ˆ kxm  denote 
CΨ and )(ˆ1 kx−Ψ , respectively. This equation allows us to decompose the reconstructed signal 
from an identified triple of A, C, and K into each mode’s contribution: a contribution of the qth 
mode to the output observations can be computed as   
 

qmmq kxqCky )(ˆ)(:,)(ˆ =                                            (8) 
 
where qm kx )(ˆ represents the qth element of the transformed state vector )(ˆ kxm  while )(:, qCm  
indicates the qth column of the matrix mC . qky )(ˆ represents the contribution to the total 
response by the qth mode. From this formulation, the contribution from each specific mode to the 
overall response can be obtained from the model selected among the models in which this mode 
is stable. The contributions from different modes can be easily obtained from models of different 
order, depending on the stability of each mode. Then, the sum of the contribution signals 
extracted from different models yields the reconstruction of the measurements which is attributed 
to only structural modes and so the measurement error )(kε  can be calculated as 
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where ns denotes the number of stable modes and the number 2 is associated to the fact that 
modes come in complex conjugate pairs. Based on this error estimate, the optimal value of i and, 
consequently, modal parameter estimates that produce the smallest error can be obtained. 
Furthermore, a relatively large amount of error could also indicate that some of structural modes 
that are contained in the measurements fail to be identified in the analysis.  
 

To show this process, consider the analysis which used the same measurements (six 
vertical accelerations) from data set #4 as those for the SD in Figure 6. In order to examine the 
effect of a change in i on the estimated errors, the value of i varied from 20 to 200. The errors 
obtained at Channels 33, 28, and 6 are presented in Figure 7 in terms of the relative Root Mean 
Square (RMS) values as a function of i. Such a figure implies that values of i smaller than 50 
cannot be used for a successful implementation of the SSI technique. It also points out that 
having a larger value of i does not guarantee a better result. In fact, the errors between 140 and 
200 of i are shown to be larger than those between 70 and 130 in Figure 7. In the case of this 
analysis for data set #4, the optimal value of i was selected to be 80 which produced the smallest 
error on the average of the relative RMS errors at the six channels. Figure 8 exhibits one of the 
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reconstructed signals with i=80.The reconstructed signal shows a good match with the measured 
one with the error of 11.97% (0.29 cm/sec2). It might be worth noting that the optimal is for the 
analyses of the other data sets also turned out to be between 70 and 130.  
 
 

 
 

Figure 7. The effect of a change in the number of block rows, i, on relative RMS errors 
 
 

 
Figure 8. Measured and reconstructed accelerations (at Ch 33) with i=80 
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Identified Modal Parameters 
 

In this study, structural modes of the Carquinez suspension bridge were classified into 
four groups: vertical, torsional , transverse, and torsion/transverse (hybrid) modes. Modal 
properties for vertical and torsional modes were estimated from the analysis using the six time 
histories of vertical accelerations while those for transverse modes were computed from the 
analysis using the three time histories of transverse accelerations. For modal parameter estimates 
of torsion/transverse modes, on the other hand, the six vertical and three transverse acceleration 
measurements were considered together. Although vertical, torsional, and transverse modes 
could also be identified when all the measurements in different directions were considered at the 
same time, it was difficult to obtain, from all the data sets, results as accurate as those obtained 
when measurements in each direction were separately analyzed. Hence, vertical, torsional, and 
transverse modes were analyzed using acceleration time histories in the corresponding directions 
while hybrid modes were identified using all the measurement together making allowances for 
uncertainty.  
 

In order to classify the identified modes into such groups, it is a priority to characterize 
such modes’ shapes. The identified mode shape vectors are complex and so, at each sensor 
location, they are characterized by an amplitude and by a phase, which is different from location 
to location. Hence, because of the phase variation, it is very difficult to plot schematic 
representation of each mode shape. In addition, since the mode shape vectors are extended to the 
entire structure by connecting the identified value at the sensors locations by straight lines, the 
use of the small number of sensors located only on half of the deck made it hard to visualize 
whether a particular mode is symmetric or anti-symmetric; hence, previous experimental [11] as 
well as numerical [12] studies on the NCB were cited to help with such a distinction.  
 

