

CALIFORNIA OIL & GAS FIELDS

NORTHERN CALIFORNIA

Third Edition 1981 Supplement 1978 Second Edition 1973 First Edition 1960

Sacramento

STATE OF CALIFORNIA EDMUND G. BROWN JR., Governor

RESOURCES AGENCY HUEY D. JOHNSON, Secretary

DEPARTMENT OF CONSERVATION
JAN DENTON, Director

DIVISION OF OIL AND GAS
M. G. MEFFERD, State Oil and Gas Supervisor

INTRODUCTION

This publication is a revised edition of the Northern California section of California Oil and Gas Fields, Volume I, printed in 1973 (see map on page v). Geologic and statistical data for all oil and gas fields in Northern California (current to 1980) are included, as well as regional cross sections and index maps.

All fields are arranged alphabetically; however, field names preceded by compass directions, such as South Afton, will be found listed as Afton, South, etc.

MAP SHEETS

Definitions

Typical log - An electric log that best typifies the electric log characteristics of wells in a particular oil or gas field.

Composite log - An electric log made by combining sections of electric logs from two or more wells to depict the general log characteristics of a particular oil or gas field.

NOTE: Some typical or composite logs are from wells outside the administrative field boundaries; therefore, the total log depth may be greater than the deepest well in the field. In addition, some long log sections not critical for correlation purposes have been removed. The sawtooth symbol (\(\sigma\)) is used to indicate that a section of a log has been removed.

Productive Area

The productive area of a field or area can be determined from (1) the well symbols, or (2) shading on the contour map. (Shading is also used on the cross sections to indicate productive zones and the approximate limits of production.) The productive area is the *maximum* productive area as of January 1, 1981. Productive areas shown on the index maps are generalized.

Contour Map Depth Datum

The depth datum used for the contour maps is sea level.

Map Scale

Generally, map scales can be inferred from the public land survey data on the contour maps. When this is not possible, a map scale is shown. Cross sections that are depicted schematically are not necessarily drawn to scale.

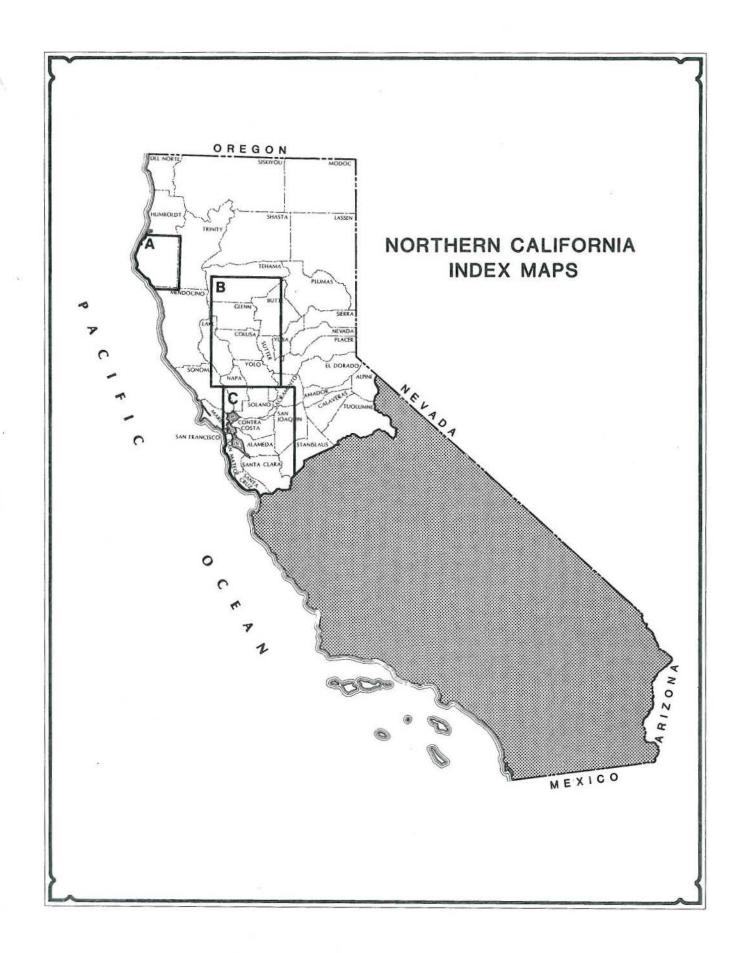
DATA SHEETS

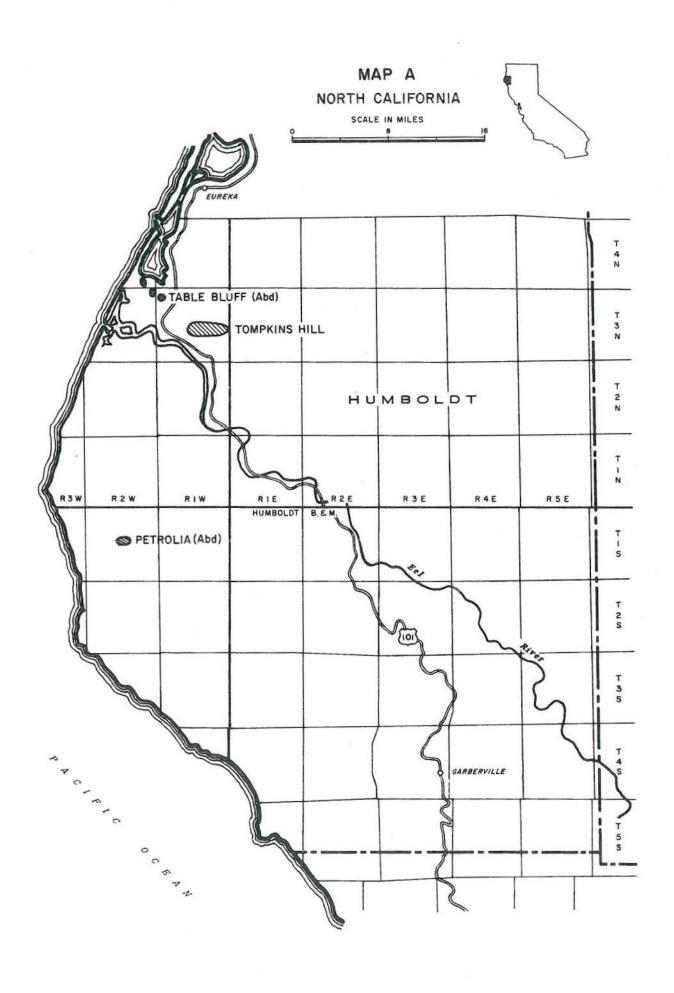
Discovery well and deepest well data - The discovery well listed is the discovery well for the field or area. The total depth for the deepest well is the drilled depth. If the well is directional, the true vertical depth is given under the remarks section.

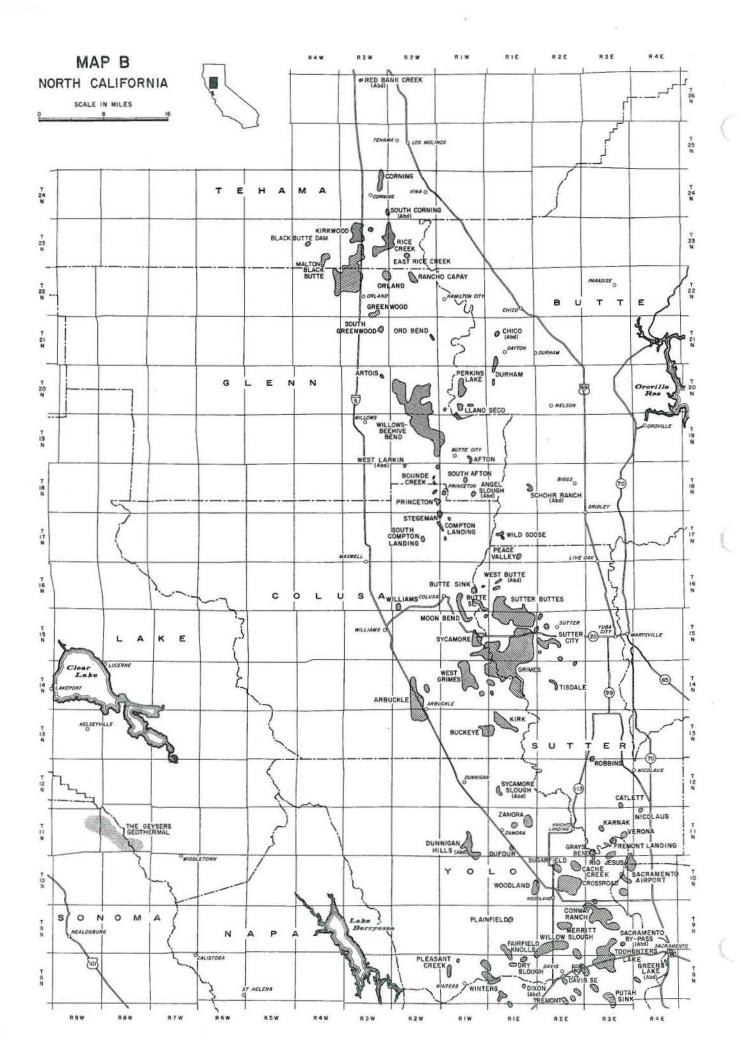
Pool or zone data - Pools are listed in stratigraphic sequence, from left to right. Properties that are not available on a pool basis are listed under the field or area column.

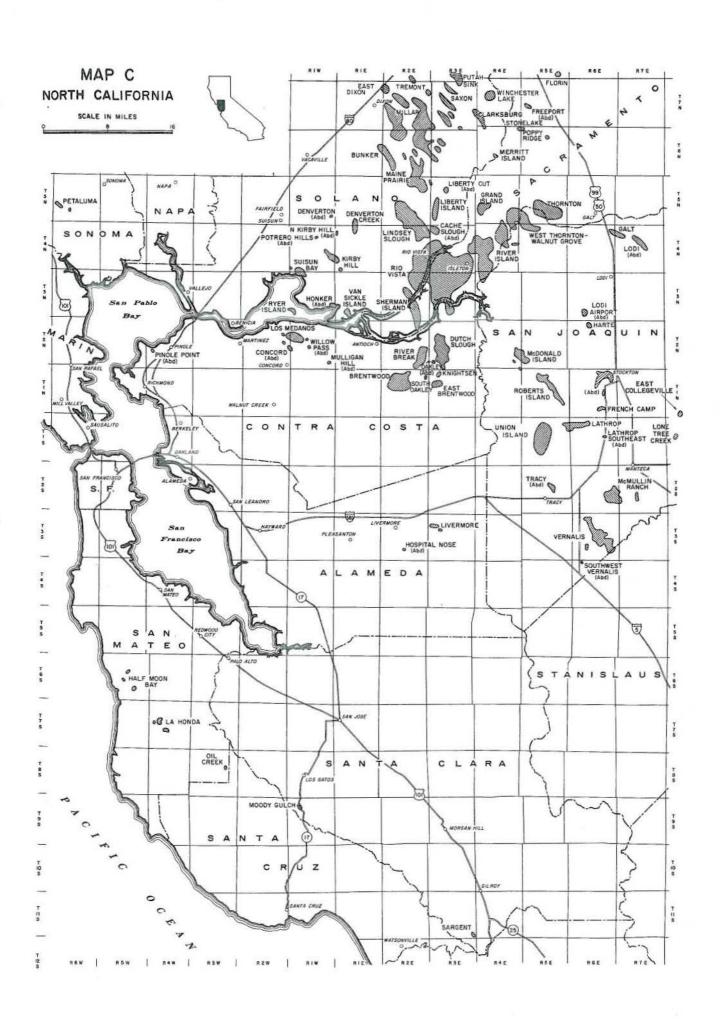
Reservoir Rock and Fluid Properties - Values calculated from logs are footnoted as such. Values without footnotes are derived from core or sidewall sample data. Ranges are given where applicable. Dashes are used where data are not available to the Division of Oil and Gas.

FOOTNOTES: *

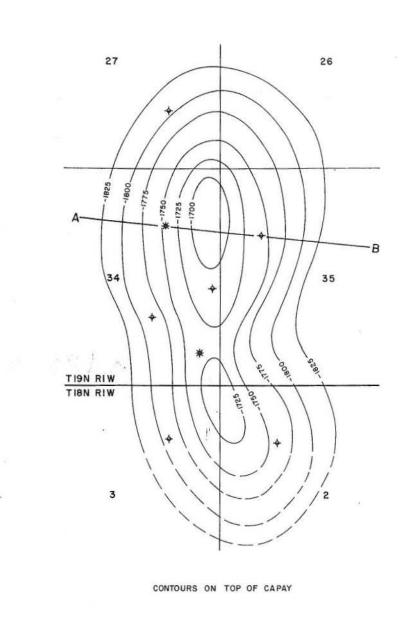

- Average value.
- ** Estimated value (based on best available data).
- ***Representative values for area, formation, and depth.
- † Log derived value from geophysical logs such as electric, neutron-density, or sonic.
- †† Calculated value.

