ANALYSIS OF RECORDS FROM FOUR BASE-ISOLATED BUILDINGS DURING THE 1992 LANDERS EARTHQUAKE

M. J. Huang1, P. K. Malhotra1 and A. F. Shaked2

Abstract

Strong-motion records were obtained from four base-isolated buildings during the 1992 Landers earthquake. The buildings are 2, 5, 8, and 9 stories in height. The distances from these buildings to the Landers earthquake range from 106 to 163 km. The peak accelerations at the foundation level of the buildings were between 0.04 g and 0.11 g. The acceleration responses of the buildings were as high as 0.15 g at the roof.

For each building, the drifts between the roof and the base of the superstructure and the relative displacements across the isolators were derived from the Landers earthquake records. The results show that the 2-story building had negligible drift and its structure above the isolator responded almost like a rigid body during the Landers earthquake. On the other hand, the superstructure drifts for the other three buildings were not negligible. The deformations of the isolators for these four buildings range from 0.8 to 1.6 cm, which are much smaller than the design values (25 to 40 cm), and the fundamental periods are slightly longer than the fixed-base periods.

Introduction

Four instrumented base-isolated buildings in California are part of the strong motion network of the California Strong Motion Instrumentation Program (CSMIP) in the Division of Mines and Geology of the California Department of Conservation. All four buildings experienced low levels of ground shaking during the magnitude 7.5 Landers earthquake of June 28, 1992. The distances of the buildings to the Landers epicenter range from 106 to 163 km. The Landers strong-motion records are analyzed and presented in this paper. A comparison is made between the responses of these four

1California Strong Motion Instrumentation Program, Division of Mines and Geology, California Department of Conservation, 801 K Street, MS 13-35, Sacramento, CA 95814

117
base-isolated buildings to the Landers earthquake. The responses compared include the periods of vibration, the displacements across the isolator bearings, and the drifts of the superstructures.

Description and Instrumentation of Buildings

Rancho Cucamonga - 4-story Law & Justice Building

The San Bernardino County Law and Justice building in Rancho Cucamonga is a 4-story structure and is the first building constructed using a base-isolation system in the United States. The building is 414 by 110 feet in plan and 74 feet. The lateral force-resisting system of the superstructure consists of 4-story braced steel frames in the upper four stories and concrete shear walls in the basement. The structure is isolated by high-damping rubber bearings placed on the foundation under each of the 98 columns. More detailed information on the base isolation system used in this building is given in Tarics et al.(1984). The building was instrumented by CSMP in 1985 with 16 accelerometers in the building and three at a reference free-field site. The locations of the accelerometers are shown schematically in Figure 1.

Los Angeles - 2-story Fire Command and Control Building

The Los Angeles County Fire Department's Fire Command and Control Building is a base-isolated 2-story structure which has a plan dimension of 188 by 84 feet. The lateral force-resisting system consists of perimeter braced steel frames supported by high-damping rubber bearings under all 32 columns. The isolators have a restraint system to control the uplift and the horizontal displacement across the bearings. Detailed information on the building is given in Bachman et al.(1990) and Anderson(1990). The building was instrumented by CSMP in 1990 with 16 sensors in the building and three at a reference free-field site. The locations of the sensors are shown schematically in Figure 3.

Los Angeles - 7-story University Hospital

The USC University Hospital is a 7-story steel braced frame building with a 1-story basement. The floor plan is quite irregular and has two wings connected by a narrow section. The seismic isolation system consists of 68 lead rubber bearings and 81 high-damping rubber bearings. Most of the lead rubber isolators are located under the perimeter frame. Detailed information on the building is given in Asher et al.(1990). The building was instrumented with assistance from CSMP in 1991. The locations of the 24 accelerometers in the building and three at a reference free-field site are shown in Figure 5.

Seal Beach - 6-story Office Building

The Seal Beach Office Building is a 6-story non-ductile concrete frame structure. The building was built in 1967 and was seismically strengthened in 1990 by installing lead rubber bearings at the ground floor level and adding new exterior frames with supporting foundation. The 26 interior and four corner columns have one isolator per column. The remaining 24 exterior columns have two isolators each. Detailed information on the building is given in Hart et al.(1990) and Sweminson et al.(1990). The building was
instrumented by CSMIP before and after the seismic strengthening was completed in 1991. The locations of the 22 accelerometers in the building and 9 outside the building are shown in Figure 7.