With regard to the characterization of hybrid modes, data set #4 was first analyzed, as a 
representative data set using all the ten measurements in the three directions (vertical, transverse, 
and longitudinal). Since, among those available, data set #4 was recorded when the NCB 
experienced the strongest wind, a relatively large number of structural modes including hybrid 
modes was well excited to be clearly identified. Based on these mode shapes identified from data 
set #4, it was possible to distinguish torsional and transverse modes from hybrid 
torsional/transverse modes when measurements in the vertical and transverse directions were 
separately used in the analysis. Furthermore, considering the measurement in the longitudinal 
direction also allowed us to represent a hybrid longitudinal/vertical mode. In fact, there was a 
specific mode which displayed a longitudinal displacement while exhibiting a symmetric shape 
in the vertical direction. Such a mode was classified neither symmetric nor anti-symmetric in the 
study by Conte et al. [11] since, in the identification, the authors utilized only the time histories 
of the vertical response on the main deck.  
 

Tables 2 and 3 present the natural frequencies and damping ratios, identified from the 17 
data sets, for vertical modes and for torsional, transverse, and torsion/transverse modes, 
respectively, with those presented in the studies by Conte et al. [11] and Scanlan and Jones [12]. 
The identified mode shapes that correspond to those in Tables 2 and 3 are displayed Figures 9 
and 10, respectively. Note that not all the modes were consistently identified from all the data 
sets because the only modes that could be identified were those that were contained in the 
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measurements and not all of them were equally excited. The identified frequencies in this study 
show a good agreement with those from the other studies, except one corresponding to the first 
anti-symmetric mode (V1 in Table 2). While the mode occurred with the frequency of 0.15 Hz in 
the numerical study [12], higher frequencies were identified for such mode in the experimental 
studies including the current study: 0.201Hz in the study by Conte et al. [11] and between 0.179 
and 0.197 Hz in this study. With regard to damping ratios, the damping ratios identified in this 
study appear to be, in general, larger than those in the study by Conte et al. [11]. One of the 
reasons for such a discrepancy might be in the difference in the analyzed data: 20 min long 
ambient vibration data was used in Conte et al. [11], which is almost twice as long as the ones 
used in this study.  
 
Variability of Modal Parameters 
 

Modal parameters represent a structure’s dynamic properties and could be used to detect 
structural damage. In fact, the appearance of damage could be reflected by a change in such 
parameters. However, since the estimates of modal parameters can also vary because of different 
environmental and operational conditions (such as temperature, wind, humidity, and traffic flow), 
it is important, for a given structure, to understand the variability of such parameters with the 
environmental factors so to distinguish their effects from those induced by structural damage.  
 

Recently, various studies have been performed about effects of different environmental 
and operational conditions on the variability of modal parameters, especially fundamental natural 
frequencies of long-span bridges such as suspension and cable stayed bridges. With regard to 
temperature effect, Sun et al. [13],with continuously monitored data for 8 months from Donghai 
cable-stayed bridge in China, and Kang et al. [14], with continuously monitored data for 5 years 
from Seohae cable-stayed bridge in Korea, showed that fundamental frequencies of such long 
span bridges decreased when the temperature increased. Using 288 data sets for weekdays and 
123 for weekends recorded from Vincent Thomas suspension bridge in the United States, Yun et 
al. [15] presented differences in the identified frequencies and damping ratios between weekdays 
and weekends. Also, Abe et al. [16] pointed out, from the analysis using continuously measured 
data over 100 hours from Hakucho suspension bridge in Japan, that the identified natural 
frequencies were reduced as wind velocity became higher while the identified damping ratios 
started to increase when wind velocity reached at a certain level.   
 

In this study, from the investigation of effects of wind speed on the identified 
frequencies and damping ratios, it was observed that when wind speed increased, the identified 
natural frequencies for certain modes decreased while the identified damping ratios increased, as 
presented in Abe et al. [16]. Also, in comparing the results from the data sets recorded at 
different times on the same days (data sets #9 to 13, data sets #14 to 17, and data sets #18 to 21), 
variations in the identified frequencies and damping ratios during a day were found. Nevertheless, 
because of the limited number of the data sets used in this study, it was difficult to clearly define 
such effects on the identified modal parameters. Additional data sets continuously or periodically 
recorded would help to investigate the variability of such modal parameters, reducing 
uncertainties in the estimates.    
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Table 2. Identified natural frequencies and damping ratios for vertical (V) modes 
 