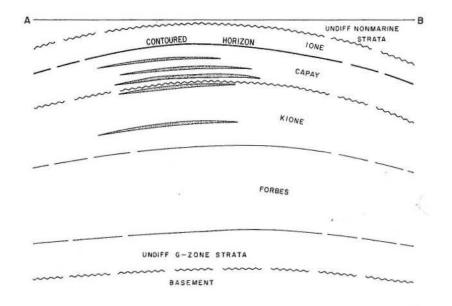

MAP SHEET AND CROSS SECTION LEGEND

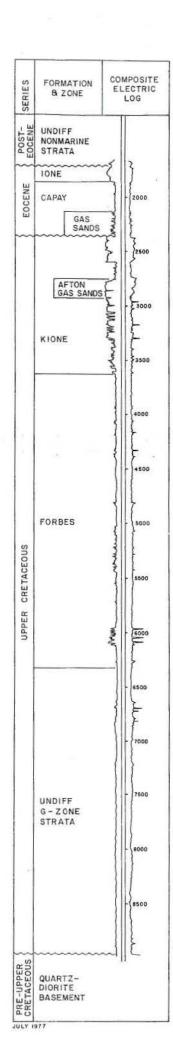

9	Location	-	Fault
\(\rightarrow	Drilling - idle		Possible fault
\rightarrow	Abandoned - dry hole		
•	Completed - oil		Fault dip direction
•	Idle - oil		V-10-11-00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
*	Abandoned – oil		Fault movement (+=up, -= down)
*	Completed – gas		
*	Idle – gas		Fault movement
*	Abandoned – gas		
ø	Water disposal	•	Fault movement (@=toward observer,
9	Oil well converted to water disposal	\oplus	⊕=away from observer)
┿ ×	Intersection of borehole and contoured horizon	~~~~	Unconformity
	Productive area	~~~	Section removed from an electric log
_	Contour line (good control)		
	Contour line (poor control)		Oil zones in cross sections
	Axis of anticline	*********	
-	Axis of syncline		Gas zones in cross sections


ABBREVIATIONS

B&M	Base and Meridian	Holo.	Holocene
MD	Mount Diablo	Pleis.	Pleistocene
SB	San Bernardino	Plio.	Pliocene
Н	Humboldt	Mio.	Miocene
psig	pounds per square inch (gauge)	Olig.	Oligocene
bbl	barrel (42 U.S. gallons)	Eo.	Eocene
Mcf	1000 cubic feet	Paleoc.	Paleocene
btu	British thermal unit	Cret.	Cretaceous
gr/gal	grains per gallon	Jur.	Jurassic
cem.	cemented	Eore	early
N.A.	not available	M or m	middle
	not applicable	Lorl	late
abd.	abandoned	undiff.	undifferentiated







AFTON GAS FIELD

COUNTY: GLENN

AFTON GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R. B	.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Afton Community 1"	Richfield Oil Corp. "Afton Community 1" 1	34 19N	IW	MD	5,247	Afton	
Deepest well	ARCO Oil and Gas Co. "Roco-Afton Community" 66-34	Atlantic Richfield Co. "ROCO-Afton Community" 66-34	34 19N	1W	MD	8,992		basement pre-Lt.Cretaceou

POOL DATA

ITEM	CAPAY	AFTON		FIELD OR AREA DATA
Discovery date	485 640 11/64 800 105 380 Capay Eocene 1,830 30	5,700 550 5/8 1,225 116 750 Kione Late Cretaceous 2,650 25		
Maximum productive area (acres)				160

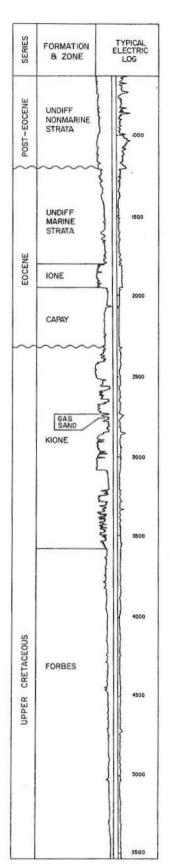
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	25*	30*	
Swi (%)	35* 65*	30* 70*	
		RESERVOIR FILLID PROPERTIES	

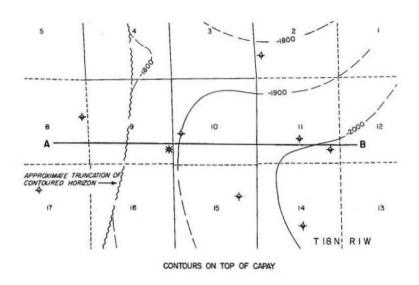
Oil: Oil gravity ("API)				-	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.656†† 770	.656†† 770			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	26,400	26,400			

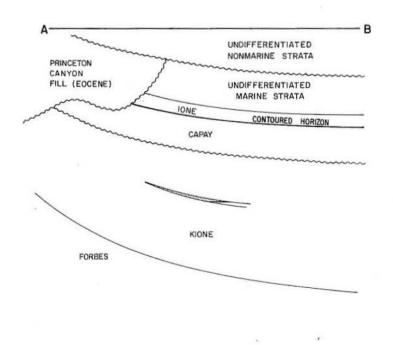
ENHANCED RECOVERY PROJECTS

			8	
Peak oil production (bbl) Year Peak gas production, net (Mcf)				821,134 1949

Base of	fresh	water	(ft.):	1.300


Enhanced recovery projects....


Date started


Date discontinued

Remarks:

SOUTH AFTON GAS FIELD

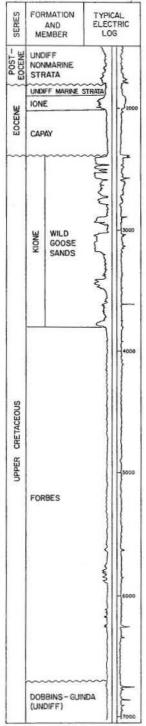
JANUARY 1978

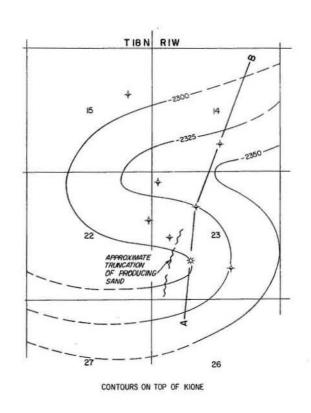
COUNTY: GLENN

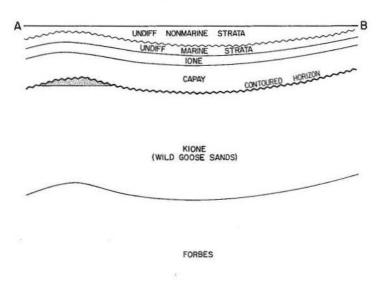
AFTON, SOUTH, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Cecil" 1-9	Same as present	9 18N 1W	MD	3,740	Kione	Forbes Late Cretaceous
Deepest well	Same as above		ii	"	11		u u


Deepest weil ounc as above				1 "	357)	382
4-	30	POOL D	ATA			
ITEM	KIONE				A	FIELD OR REA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir	November 1975 9,600 1,131					- 33
pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	1,200 110 740 Kione					
Geologic age	Late Cretaceous 2,735 15	C.				
VII VEST 77 STOP R.C. CONTRANT VEST STOP REAL PROPERTY OF STOP ASSESSMENT OF STOP ASSESSM		 RESERVOIR ROCK	PROPERTIES			
Porosity (%)	30* 30* 70*					
		 RESERVOIR FLUID	PROPERTIES	A Section 1		738
Oil: Oil gravity ('API) Sulfur content (% by wt.)	.652 ^{††}					
Water Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)						
		 ENHANCED RECOVE	RY PROJECTS		 	
Enhanced recovery projects Date started Date discontinued						3€)
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	48,846 1979					


Base of fresh water (ft.): 1,300


Remarks: Commercial gas deliveries began in 1979.

ANGEL SLOUGH GAS FIELD

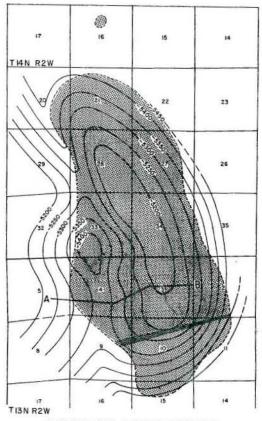
(Abandoned)

MAY 1978

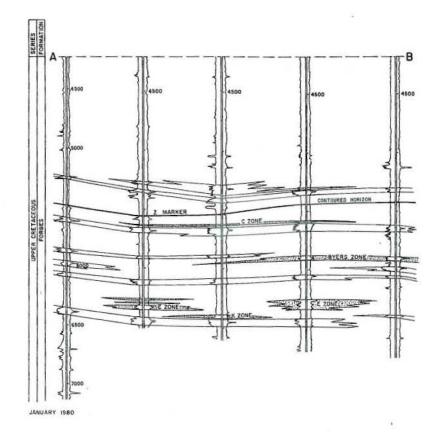
COUNTY: GLENN

ANGEL SLOUGH GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Angel Slough Operating Unit"	Humble Oil & Refining Co. "John R. Hulen et ux" 1	23 18N 1W	MD	7,019	Wild Goose	Guinda Late Cretaceous
Deepest well	Same as above	#		39)	**	10.	"

_			POOL DATA	21		
ITEM	WILD GOOSE				AREA D	OR ATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir	June 1960 2,350 800 22/64					
pressure (psi)	109 709 Kione Late Cretaceous					
Average depth (ft.)	2,383 15 160		*			
		RESER	VOIR ROCK PROPERTIES			
Porosity (%)	30* 25* 75*					
		RESER	VOIR FLUID PROPERTIES			
Oil: Oil gravity ('API) Sulfur content (% by wt.)	784					
		ENHAN	CED RECOVERY PROJECTS			
Enhanced recovery projects						
					d	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	133,998 1964					


Base of fresh water (ft.): 1,050

Remarks: Commercial gas deliveries began in March 1962. The field was abandoned in July 1965. One well was completed and cumulative gas production was 399,600 Mcf.

ARBUCKLE GAS FIELD

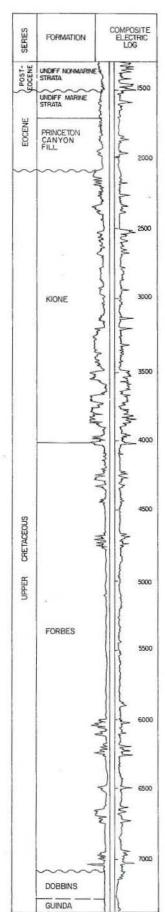
CONTOURS ON Z ELECTRIC LOG MARKER

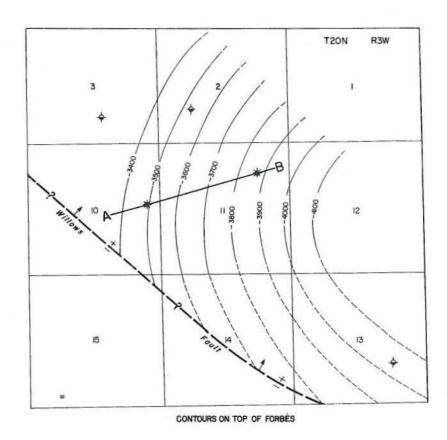
COUNTY: COLUSA

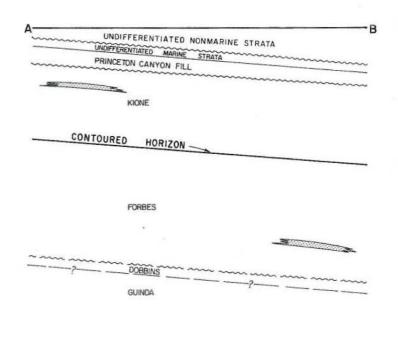
ARBUCKLE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. 8	R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Arbuckle Unit C" 1	Western Gulf Oil Co, "Arbuckle Unit C" 1	3 13N	2W	MD	6,150	Forbes	
Deepest well	Occidental Petroleum Corp. "Arbuckle Section 4 Unit" 1	Same as present	4 13N	2W	MD	12,007		Venado Late Cretaceous


			POOL DATA		
ITEM	FORBES				FIELD OR AREA DATA
Discovery date	7,780 1,245 1/2 2,200-4,800 100-133 800-1,400 Forbes Late Cretaceous 4,430-7,150 5-90 5,495				
		RESER	VOIR ROCK PROPERTI	ES	
Porosity (%)	23† 55† 45†				
		RESER	VOIR FLUID PROPERTI	ES	40.
Oil: Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/ST8) Initial oil FVF (R8/ST8). Bubble point press. (psia) Viscosity (cp) @ "F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77"F)	.565 980-1,010 18,380 18,760 .41				
	7	ENHAN	CED RECOVERY PROJE	стѕ	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	8,622,237 1961				,


Base of fresh water (ft.): 1,250


Remarks: Commercial gas deliveries began in March 1958. Most of the gas sand stringers have been given local names by operators.

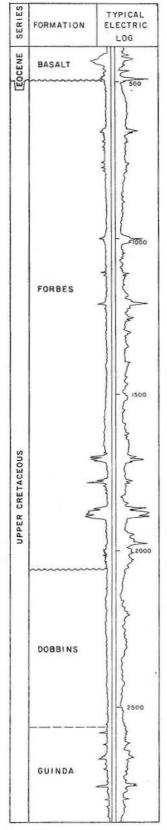
Selected References: Huey, W. F., 1957, Arbuckle Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 2.