Recorded Strong-Motion Data

Accelerations

The acceleration records obtained from four base-isolated buildings during the 1992 Landers earthquake are included in the CSMIP data report by Shakal et al. (1992). Portions of the acceleration records from selected sensors in the transverse direction are shown in Figure 2 for the Rancho Cucamonga Building and Figure 4 for the Fire Command Building. Similarly, Figure 6 shows records for the University Hospital and Figure 8 for the Seal Beach Office Building.

Comparison of the acceleration across the isolators for each building shows that relatively high frequency horizontal motions were filtered out by the isolators. Significant amplifications of the motions from the base of the superstructure to the roof can be seen in all except in the Fire Command Building. As shown in Figure 4, the motions at the roof, the 2nd floor level and the base of the Fire Command Building are almost identical, which indicates that the building superstructure responded like a rigid body above the isolators.

Differencing the records from a pair of parallel horizontal sensors on the same floor allows estimation of the torsional motion at the floor. The results show that significant torsional motions occurred at the Rancho Cucamonga Building. On the other hand, rigid body rotation of the entire superstructure above the isolators, which does not cause torsional deformation of the superstructure, is significant for the Fire Command Building.

Relative Displacements

To show the drift of the superstructure, the computed displacements of the upper floors relative to the base (above the isolators) are plotted in Figures 9 through 12. The deformation of the isolators for each building is shown by the displacement of the base relative to the foundation, also plotted in these figures. The deformation of the isolators ranges from 0.8 to 1.6 cm, which is much smaller than the design value that ranges from 25 to 40 cm. As shown in Figure 10, the superstructure of the Fire Command Building had negligible drift and most deformation occurred at the isolators. In other words, the superstructure of the Fire Command Building responded as a rigid body although the isolator deformations were much smaller than the design values.

The hysteretic response of the isolators at the Fire Command Building can be investigated from the lateral force versus relative displacement diagram. Since the building responded as a rigid body, the lateral force (or the base shear) experienced by the isolator is proportional to the acceleration recorded by Sensor 9 directly above the isolator. The equivalent viscous damping ratio estimated from the hysteresis loop corresponding to large motion in the record is about 10%.
Periods of the fundamental mode are estimated from the relative displacements in Figures 9 through 12 and are compared with the periods for the fixed-base structure (without isolators). The periods of all four buildings during the Landers earthquake are only slightly larger than the fixed-base periods. This is expected since the deformations of the isolators were much smaller than the design values.

Conclusions

The records obtained at four base-isolated buildings during the 1992 Landers earthquake provide valuable information on the response of four different base-isolated structural systems to low-level shaking. Although the motions were of low amplitude, the 2-story Fire Command and Control Building responded as the designer expected for a stronger shaking. The design assumptions and numerical modeling for these buildings can be verified by using and analyzing these records in greater detail.

References

Fig. 1. Locations of accelerometers in San Bernardino County’s Rancho Cucamonga Law and Justice Building.

Fig. 2. Acceleration records in the transverse direction obtained at the Rancho Cucamonga Law & Justice Bldg. during the 1992 Landers earthquake.
Fig. 3. Locations of accelerometers in the Los Angeles County Fire Control and Command Building.

Fig. 4. Acceleration records in the transverse direction obtained at the Los Angeles County Fire Command Bldg. Airing the 1992 Landers earthquake.
Fig. 5. Locations of accelerometers in the Los Angeles University Hospital Building.

- Roof: MAX. ACCEL. = 0.067 g
- 6th Floor: 0.033 g
- 4th Floor: 0.027 g
- Lower Level (above isolators): 0.031 g
- Foundation (below isolators): 0.027 g

Fig. 6. Acceleration records in the transverse direction obtained at the Los Angeles University Hospital Bldg. during the 1992 Landers earthquake.
Fig. 7. Locations of accelerometers in the Seal Beach Office Building.

Fig. 8. Acceleration records in the transverse direction obtained at the Seal Beach Office Bldg. during the 1992 Landers earthquake.
Fig. 9. Relative displacements in the transverse direction at the Rancho Cucamonga Law & Justice Bldg. during the 1992 Landers earthquake.

Fig. 10. Relative displacements in the transverse direction at the Los Angeles County Fire Command Bldg. during the 1992 Landers earthquake.
Fig. 11. Relative displacements in the transverse direction at the Los Angeles University Hospital Bldg. during the 1992 Landers earthquake.

Fig. 12. Relative displacements in the transverse direction at the Seal Beach Office Bldg. during the 1992 Landers earthquake.
FIFTH U.S. NATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING

July 10 - 14, 1994
Chicago, Illinois

* EARTHQUAKE AWARENESS AND MITIGATION ACROSS THE NATION

PROCEEDINGS

VOLUME I

Earthquake Engineering Research Institute