Mode 
Frequencies (Hz)  Damping ratios [%]  Description 

This study [1]* [2]†  This study [1]*   
V1 0.179 - 0.197 0.201 0.15  2.25 - 6.97 1.36  Anti-symmetric 
V2 0.192 - 0.196 0.193 0.19  0.26 - 1.49 0.21  Symmetric 
V3 0.257 - 0.259 0.258 0.25  0.04 - 0.96 0.23  Symmetric 
V4 0.347 - 0.352 0.350 0.36  0.07 - 0.57 0.20  Anti-symmetric 
V5 0.402 - 0.413 0.414 0.39  0.47 - 2.17 0.13  Anti-symmetric: north-span 
V6 0.476 - 0.485 0.483 0.48  0.30 - 0.49 0.21  Symmetric 
V7 0.555 - 0.563 0.561 0.54  0.35 - 1.05 0.15  Symmetric/longitudinal 
V8 0.638 - 0.648  0.645 0.68  0.15 - 0.55 0.11  Anti-symmetric 
V9 0.789 - 0.801 0.799 -  0.13 - 0.53 0.23  Symmetric 

*: the study by Conte et al. [11]; and †: the study by Scanlan and Jones [12] 
 
 

 
 

Figure 9. Identified mode shapes for vertical (V) modes 
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Table 3. Identified natural frequencies and damping ratios for torsional (T), transverse (Tr), and 
torsion/transverse (TTr) modes 

 

Mode 
Frequencies [Hz]  Damping ratios [%]  

This study [1]* [2]†  This study [1]*  
T1 0.458 - 0.469 0.471 0.47  0.05 - 1.18 0.17  
T2 0.735 - 0.744 0.741 0.75  0.03 - 0.58 0.34  
T3 1.022 - 1.038 - 1.03  0.10 - 0.53 -  
Tr1 0.162 - 0.177 - 0.17  0.36 - 1.39 -  
Tr2 0.365 - 0.375 - 0.31  0.16 - 1.06 -  
Tr3 0.520 - 0.538 - -  0.23 - 0.58 -  

TTr1 0.475 - 0.490 - -  0.05 - 0.24 -  
TTr2 0.500 - 0.510 - 0.58  0.23 - 0.41 -  
TTr3 0.940 - 0.978 - -  0.55 - 0.89 -  

*: the study by Conte et al. [11]; and †: the study by Scanlan and Jones [12] 
 
 

 
 

Figure 10. Identified mode shapes for torsional (T), transverse (Tr), and torsion/transverse (TTr) 
modes 
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Conclusions 
 

The characterization of dynamic properties of the New Carquinez suspension bridge has 
been performed by identifying its natural frequencies, damping ratios, and mode shapes, using 17 
ambient vibration data sets recorded through the wind-motion monitoring system. By presenting 
certain bounds of modal parameter estimates for each structural mode identified from the 17 data 
sets, baseline modal parameters of the bridge were provided for the evaluation of its dynamical 
behavior in operating condition.  
 

To this end, the data-driven SSI technique was implemented for modal parameters 
identification, complemented by a stabilization diagram. In the implementation of such technique, 
three practical issues were first investigated: 1) the dimension of the state needed for a certain 
number of stable modes to appear in SD; 2) the selection of the order of a realized state-space 
model to extract stable modes’ modal parameters; and 3) the selection of the number of block 
rows i for the projection matrix. After that, the modal parameters for structural modes were 
identified, for each data set, by examining the estimation error between measured data and 
reconstructed one from the identified modes.  
 

The identified structural modes of the NCB were represented, in this study, by four 
groups of modes (vertical, torsional, transverse, and hybrid torsion/transverse modes). Using the 
acceleration measurements in three orthogonal directions together in the analysis made it 
possible to characterize the hybrid modes’ shapes as well. The frequencies and damping ratios 
identified in this study showed a good agreement with those presented by the other studies on 
this bridge. Even though it was observed that the identified frequencies and damping ratios were 
affected, in a certain way, by the change of wind speed, it was difficult to clearly define such 
effects because of the limited number of data sets used in this study. For a more in-depth 
investigation of the variability of damping ratios as well as natural frequencies, additional data 
sets are needed.  
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