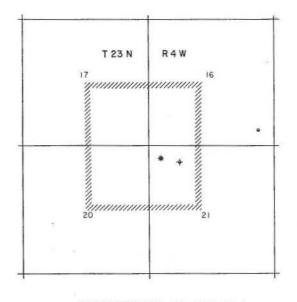
ARTOIS GAS FIELD

COUNTY: GLENN

ARTOIS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	McCulloch Oil Corp. "Sunray-McCulloch- Expl. Von Bargen" 1	Sunray Mid-Continent Oil Co. "Sunray- McCulloch-Coast Expl. Von Bargen" 1	11 20N 3W	MD	7,447	Forbes	Guinda Late Cretaceous
Deepest well	Same as above	"	**	"	п	.0	11


			POOL DATA	
ITEM	UNNAMED	UNNAMED		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.)	May 1977 2,800 1,050 110 580 Kione Late Cretaceous 2,520 20	November 1959 1,275 1,500 3/8 3,870 113 1,770 Forbes Late Cretaceous 5,885 20		
Average net thickness (ft.)	20	80		TAIL TAIL
		RES	RVOIR ROCK PROPERTIES	
Porosity (%)	28* 35* 65*	25* 40* 60*		
		RES	RVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.560 1,005	.564 1,000		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		17,120		
2		ENHA	NCED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year				30,494 1970

Base of fresh water (ft.): 2,100

Remarks: Commercial gas deliveries began in December 1966.

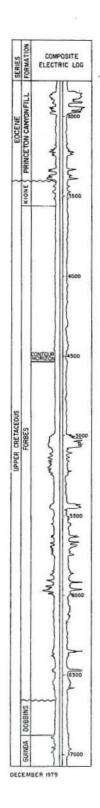
BLACK BUTTE DAM GAS FIELD

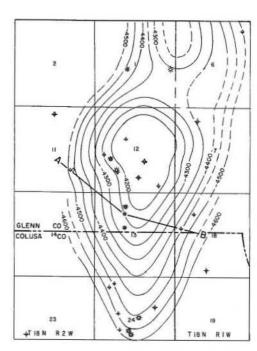
SUBSURFACE DATA NOT AVAILABLE

COUNTY: TEHAMA

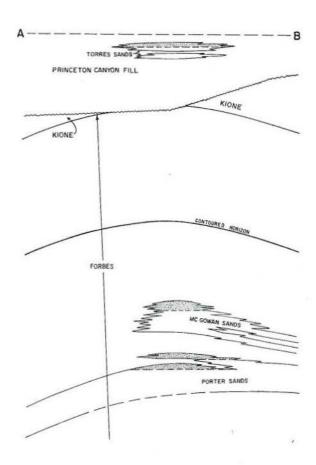
BLACK BUTTE DAM GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Delaware Northwest Exploration Co. "Hall" 1	Same as present		4W	1000	2,060	Forbes	
Deepest well	Exxon Corp. "Arthur M. Hall" 1	Humble Oil & Refining Co. "Arthur M. Hall"	21 23N	4W	MD	2,866		Guinda Late Cretaceous


ITEM	FORBES				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ('F) Initial as content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1979 207 230 3/16 350 88-92 90-140 Forbes Late Cretaceous 650-950 10-20 40				
		RE	SERVOIR ROCK PROPE	RTIES	
Porosity (%)	18-23 [†] 40-50 [†] 50-60 [†]	¥			
	+	RE	SERVOIR FLUID PROPE	RTIES	
Oil: Oil gravity ("API)	.560* 1,000*				
		ENH	IANCED RECOVERY PR	OJECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year					

Base of fresh water (ft.): 300-400


Remarks: Commercial gas deliveries have not yet begun.

BOUNDE CREEK GAS FIELD

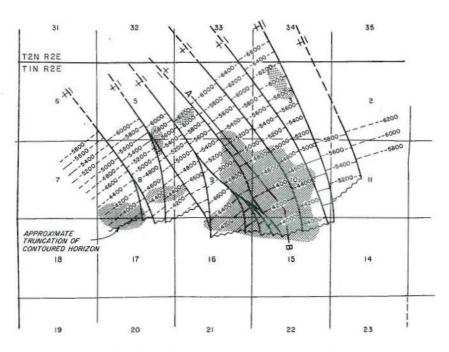
CONTOURS ON ELECTRIC LOG MARKER IN FORBES FORMATION

COUNTY: COLUSA and GLENN

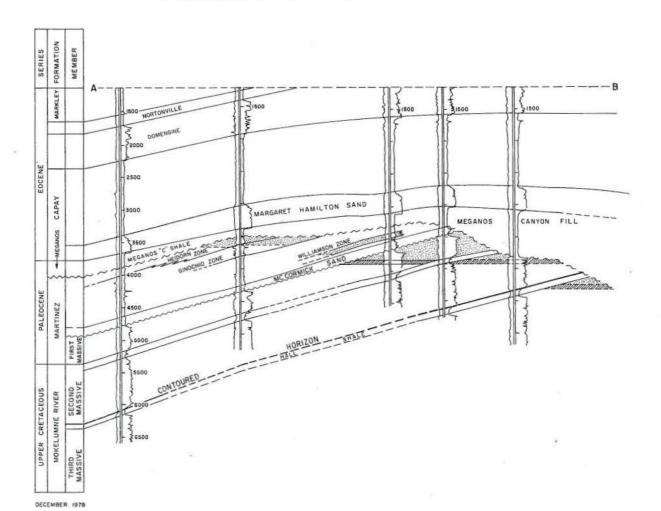
BOUNDE CREEK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Bounde Creek Opr. Unit 1" 1	Humble Oil & Refining Co. "Mamie" H. Porter et al" 2	13 18N 2W	MD	7,529	Forbes	Guinda Late Cretaceous
Deepest well	Same as above				115	**	


			POOL DATA		
ITEM	PRINCETON CANYON FILL	KIONE	FORBES	GUINDA	FIELD OR AREA DATA
Discovery date	October 1958	May 1977	September 1956	September 1959	
Initial production rates Oil (bbl/day)				100	
Gas (Mcf/day)	3,100	2,500	3,980	1,848	
Flow pressure (psi)	1,080	1,500	2,125	2,100	
Bean size (in.)	26/64	1/4	19/64	3/16	
nitial reservoir pressure (psi)	1,300	2,130	3,810-4,905	5,450	
Reservoir temperature ("F)	90	100	110-133	135	
nitial oil content (STB/acft.)	3575		110 100	1.55	
nitial gas content (MSCF/acft.).	980	1,000-1,300	780-1,500	830-1,400	
ormation	Princeton Cyn. fill	Kione	Forbes	Guinda	
Geologic age	Eocene	Late Cretaceous	Late Cretaceous	Late Cretaceous	
Average depth (ft.) Average net thickness (ft.)	2,840 30	3,700 45	5,450 265	6,965 35	
Maximum productive	30	45	203	33	
area (acres)					490
			ESERVOIR ROCK PROPE	PTIES	
	VACON	Contractor (
Parasity (%)50j (%)	31*	24-281	15-24 †	15-20***	
5wi (%)	25*	35-40 T	45-60 t	50-60***	
Sg; (%)	75*	60-65.1	40-55 T	40-50***	
Permeability to air (md)	777				
		R	ESERVOIR FLUID PROPE	RTIES	
oti.				T	
Oil: Oil gravity (*API)					
Sulfur content (% by wt.)					
Initial solution GOR (SCF/STB)					
Initial oil FVF (RB/STB)			1		
Bubble point press, (psia)			1		
Viscosity (cp) @ *F				1	
Gas:					
Specific gravity (air = 1.0)	.562	.568	.564		
Heating value (Btu/cu. ft.)	995	985	990	1	
Water:				1	
Salinity, NaCl (ppm)			9,400	1	
T.D.S. (ppm)				1	
R _w (ohm/m) (77°F)					
		EN	HANCED RECOVERY PRO	DIECTS	
Enhanced recovery projects					
Date started					
Date discontinued			1	1	
			1	1	
			1		
				1	
				1	
				1	
				1	III.
9.7					
Peak oil production (bbl)					
Year			1		20021000
Peak gas production, net (Mcf)	1		1		2,654,168

Base of fresh water (ft.): 1,800


Remarks: Commercial gas deliveries began in January 1958. Increased pressure gradients are encountered when drilling below 5,000 feet, requiring mud weight as high as 135 pounds per cubic foot.

Selected References: Bruce, Donald D., 1959, Bounde Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 1.

BRENTWOOD OIL FIELD

CONTOURS ON BASE OF SECOND MASSIVE SAND

COUNTY: CONTRA COSTA

BRENTWOOD OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & F	. B.8		Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Heidorn" 4-4	Same as present	4 1N 2	М	D 5	,202	Heidorn	
Deepest well	Shell Oil Co. "Heidorn" 2-4	Same as present	4 1N 2	M	1D 11	,472		E-zone Late Cretaceous

9			POOL DATA			7 51510.00
ITEM	PREWETT	HEIDORN	GINOCHIO	WILLIAMSON	FIRST MASSIVE	FIELD OR AREA DATA
Discovery date	July 1968	July 1962	August 1962	July 1962	July 1962	
Discovery date					50	1
Oil (bbl/day)	142 82	1,160	3,900	540	670	
Gas (Mcf/day) Flow pressure (psi)	205	196	1,175	475	476	
Bean size (in.)	19/64	1/2	24/64	13/64	16/64	1
itial reservoir	20701			10/01	1	1
pressure (nsi)	1,750	1,600	1,650	1,650	1,650	1
eservoir temperature (*F)	124	122	122	132	132	
itial oil content (ST8/acft.)	760-920	222.022		122	1,050	1
itial gas content (MSCF/acft.).	680-8203/	520-690	540-710	690 Martinez	840 a/	
ormation	Martinez Paleocene	Martinez Paleocene	Martinez Paleocene	Paleocene	Martinez Paleocene	1
eologic ageverage depth (ft.)		3,520	3,530	3,570	3,600	
verage net thickness (ft.)	3,770 80	3,520	43	20	250	1
laximum productive	ou .	3.	43	20	250	
area (acres)						1,330 €/
		R	ESERVOIR ROCK PROPER	TIES		
	20-24	20-24	20-24	24	27	
orosity (%)	60		1		60	
wj (%)	40	45-50	45-50	45	40	
gi (%)	60 b/	50-55	50-55	55	60 b/	
ermeability to air (md)				171		
		R	ESERVOIR FLUID PROPER	TIES		1
Alt.						
Oil gravity (*API) Sulfur content (% by wt.)	39				41	1
Sulfur content (% by wt.)			I			1
Initial solution	350		1	1	400	
GOR (SCF/STB)	1.22	1			1.17	
Bubble point press. (psia)			1	1	4	1
Viscosity (cp) @ *F						
ias	.680	.678	.678	.678	.650	
Specific gravity (air = 1.0)		1,175	1,175	1,175	.030	1
Heating value (Btu/cu. ft.)	-	1,170	1,140	1,170		
Valer:	2 200	0.000	17.400		1 000	1
Salinity, NaCl (ppm)	2,800	8,900	13,400		1,000	T.
T.D.S. (ppm) R _W (ohm/m) (77*F)			1			
		EN	HANCED RECOVERY PRO	IECYS		-
		1				
nhanced recovery projects Date started				1		
Date discontinued						
Date discontinued						
Peak oil production (bbl) Year						1,094,843 1964
eak gas production, net (Mcf)					1	1/2/2006/200
Year					1	1
		1		1	1	

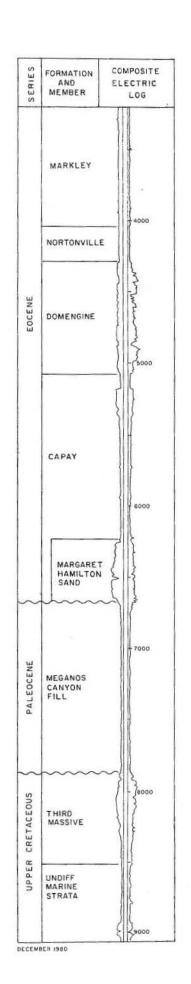
Base of fresh water (ft.): The water obtained from the productive zones is relatively fresh. See above for quality by zones.

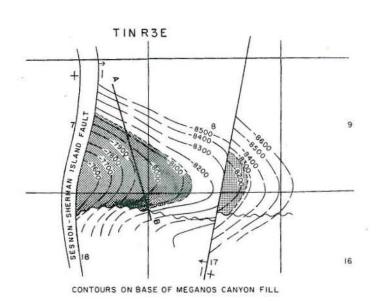
Selected References: Sullivan, John C., 1963, Brentwood Oil Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 2.

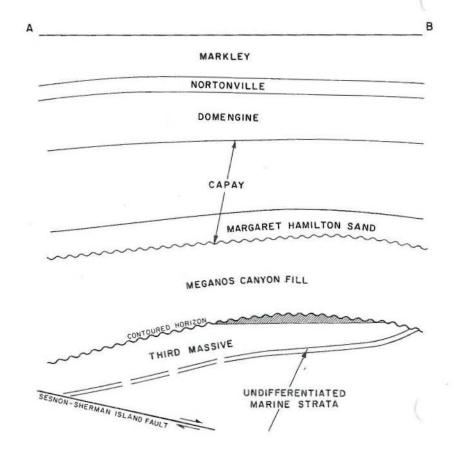
COUNTY: CONTRA COSTA

BRENTWOOD OIL FIELD Cont.....

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well	4						


	T.		POOL DATA	
ITEM	SECOND MASSIVE	THIRD MASSIVE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Ban size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	January 1963 260 4,960 1,155 28/64 1,750 140 1,000 780 2/ Mokelumne River Late Cretaceous 3,770 95	September 1962 0 d/ 2,610 1,646 1/4 1,850 140 900 880 d/ Mokelumne River Late Cretaceous 4,025 180		
		RESE	EVOIR ROCK PROPERTIES	
Porosity (%)	23 65 35 65 b/ 242	23 65 35 65 <u>b</u> /		
		RESE	RVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by vxt.) Initial solution GOR (\$CF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F	39 400 1.17	500 1,28		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.610	.710	7	
Water: Salinity, NaCl (ppm)	450	1,712		
		ENHAN	ICED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				


Base of fresh water (ft.):

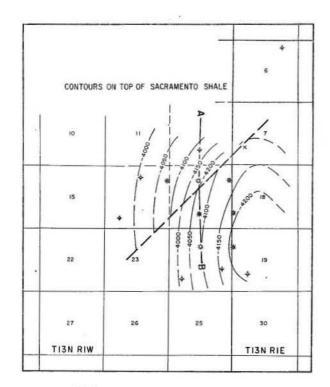
Remarks:

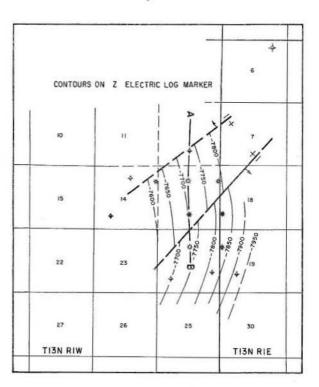
d/ The well was deepened in 1964 and recompleted as an oil well in the same zone; initial daily production: 240 bbl oil, 350 Mcf gas.

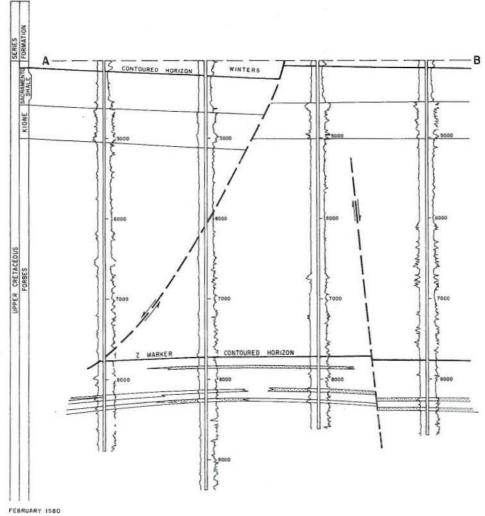
COUNTY: CONTRA COSTA

BRENTWOOD, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	DEPCO, Inc. "McLeod" 444-7	Same as present	7 IN 3E	MD	9,122	Third Massive	Moreno Late Cretaceous
Deepest well	Same as above	,		,,			


	POOL DATA						
ITEM	THIRD MASSIVE					FIELD OR AREA DATA	
Discovery date	April 1978 3,100 1,720 18/64 3,641 212 1,100 Mokelumne River Late Cretaceous 8,000 170 260						
		RESERVO	OIR ROCK PROPERTIE	s			
Porosity (%)	20 [†] 40 [†] 60 [†]						
		RESERVE	OIR FLUID PROPERTIE	is .			
Oil: Oil gravity ("API)	.610 1,082						
		ENHANCE	ED RECOVERY PROJEC	CTS			
Enhanced recovery projects Date started Date discontinued							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,665,529 1979					113	


Base of fresh water (ft.): 300

Remarks: Condensate production for 1979 was 4,815 barrels.

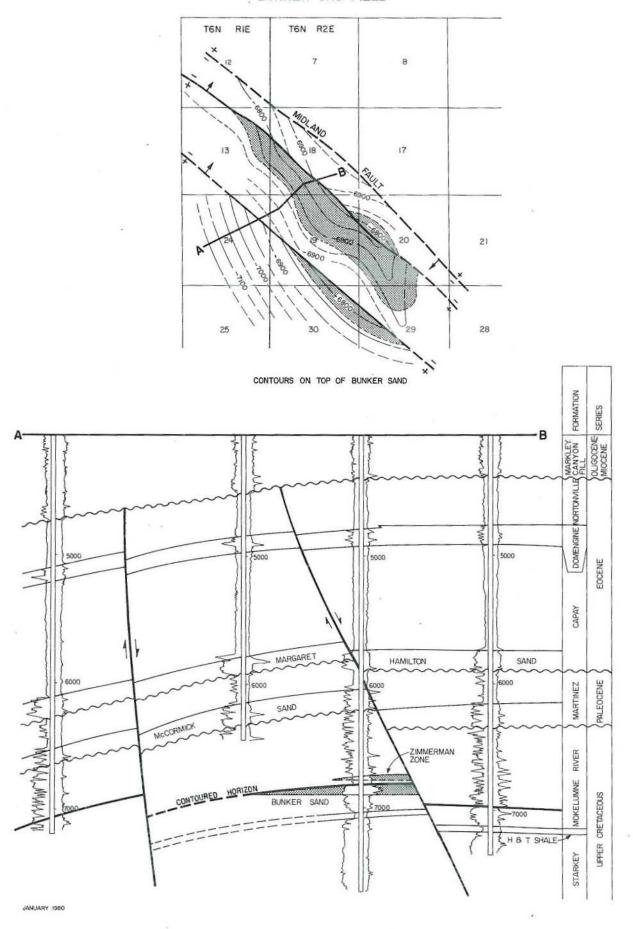
BUCKEYE GAS FIELD

COUNTY: COLUSA

BUCKEYE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. 8	k R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Wilkens Unit A" 1	Western Gulf Oil Co. "F. J. Strain" 1	14 13N	1W	MD	8,972	unnamed	
Deepest well	Gulf Oil Corp. "Wilkens Unit C" 1	Gulf Oil Corp. of Calif. "Wilkins Unit C"	24 13N	1W	MD	11,678		Funks Late Cretaceou


_			POOL DAT	Ά	
ITEM	UNNAMED				FIELD OR AREA DATA
Discovery date	2,450 1,800 9/16 4,115-5,950 132-144 1,000-2,300 Forbes Late Cretaceous 7,850-8,510 10-30				
			RESERVOIR ROCK PR	OPERTIES	
Porosity (%)	21-24 43-53 47-57				
			RESERVOIR FLUID PR	OPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press, (psia) Viscosity (cp) @ *F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	.534 1,015				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	15,400	-			
		, ,	ENHANCED RECOVERY	PROJECTS	
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,553,025 1962				

Base of fresh water (ft.): 1,950

Remarks:

Selected References: Hunter, William J., 1962, Buckeye Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 1.

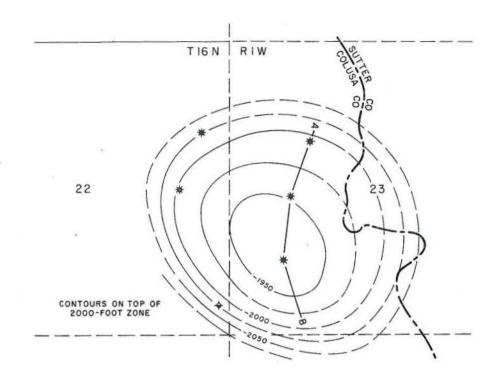
BUNKER GAS FIELD

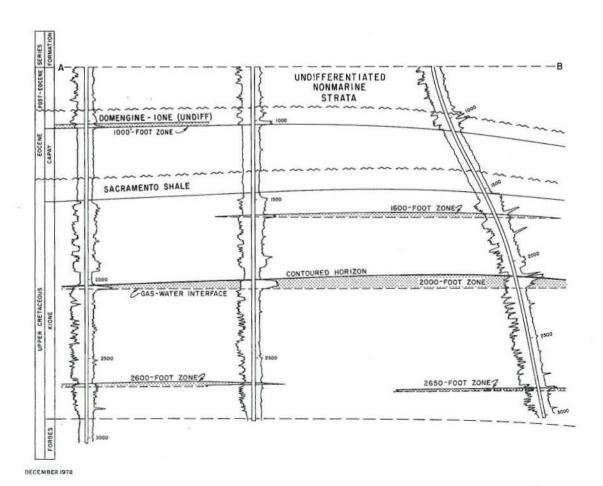
COUNTY: SOLANO

BUNKER GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Unit Oper. "BGZU"	G. E. Kadane & Sons "Maine Prairie Gas Unit A" 1	20 6N 2E		7,500	Bunker	
Deepest well	Amerada Hess Corp., Unit Oper. "BGZU" 702	G. E. Kadane & Sons "Maine Prairie Gas Unit A" 2	19 6N 2E	MD	10,098		Winters Late Cretaceous


		POC	L DATA	TIFLE OF
ITEM	Z IMMERMAN	BUNKER		FIELD OR AREA DAT
Discovery date	August 1961	June 1960		
nitial production rates				1
Oil (bbl/day)			1	
Gas (Mcf/day)	3,890	3,425		
Flow pressure (psi)	2,250	2,250		
Bean size (in.)	9/32	1/4		
itial reservoir		2 2000000	1	1
pressure (psi)	2,930	2,975	1	
eservoir temperature (*F)	145	145	1	l l
itial oil content (STB/acft.)		ANALYSIS STREET, ST.		1
itial gas content (MSCF/acft.).	1,000-1,600	1,100-1,600		
ormation	Mokelumne River	Mokelumne River	1	
eologic age	Late Cretaceous	Late Cretaceous	1	
verage depth (ft.)	6,780	6,845	1	1
verage net thickness (ft.)	15	25		
laximum productive			1	
area (acres)		1	1 1	720
		PESEBVOIR	OCK PROPERTIES	
		T 7	OCK PROPERTIES	
orosity (%)	21-28	23-28		1
oj (%)	35-45	35-45	1 1	i i
wi (%)	55-65	55-65	1	
gi (%)		250		1
ermeability to air (md)		250		
		RESERVOIR I	LUID PROPERTIES	
oil:				
Oil gravity (*API)				
Initial solution		1	1	1
GOR (SCF/STB)		1	1 1	
Initial oil FVF (RB/STB)		1	1	
Bubble point press. (psia)				1
Viscosity (cp) @ *F		1		ŧ
			4	1
ias:		1	1	1
Specific gravity (air = 1.0)	.614	.614		1
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,075	1,075	1 1	1
200 00 00 000				E.
Vater:		1 1	4 1	
Salinity, NaCl (ppm)		1	1	1
T.D.S. (ppm)				
Rw (ohm/m) (77°F)		1 -		
		ENHANCED R	COVERY PROJECTS	
nhanced recovery projects				
Date started			1	1
Date discontinued			1 1	1
200000000000000000000000000000000000000			1	1
				I
1		1		
				1
1				
eak oil production (bbl)				
reak oil production (bbl) Year				10,457,830


Base of fresh water (ft.): 2,500-3,100

Remarks:

Selected References: Hunter, W. J., 1961, Bunker Gas Field: Calif. Div. of Oil and Gas. Summary of Operations -- Calif. Oil Fields, Vol. 47, No. 1.

BUTTE SINK GAS FIELD

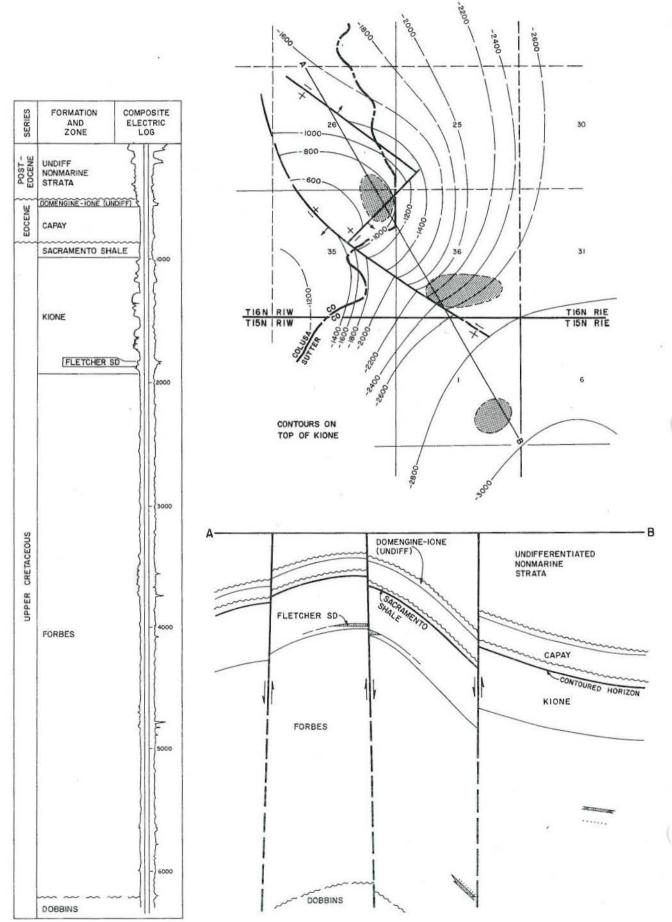
COUNTY: COLUSA and SUTTER

BUTTE SINK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Capital Co. Delta Farms" 1	G. E. Kadane & Sons "Capital Co."Delta Farms" 1	23 16N 1W	MD	6,998	2,000-ft. zone 2,600-ft. zone	Forbes Late Cretaceous
Deepest well	Same as above	-01	.11		000		TH.

DA	1	0		D.	A .	T	۱
		u	L	v.	m		٩


			POOL DATA			
ITEM	1,000-FOOT ZONE	1,600-FOOT ZONE	1,950-FOOT ZONE	2,000-FOOT ZONE	2,600-FOOT ZONE	2,650-FOOT ZONE
Discovery date	August 1962	August 1962	August 1963	July 1962	July 1962	September 1962
Oil (bbl/day)	387	226	1,885	1,170	1,078	1,500
Gas (Mcf/day) Flow pressure (psi)	475	691	790	760	700	1,030
Bean size (in.)	3/16 460	1/8	5/16 930	935	1/4	1/4
pressure (psi) teservoir temperature (°F)	92	97	108	108	115	115
nitial oil content (STB/acft.)	220 Domengine-Ione	340	430	430	450 Kione	550 Kione
ormation	Eocene	Kione Late Cretaceous	Kione Late Cretaceous	Kione Late Cretaceous	Late Cretaceous	Late Cretaceous
Geologic age	1.000	1,600	1,950	2,000	2,600	2,650
Average net thickness (ft.)	10	20	20	80	20	15
Maximum productive area (acres)						<u>a</u> /
		R	ESERVOIR ROCK PROPER	TIES	4	
Porosity (%)	25*	25*	25*	25*	25*	25*
Soj (%)	35*	35*	35*	35*	35*	35*
Sgi (%)	65*	65*	65*	65*	65*	65*
Permeability to air (md)						
		R	ESERVOIR FLUID PROPER	TTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.)						
Gas:	.605	.605	405	.605	.605	,605
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	907	926	.605	829	824	807
Vater:						
Salinity, NaCI (ppm)	7,000	7,000	7,000	7,000	7,000	7,000
		EN	HANCED RECOVERY PRO	DIECTS	1	
Enhanced recovery projects Date started						
Date discontinued						
Peak oil production (bbl)		t .				1
Peak gas production, net (Mcf)						
Year						b/

Base of fresh water (ft.): 400

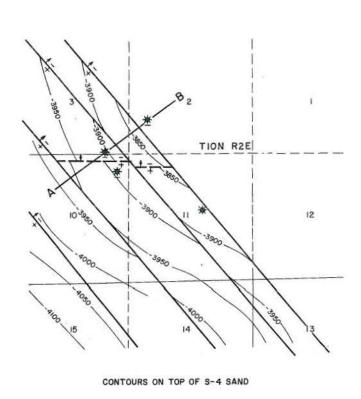
Selected References: Hunter, W. J., 1963, Butte Sink Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 2.

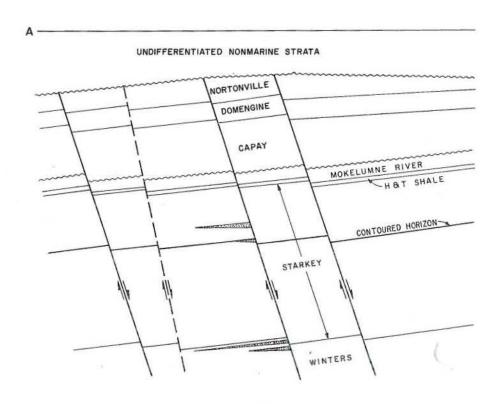
a/ Field productive area is 210 acres.
b/ Peak gas production for the field was 604,197 Mcf in 1967.

BUTTE SLOUGH GAS FIELD

COUNTY: COLUSA and SUTTER

BUTTE SLOUGH GAS FIELD


DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	в,&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Belle Fletcher Hirst" 1	Humble Oil & Refining Co. "Belle Fletcher"	35 16N	1W	MD	2,077	Fletcher	
Deepest well	Atlantic Oil Co. "Scott-Straub" 1	Same as present	1 15N	1W	MD	8,042		Forbes Late Cretaceous

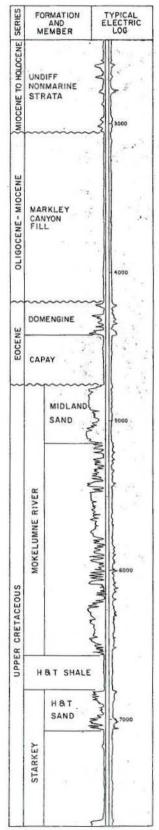
	P	OOL DATA	
FLETCHER	UNNAMED		FIELD OR AREA DATA
October 1955 478 635 3/16 835 90	September 1962 1,700 800 5/16 3,250-5,000 120-138		
420 Kione Late Cretaceous 1,815 35	640-1,700 Forbes Late Cretaceous 5,700-7,270 6-80		240
	RESERVO	IR ROCK PROPERTIES	
25* 35* 65*	15-20*** 45-50*** 50-55***		
	RESERVO	IR FLUID PROPERTIES	
.569 970	.569 930-990		
2,300-22,300			
	ENHANCE	RECOVERY PROJECTS	
			. 16
			1,553,025
	October 1955 478 635 3/16 835 90 420 Kione Late Cretaceous 1,815 35 25* 35* 65*	September 1962	October 1955 September 1962

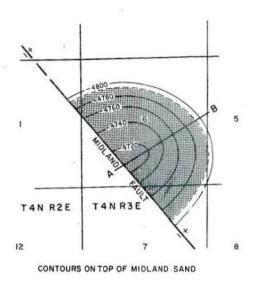
Base of fresh water (ft.): 200

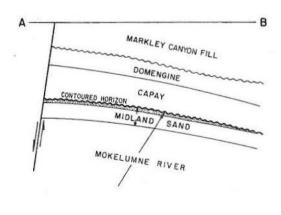
SERIES		FORMATION COMPO AND ELEC MEMBER LOG				
POST - EOCENE	-uppy stally	FF MARINE ATA	Market Comment			
	NO	RTONVILLE	34	000		
	DO	MENGINE	3			
EOCENE		CAPAY	- 31	500		
~~	A	NOKELUMNE RIVER	3			
	н	T SHALE				
		S-I SAND	2 1 5	000		
		S-2 SAND	MACA			
		S-3 SAND	3			
	STARKEY	S-4 SAND	horaldhan	500		
UPPER CRETACEOUS	STA	S-5 SANI	5	0000		
		WINTERS		500		

COUNTY: YOLO

CACHE CREEK GAS FIELD


DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA, Inc. "E. A. Payne et al" 1-11	Champlin Petroleum Corp. "E. A. Payne et al" 1-11	11 10N 2E	MD	10,990	Starkey	Dobbins Late Cretaceous
Deepest well	Same as above	"	"				, ,


-		POO	L DATA	
ITEM	STARKEY	WINTERS		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	August 1977 1,355 955 1/4 1,141 125 500-660 Starkey Late Cretaceous 3,924 5	March 1979 1,500 1,760 1/2 1,994 130 690-950 Winters Late Cretaceous 5,000		160
		RESERVOIR R	OCK PROPERTIES	1017-1977-12-
Porosity (%)	28-34 [†] 40-45 [†] 55-60 [†]	22-28 [†] 40-45 [†] 55-60 [†]		
		RESERVOIR F	LUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FYF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	,602 895	.630 831		
		ENHANCED RI	COVERY PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				

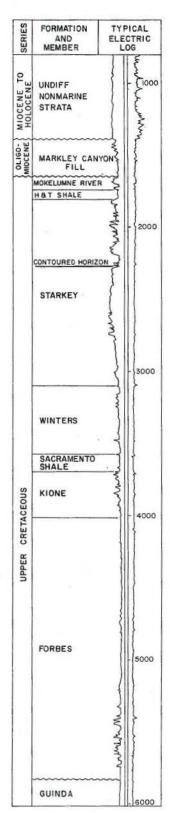
Base of fresh water (ft.):

Remarks: Waiting on pipeline hookup.

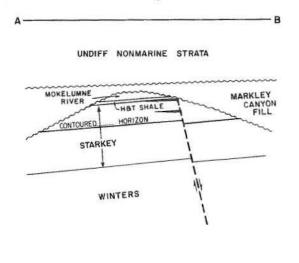
DECEMBER 1979

COUNTY: SOLANO

CACHE SLOUGH GAS FIELD (ABD)


DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "California Packing Corporation" 2	Standard Oil Company of Calif. "California Packing Corporation" 2	N. 1000 1000	auton.	1.25	Midland	
Deepest well	Chevron USA Inc. "Peter Cook" 12	Standard Oil Company of Calif. "Peter Cook"	6 4N 3E	MD	7,730		Starkey Late Cretaceou


1			POOL DATA		
ITEM	MIDLAND	UNNAMED			FIELD OR AREA DATA
Discovery date	March 1945 14,867 1,697 5/8 2,120 120 1,400 Mokelumne River Late Cretaceous 4,730 35	July 1960 3,850 1,811 5/16 2,235 130 1,000-1,300 Mokelumne River Late Cretaceous 5,335 5			340
		RESER	VOIR ROCK PROPER	TIES	
Porosity (%)	33 35 65	25-30*** 35-40*** 60-65***		G	
		RESE	VOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API)	.570 †† 1,000 18,000	.598 ^{††} 937 15,200			
		ENHAN	ICED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					2,558,328 1948

Base of fresh water (ft.): 2,000-2,300

Remarks: Commercial gas deliveries began in December 1947 and ceased in October 1962. Seven wells were completed and cumulative gas production was 11,554,000 Mef. The field was reactivated in July 1978 and produced an additional 317,146 Mef of gas prior to abandonment in November 1980.

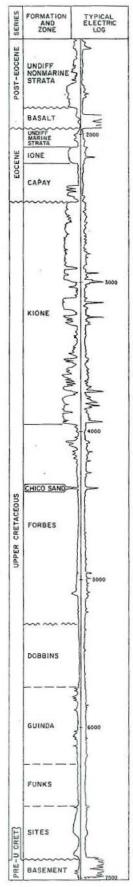
CONTOURS ON STARKEY MARKER

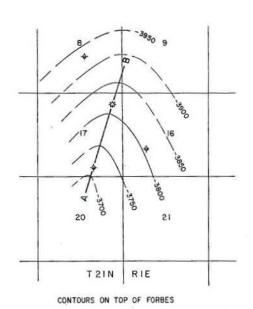
FEBRUARY 1980

COUNTY: SUTTER

CATLETT GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Davis Oil Co. "Aileen Marty" 1	Same as present	35 12N 3E	MD	6,649	Starkey	Forbes Late Cretaceous
Deepest well	Same as above	**	".		.00	**	


		POOL DATA	
ITEM	STARKEY		FIELD OR AREA DATA
Discovery date	1,132 793 1/4 1,000 93 480-600 Starkey Late Cretaceous 2,250 10 120		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	29-33 [†] 40-45 [†] 55-60 †		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*AP!) Sulfur content (% by wt.)	.676 718		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbi) Year Peak gas production, net (Mcf) Year			

Base of fresh water (ft.): 1,400

Remarks: Commercial gas deliveries have not yet begun.

CHICO GAS FIELD (Abandoned)

CONTOURED HORIZON

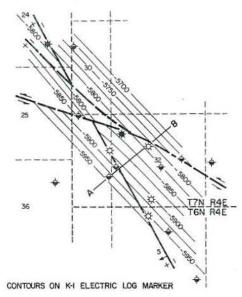
CHICO SAND

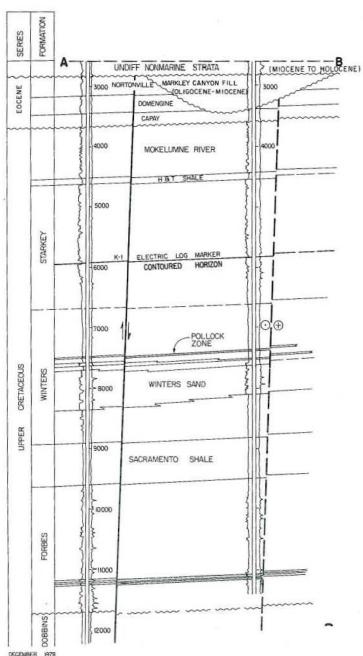
FORBES

COUNTY: BUTTE

CHICO GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Company "Estes" 1	Richfield Oil Corp. "Chico" 1	17 21N 1E	MD	7,005	Chico	Forbes Late Cretaceous
Deepest well	Same as above				и		"


1			POOL DAT	A		
ITEM	CHICO					FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	January 1944 2,070 1,470 17/64 1,630 122 530-730 Forbes Late Cretaceous 4,365 20 160	39				
			RESERVOIR ROCK PRO	PERTIES		
Porosity (%)	20-25*** 40-45*** 55-60***					
		W	RESERVOIR FLUID PRO	PERTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.)	.615 ^{††} 865					
			ENHANCED RECOVERY	PROJECTS	_	
Enhanced recovery projects						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	221,381 1947					

Base of fresh water (ft.): 1,400

Remarks: Commercial gas deliveries began in September 1946 and ceased in October 1973. The field was abandoned in August 1975. Only one well was completed and cumulative gas production was 1,541,924 Mcf.

CLARKSBURG GAS FIELD

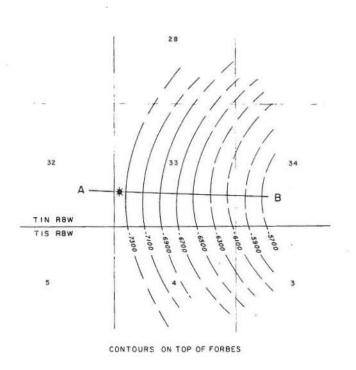
COUNTY: YOLO

CLARKSBURG GAS FIELD

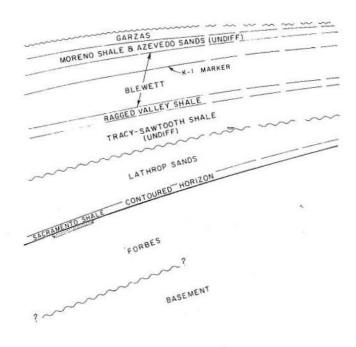
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T	. & R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Pollock Unit" 1	Same as present	5 6	N 4E	MD	11,648	Pollock	
Deepest well	Union Oil Co. of Calif. "Union-Dow Standard Community 1" 1	Same as present	31 7	N 4E	MD	12,235		Dobbins Late Cretaceou

Standard C	Community 1" 1			Late Cretace
12			POOL DATA	
ITEM	POLLOCK	FORBES (abd.)		FIELD OR AREA DATA
Discovery date	July 1963 14,300 1,110 3/4 3,360 155 1,800 Winters Late Cretaceous 7,450 20	June 1966 1,122 2,110 10/64 5,109 182 1,000 Forbes Late Cretaceous 11,100 50		480
		RESERV	OIR ROCK PROPERTIES	
Porosity (%)	28 30 70	22 40 60		
		RESERV	OIR FLUID PROPERTIES	
Oil: Oil: gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.607 930 12,200	.610 894 11,500		
		ENHANC	CED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				686,595 1966


Base of fresh water (ft.): 2,100

Remarks: Commercial gas deliveries began in January 1966. Production from the Forbes ceased in April 1975. The zone was abandoned in July 1967. Only one well had been completed in the Forbes and cumulative production was 119,580 Mcf.


Selected References: Lorshbough, A. L., 1966, Clarksburg Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 55, No. 1.

EAST COLLEGEVILLE GAS FIELD

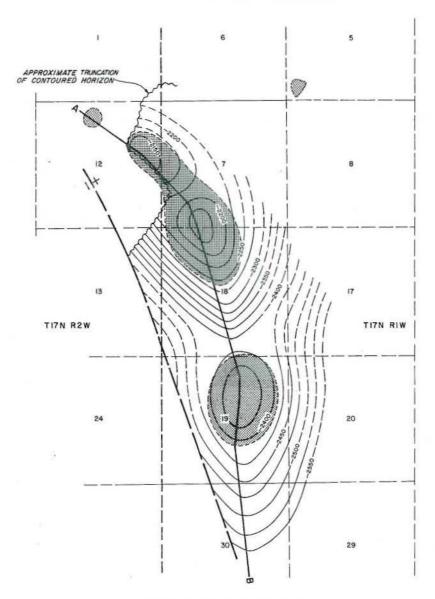
SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
	GARZAS	Jana parameter de la company
	MORENO SHALE AZEVEDO SAND (UNDIFF)	: 8 3 5 3000
	K-I <u>MAR</u> BLEWETT	IXER 4000
	RAGGED VALLEY	5000
ACEOUS	TRACY-SAWTOO SHALE (UNDIFF	
UPPER CRETACEOUS	LATHROP	6000 MALLANANA TOO
	SACRAMENTO SHALE	
	FORBES	John John John John John John John John
E-U. CRET		7
PRE	BASEMENT	

UNDIFFERENTIATED NONMARINE STRATA

COUNTY: SAN JOAQUIN

COLLEGEVILLE, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Texaco-Chevron- Franzia Bros." 1-33	Champlin Petroleum Co. "Texaco-Chevron- Franzia Bros." 1-33	33 1N 8E	MD	9,657	Forbes	pre-Late Cretaceous
Deepest well	Same as above	п	"	"		,	"

			POOL DATA	
ITEM	FORBES			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Meservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	September 1978 454 717 8/64 2,850 144 770 Forbes Late Cretaceous 7,455 25 50			
		RESER	VOIR ROCK PROPERTIES	
Porosity (%)	20 50** 50**			
		RESER	VOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Oil gravity ('API) Initial solution COR (SCF/5TB) Initial oil FVF (RB/5TB). Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0). Heating value (Btu/cu, ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.662 756 24,000 26,200			
		ENHAN	CED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				


Base of fresh water (ft.): 1,000+

Remarks: Commercial gas deliveries have not yet begun.

COMPTON LANDING GAS FIELD

CONTOURS ON TOP OF MAIN CARTER SAND

COUNTY: COLUSA

COMPTON LANDING GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Tuttle Unit 1" 1	Honolulu Oil Corp. "Honolulu-Humble Tuttle Unit" 1	12 17N 2W	MD	3,700	Tuttle	
Deepest well	Aminoil USA, Inc. "Forry" 1	Signal Oil & Gas Co. "Forry" 1	30 17N 1W	MD	10,777		Venado Late Cretaceou

			POOL DATA			
ITEM	UPPER CARTER	LOWER CARTER	CATFISH	TUTTLE	UNNAMED	FIELD OR AREA DATA
Discovery date	November 1955	November 1955	September 1960	July 1955	July 1963	
Initial production rates						
Oil (bbl/day) Gas (Mcf/day)	1,470	1,650	5,130	1,400	1,270	
Flow pressure (psi)	800	860	830	990	800	
Bean size (in.)	20/64	20/64	32/64	16/64	13/64	
pressure (psi)	860	950	980	1,015	4,450	Į.
Reservoir temperature (*F)	94	96	100	105	151	
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).	600	600-670	1	232	12 125 21	
Formation	Kione	Kione	650 Kione	640 Kione	1,500 Forbes	
Jeologic age	Late Cretaceous	Late Cretaceous	Late Cretaceous	Late Cretaceous	Late Cretaceous	7
Average depth (ft.)	2,020 40	2,190 60	2,310	2,550	6,260	1.6
Average net thickness (ft.) Maximum productive	40	00	20	40	15	
area (acres)						440
		R	ESERVOIR ROCK PROPER	TIES		<u> </u>
Porosity (%)	30 €	28-31	30*	28*	20-24 ***	
50j (%)	25*	25	25*	25*	45-50***	
Sgi (%)	75★	75	75*	75*	50-55***	
Permeability to air (md)						
		R	ESERVOIR FLUID PROPER	TIES		
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press (psia) Viscosity (cp) @ *F					-	
Gas: Specific gravity (air = 1.0)	.604	.604		.59		
Heating value (Btu/cu. ft.)	810	797-824		921	800	
Water:	12,000	12,000	17.444	12.000		
Salinity, NaCl (ppm) T.D.S. (ppm)	12,000	12,000	17,600	12,000	12,000	
R _W (ohm/m) (77°F)						
14-50		EN	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl)						
YearPeak gas production, net (Mcf)						1,089,651
reak gas production, net (McI)						

Base of fresh water (ft.): 1,300

Remarks:

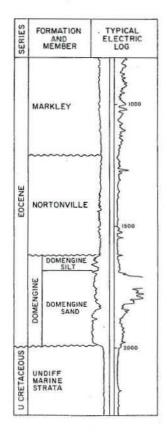
Selected References: Bruce, Donald D., 1958, Compton Landing Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 2.

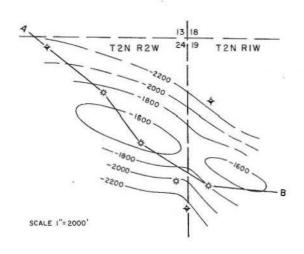
COUNTY: COLUSA

COMPTON LANDING, SOUTH, GAS FIELD

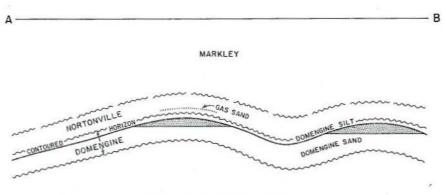
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Transamerica" 1-22	Same as present	22 17N 2W	ME	3,900	unnamed	Kione
Deepest well	Same as above	"	"		"	"	Late Cretaceous


POOL DATA


	POOL DATA						
ITEM	UNNAMED	UNNAMED		FIELD OR AREA DATA			
Discovery date	January 1976	January 1976					
Oil (bbl/day)	1,000	8,500 1,150					
nitial reservoir pressure (psi)	1,180 104	1,270 106					
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.). ormation Geologic age	Kione Late Cretaceous 2,600	630 Kione Late Cretaceous 2,850					
Average depth (ff.)	50	15		40			
		R	SERVOIR ROCK PROPERTIES				
Porosity (%)	25-27***	25-27***					
Swi (%)	33*** 67***	33*** 67***					
		R	SERVOIR FLUID PROPERTIES				
Oil: Oil gravity (*API)							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.633 797	.643 780					
Vater: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)							
, ,,, ,, ,, ,,		ENI	HANCED RECOVERY PROJECTS				
Enhanced recovery projects Date started Date discontinued							
Peak oil production (bbi) Year				137,138			
Peak gas production, net (Mcf) Year				1979			

Base of fresh water (ft.): 1,600


Remarks: In April 1980, Chevron U.S.A. Inc. completed well "Jimeno Rancho" 1, in Sec. 14, T. 17N, R. 2W, M.D.B. & M., opposite the Forbes Formation (Late Cretaceous) as a new pool discovery.

(Abandoned)

CONTOURS ON TOP OF DOMENGINE SAND

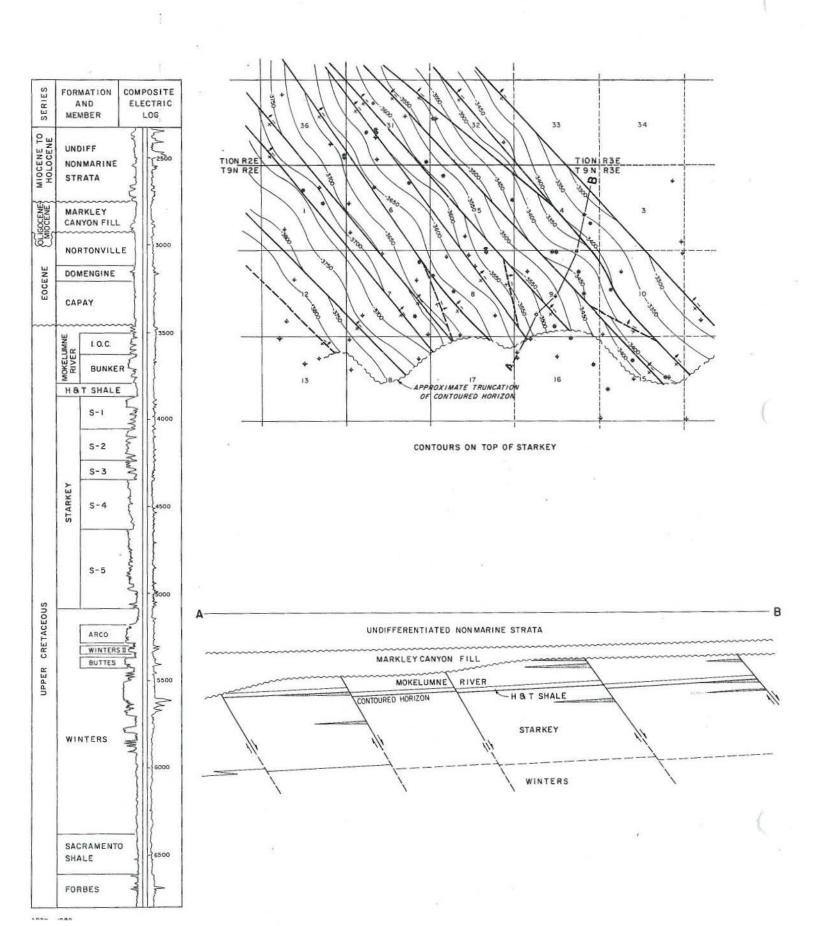
UNDIFFERENTIATED MARINE STRATA

COUNTY: CONTRA COSTA

CONCORD GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Boylan" I	Standard Oil Company of California	24 21	N 2W	MD	4,442	Nortonville & Domengine a/	G- or H-zone Late Cretaceou
Deepest well	Same as above					**		


		POOL	DATA	
ITEM	NORTONVILLE	DOMENGINE		FIELD OR AREA DATA
Discovery date	December 1962	December 1962		
nitial production rates		101000000000000000000000000000000000000		
Oil (bbl/day)	1 000	2 727	1 1	li,
Gas (Mcf/day)	1,950 724	2,725 780	1 31	
Flow pressure (psi) Bean size (in.)	19/64	3/8	1	
nitial reservoir		20 98519	1	
pressure (psi)	1,240	1,200	1	1
eservoir temperature (*F)	81-83	82-88	1 1	i i
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).	690	640-890	1 1	
ormation	Nortonville	Domengine	1 1	1
eologic age	Eocene	Eocene	1	
verage depth (ft.)	1,650-1,800	1,750-2,250	1 1	I)
verage net thickness (ft.)	5-15	15-50	4	
faximum productive area (acres)		1		160
				100
		RESERVOIR ROC	K PROPERTIES	
Porosity (%)	26*	25-30***		
oj (%) wi (%)	35*	25-35***	1 1	
gi (%)	65*	65-75***	1	1
ermeability to air (md)	(50)	1	1	
E 2. C		RESERVOIR FLUI	D BROBERTIES	
		RESERVOIR FLUI	PROPERTIES	
Dil:				i
Oil gravity (*API)			1 1	
Sulfur content (% by wt.)			1	
Initial solution				
GOR (SCF/STB)		1	1 1	
Bubble point press. (psia)		1	1 1	
Viscosity (cp) @ *F		1		I.
ias:			1	1
Specific gravity (air = 1.0)	.56711	.57011	1	i
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	990	980	1	i
A STATE OF THE PARTY OF THE PAR				-
Vater:		1 10 10 10 10 10 10 10 10 10 10 10 10 10		1
Salinity, NaCl (ppm)	2,910	11,810		1
R _W (ohm/m) (77°F)		1	1 1	- 1
		ENHANCED RECO	VERY PROJECTS	
		ENHANCED RECO	VERT PROJECTS	
inhanced recovery projects		1	1	1
Date started				1
Date discontinued			4	1
				1
1			1	
			1	1
			1 1	1
		1		
		1	1 1	1
	100			
Peak oil production (bbl) Year Year (Mcf)				938,823

Base of fresh water (ft.): Above 500

Remarks: Commercial gas deliveries began in March 1963 and coased in June 1968. The field was abandoned in September 1969. Four wells were completed and cumulative gas production was 3,068,869 Mcf.

a/ Dual completion.

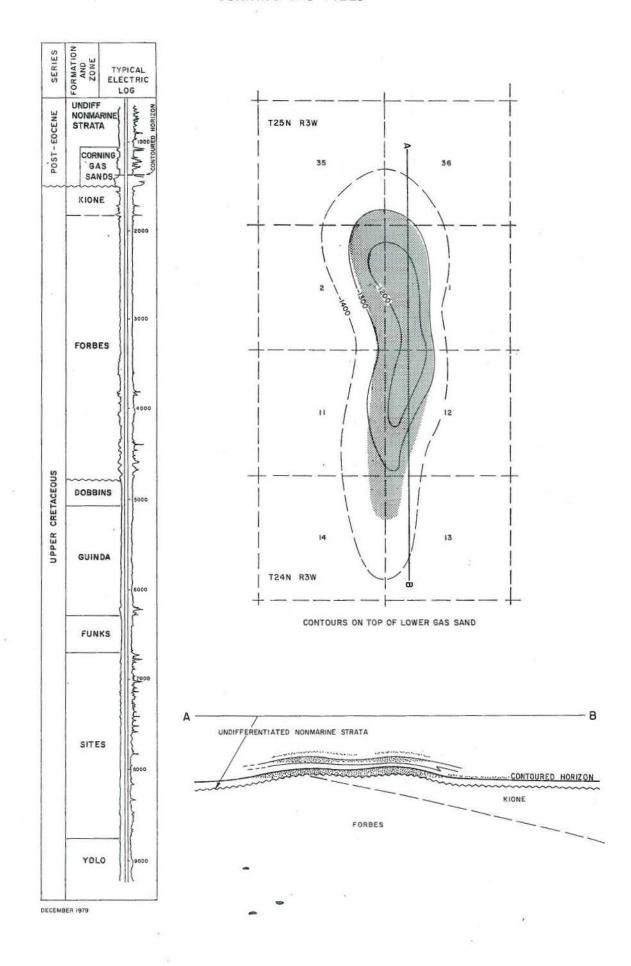
CONWAY RANCH GAS FIELD

COUNTY: YOLO

CONWAY RANCH GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

100	Present operator and well designation	Original operator and well designation	Sec. T. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "I.O.C." 2	Same as present	8 9N	3E	MD	4,806	Starkey	
Deepest well	Buttes Resources Co. "Humble-Investment Opr., Inc." 2	Same as present	1 9N	2E	MD	6,700		Forbes Late Cretaceou


Opr., Inc	2					Late Cretaceou
			POOL DATA			
ITEM	MOKELUMNE RIVER	STARKEY	WINTERS			FIELD OR AREA DATA
Discovery date	June 1973	July 1972	June 1974			
Gas (Mcf/day)	5,310 1,110 Variable	6,600 1,425-1,500 21/64	5,750 1,710 6/16		Let	
pressure (psi)	1,340 99	1,762 107	2,380 118			
nitial gas content (MSCF/acft.). ormation Geologic age Average depth (ft.) Average net thickness (ft.)	540-790 Mokelumne River Late Cretaceous 2,850-3,100 0-80	760-1,100 Starkey Late Cretaceous 5,300-4,300 0-60	860-1,300 Winters Late Cretaceous 5,150-5,300 0-50			
Maximum productive area (acres)	385	880	220			
		R	ESERVOIR ROCK PROPER	TIES		
Porosity (%)	24-30†	26-321	22-281			
Swi (%) Sgi (%) Permeability to air (md)	35-45† 55-65†	35-45† 55-65†	35-45† 55-65†			
		R	ESERVOIR FLUID PROPER	TIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB). Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F						
Gas; Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.660 758	.650 779	.658 762			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)						
		EN	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects						
Peak oil production (bbl) Year Peak gas production, net (Mcf)						3,824,342 1975

Base of fresh water (ft.): (2,200-2,600

Remarks:

Selected References: Campion, J. T., Jr., 1980, Conway Ranch Gas Field: Calif. Div. of Oil and Gas Publication TR24, p. 1-13.

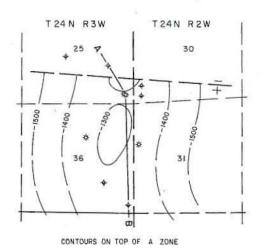
CORNING GAS FIELD

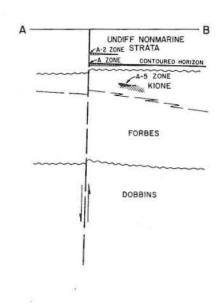
COUNTY: TEHAMA

CORNING GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Superior Oil Co. "Saldubehere" 1	Same as present	12 24N 3W	MD	9,225	Corning Sands	Yolo Late Cretaceous
Deepest well	Same as above			"	**		


		POOL	DATA		
ITEM	CORNING SANDS				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi)	October 1959 17,676 380 1 415-645 90-96				
Reservoir temperature (*F)	300-380 undiff. nommarine post-Eocene 980-1,450 5-120				
		RESERVOIR RO	CK PROPERTIES		
Porosity (%)	29-33 25-30 70-75 600-1,900		-		
		RESERVOIR FL	UID PROPERTIES		
Oil: Oil gravity ("API) Sulfur content (% by wt.)	.65711 760 5,000-14,000				
		ENHANCED REC	OVERY PROJECTS		
Enhanced recovery projects Date started Date discontinued				ā	71
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,349,947 1955				


Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries began in July 1954 and the field was abandoned in July 1971. The field was reactivated in 1974.

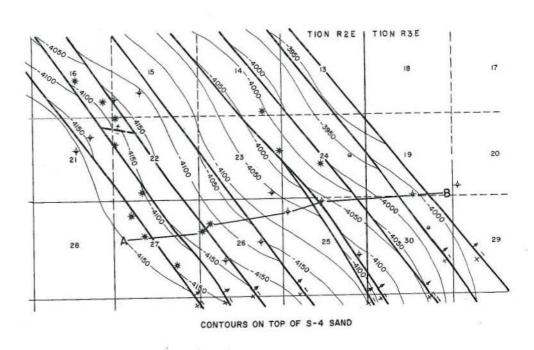
SOUTH CORNING GAS FIELD (Abandoned)

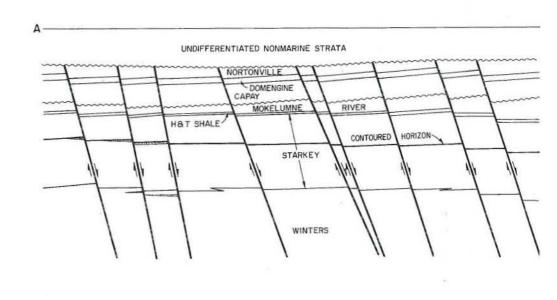
FORBES	Lindson Lindson
	STRATA FORMATION
	ZONE A-2
3000	COMPOSITE ELECTRIC LOG

COUNTY: TEHAMA

CORNING, SOUTH, GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Saldubchere- Buttes" A	The Buttes Oilfields, Inc. "Saldubehere- Buttes" A	25 24N 3W	MD	2,365	A	
Deepest well	Northern Counties Petroleum Co. "Ewers Mooney" 1	Same as present	25 24N 3W	MD	8,253		Sites Late Cretaceous


			POOL DATA			
ITEM	A-2	A	A-S			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	2,000 340 1/2 520 80 320-390 undiff. nonmarine post-Eocene 1,185	1,955 635 3/8 680 90 350-420 undiff. nonmarine post-Eocene 1,560	2,995 880 3/8 1,010 101 460-560 Kione Late Cretaceous 2,340			
Average nel thickness (ft.) Maximum productive area (acres)	10	15	20			80
		RI	ESERVOIR ROCK PROPER	RTIES		
Porosity (%)	29-33 25-30 70-75	29-33 25-30 70-75	25-28*** 35-40*** 60-65***			
AN O'NOW SHOW AND STORMAN STORMAN		R	ESERVOIR FLUID PROPER	RTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.) Water: Salinity, NaCI (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.615†† 870	.615 ^{††} 870	.584†† 940			
		ENI	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects Date started Date discontinued			. 46			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year		-			-	218,595 1956

Base of fresh water (ft.): 1,100

Remarks: Commercial gas deliveries began in July 1954 and ceased in August 1971. The field was abandoned in August 1972. Four wells were completed and cumulative gas production was 1,256,799 Mcf.

М	AND EMBER	ELECT LOC	
N	ONMARINE	WALL	An Marie
~~~	ORTONVILLE	~57	3000
D	OMENGINE	MAR	1
C/	APAY		3500
		7	
Н	8 T SHALE	$\Rightarrow$	
	S-I SAND	JAW .	4000
	S-2 SAND	MUM	
	S-3 SAND	My My	
REY	S-4 SAND	MMM	4500
STAF	S-5 SAND	Manage of the second	5000
w	INTERS	Man	- 5500
	STARKEY NO. 25	S-2 SAND S-3 SAND S-4 SAND	NORTONVILLE  DOMENGINE  CAPAY  MOKELUMNE RIVER  H & T SHALE  S-1 SAND  S-3 SAND  S-4 SAND  S-4 SAND  S-5 SAND



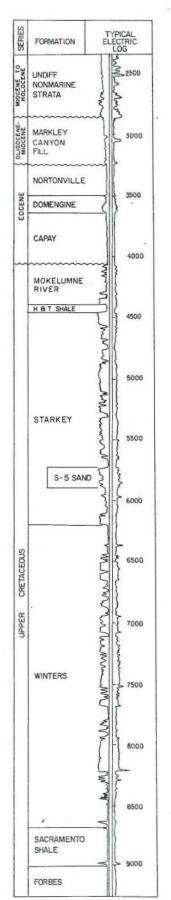


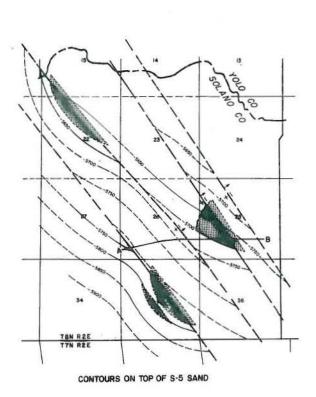
JANUARY 1980

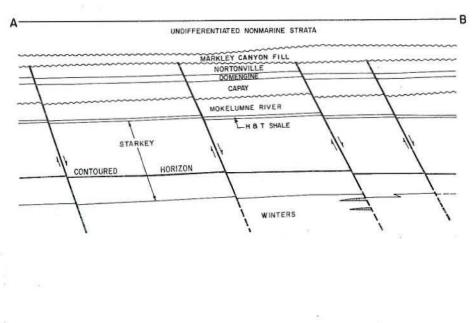
COUNTY: YOLO

# CROSSROADS GAS FIELD

### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "Amstar" 1	Standard Oil Company of Calif. "Amstar" 1	22 10N 2E	MD	7,850	Starkey and Winters	Forbes Late Cretaceous
Deepest well	Same as above	(10)	"		"	"	


		P	OOL DATA		
ITEM	STARKEY (S-3)	WINTERS			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	May 1976  2,000 1,628 1/2 2,050 114  970-1,300 Starkey Late Cretaceous 4,150 35	May 1976  2,600 1,710 1/2 2,440 120 910-1,300 Winters Late Cretaceous 4,985 20			1,060
		RESERVO	OIR ROCK PROPERTIES		
Porosity (%)	28-34 † 40-45 † 55-60 †	22-28† 40-45† 55-60†			
		RESERVO	OIR FLUID PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F  Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.587 938	.592 930		· 5	.578 961
		ENHANCE	D RECOVERY PROJECTS		
Enhanced recovery projects					
			* -		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	980,448 1979	390, 342 1979			


Base of fresh water (ft.): 2,500

Remarks: Commercial gas deliveries began in September 1977,

### DAVIS SOUTHEAST GAS FIELD







DECEMBER 1978

COUNTY: SOLANO and YOLO

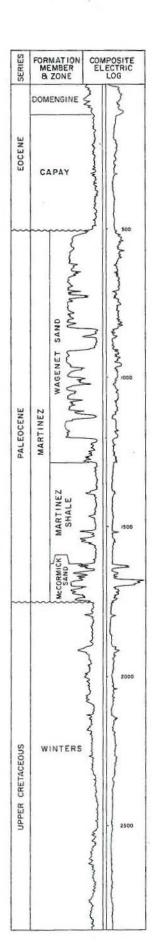
# DAVIS, SOUTHEAST, GAS FIELD

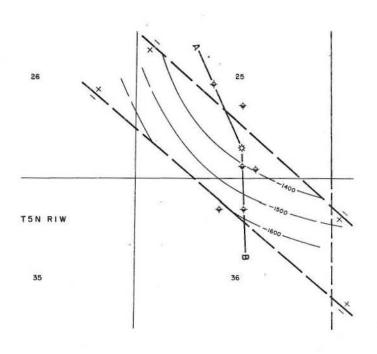
### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Phillips Petroleum Co. "Beltrami A" 1	Same as present	25	SN :	2E	MD	9,207	Winters	Forbes Late Cretaceous
Deepest well	Same as above			"		"	.11		"

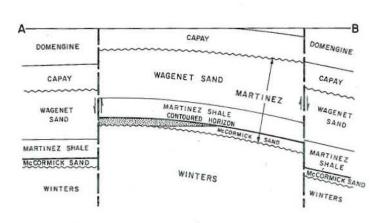
			POOL DATA		
ITEM	DOMENGINE	STARKEY	WINTERS		FIELD OR AREA DATA
Discovery date	November 1977 a/	October 1973 b/	April 1965 ^c /		5
Initial production rates Oil (bbl/day)		7010001 11110	1411111111	1	
Oil (bbl/day)			20.000	1	
Gas (Mcf/day) Flow pressure (psi)	1,782 500	2,010	6,269 1,780	1	
Bean size (in.)	3/8	2,125 1/2	3/8	1 1	
nitial reservoir	3/0	1/2	3/0	1 1	
pressure (psi)	930	2,850	2,910	1	
teservoir temperature (*F)	114	127	134	1 1	
nitial oil content (STB/acft.)				1 1	
nitial gas content (MSCF/acft.).	400	1,600-2,000	1,200-1,700	1 1	
ormation	Domengine Eocene	Starkey Late Cretaceous	Winters Late Cretaceous	1 1	
Geologic age	3,535	6,130	6,450	1 1	
Average depth (IL)	5	0,130	15	4 0	
Average net thickness (ft.)	-			1	
area (acres)				1	290
		RE	SERVOIR ROCK PROPE	RTIES	
Porosity (%)	25**	29-32	25-28†		
ioi (%)	70/440		40000	1	
w (%)	40**	25-35 † 65-75 †	30-45		2
g; (%) Permeability to air (md)	60**	65-751	55-70 t	1 1	
Permeability to air (md)					2
		RE	SERVOIR FLUID PROPE	RTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F			,		
ias:	.630 ft	.610 ft	.597 ††	1	
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	854	871	925		
Heating value (Btu/cu. It.)	034	6/1	925	1	
Vater:			are to a relation		l
Salinity, NaCl (ppm)		12,670	12,980	1	
T.D.S. (ppm)					
R _W (ohm/m) (77°F)				4	
		ENH	ANCED RECOVERY PRO	OJECTS	
Date started					
Peak oil production (bbl)					
Peak gas production, net (Mcf)			1	1 1	432,204
					1973

Base of fresh water (ft.): 2,600-3,100


- Remarks: Commercial gas deliveries began in December 1966.


  a/
  Date of recompletion. Originally completed in the Winters formation. The well was abandoned in 1978.
  b/
  Abandoned in April 1979.
  c/
  Abandoned in April 1971, reactivated in July 1972, and abandoned in June 1978.

Selected References: Johnson, R. A., 1980, Davis Southeast Gas Field: Calif. Div. of Oil and Gas Publication TR24, p. 15-21.


# DENVERTON GAS FIELD

(Abandoned)





CONTOURS ON TOP OF MCCORMICK SAND

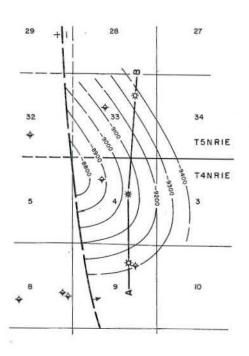


COUNTY: SOLANO

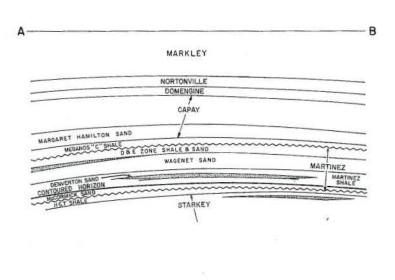
# DENVERTON GAS FIELD (ABD)

### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec	. т. ғ	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Getty Oil Co. "A. Peterson" 1	Honolulu Oil Corp. "A. Peterson" 1	25	5N	1W	MD	1,801	McCormick	
Deepest well	Chevron USA Inc. "H. D. Peterson et al 558" 25	Standard Oil Co. of Calif. "H. D. Peterson et al 558" 25	25	5N	1W	MD	6,000		undiff. marine Late Cretaceous


_	1	POOL DATA	
ITEM	McCORMICK		FIELD OR AREA DATA
Discovery date	August 1948 1,110 750		
Bean size (in.)nitial reservoir pressure (psi)	14/64 873 95 330-440		
nitial gas content (MSCF/acft.).  ormation  Geologic age  verage depth (ft.)  verage net thickness (ft.)  Avaximum productive  area (acres)	Martinez Paleocene 1,425 25		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	22-25***		
Soj (%)	35-40*** 55-65***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.611 1,033		
Water: Salinity, NaCl (ppm)	3,080		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects  Date started  Date discontinued			
Peak oil production (bbl)			
Year	99,910 1950		

Base of fresh water (ft.): 100-900


Remarks: Commercial gas deliveries began in October 1948 and ceased in December 1952. The field was abandoned in March 1953. Only one well was completed and cumulative gas production was 231,525 Mcf.

# DENVERTON CREEK GAS FIELD

SERIES	FORMATION	MEMBER & ZONE	TYPICAL ELECTRIC LOG
FOST- EOCENE	NONMARINE F		3900
			4000
	MARKLEY		- 5000
EOCENE	NORTON-	{	-( 5000
	DOME	ENGINE	
	САРАУ		- 7000
	MEGANOS	MARGARET HAMILTON SAND	- } ***
	~~	DBE ZONE SHALE & SAND	
PALEOCENE	MARTINEZ	WAGENET SAND  MARTINEZ SHALE  DINVERTON SAND	M. 9000
~}sn	HET	SHALE	1 5
CRETACEOUS	STARKEY	(	£10000



CONTOURS ON TOP OF McCORMICK SAND



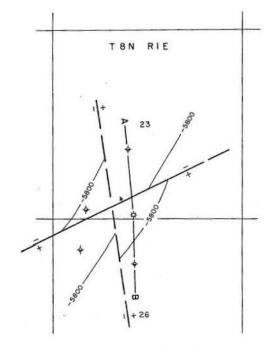
DECEMBER 1979

COUNTY: SOLANO

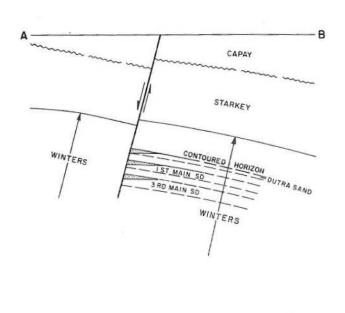
## DENVERTON CREEK GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Trojan Powder Co." 1	Same as present	33 5N	1E	MD	11,209	unnamed	Winters Late Cretaceous
Deepest well	Same as above	"	. 11			**	"	ii


DATA

			POOL DATA		
ITEM	ANDERSON-WAGENET	DENVERTON (Heidorn)	UNNAMED		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	158 2,650 1/2 3,730 178 1,200-1,500 Martinez Paleocene 8,585 15	November 1968  4,947 1,600 20/64  4,680 182 1,400 Martinez Paleocene 8,930 35	1,285 2,110 14/64 4,800 194 1,600 Starkey Late Cretaceous 9,890 30		220
		R	ESERVOIR ROCK PROPERTIES	5	
Porosity (%)	20-24*** 35-40*** 60-65***	21 40 60 5	22 37 63		
		R	ESERVOIR FLUID PROPERTIE	s	
Oil: Oil gravity (*API)	.660	.659	.660		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	1,045	1,045 4,110-34,000	9,930		
		EN	HANCED RECOVERY PROJEC	TS	
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					225,706 1977


Base of fresh water (ft.): Less than 500

Remarks: Commercial gas deliveries began in March 1967 and ceased in May 1971. The field was abandoned in January 1973,
The field was reactivated in October 1977.

SERIES	FORMATION MEMBER & ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	- 1 3000
	NORTONVILLE	
EOCENE	DOMENGINE	3500
	CAPAY	4000
UPPER CRETACEOUS	STARKEY OF THE PROPERTY OF THE	4500 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 5000 - 50
	WINTERS  DUTRA SO  IST MAIN SAND	W Ju. W



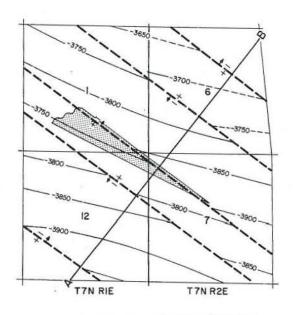
CONTOURS ON TOP OF DUTRA SAND



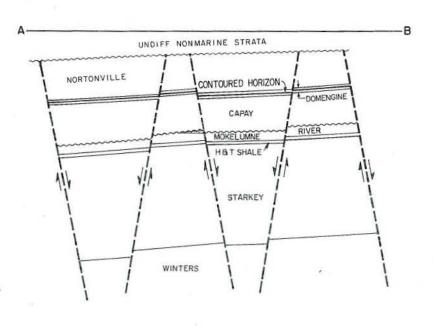
COUNTY: SOLANO

**DIXON GAS FIELD** (ABD)

### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	17000000	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Q. R. Grenfell & Son "Dutra et al" 1	S. M. Reynolds Oper. "Dutra et al"1	23 8N 1E	MD	6,205	Winters	
Deepest well	Cameron Oil Co. "Burroughs"1	Same as present	23 8N 1E	MD	7,912		Winters Late Cretaceous

		VI	POOL DATA		
ITEM	DUTRA	1ST MAIN	3RD MAIN		FIELD OR AREA DATA
Discovery date	June 1963	June 1963	January 1963		
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	See remarks	See remarks	See remarks		
nitial reservoir pressure (psi)	2,685 118	2,670 120	2,760 122		
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.). comation	1,100-1,400 Winters Late Cretaceous 5,860 10	1,100-1,400 Winters Late Cretaceous 5,950	1,200-1,400 Winters Late Cretaceous 6,150		80
			ESERVOIR ROCK PROPER	TIES	
Porosity (%)	24-27	24-27	24-27		
Soj (%)	35-40* 60-65*	35-40* 60-65*	35-40*** 60-65***		-
			ESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity ("API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.615 † † 870	.620†† 865	.620†† 865		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	17,000	10,443	10,443		
		EN	HANCED RECOVERY PRO	JECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					226,023 1964


Base of fresh water (ft.): 2,700

Remarks: Commercial gas deliveries began in June 1964. The single producing well was abandoned in January 1971 with a cumulative production of 636,502 Mcf.
Production from the three zones was commingled. During a back-pressure test in June 1963, gas was produced as follows: Dutra zone: 5,000 Mcf
per day, 2,140 psi flow pressure, 5/16" bean; 1st and 3rd Main zones (commingled): 4,880 Mcf per day, 2,100 psi flow pressure, 5/16" bean.

SERIES	FORMATION	TYPICAL ELECTRIC LOG
POST - EOCENE	UNDIFF NONMARINE STRATA	January M.
^	NORTONVILLE	
EOCENE	DOMENGINE	{
~	CAPAY	4000
	MOKELUMNE R	IVER
UPPER CRETACEOUS	STARKEY	5000
	WINTERS	



CONTOURS ON ELECTRIC LOG MARKER IN DOMENGINE

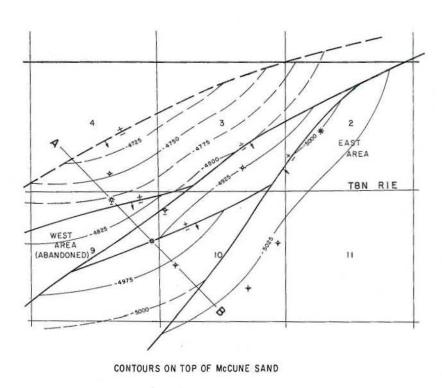


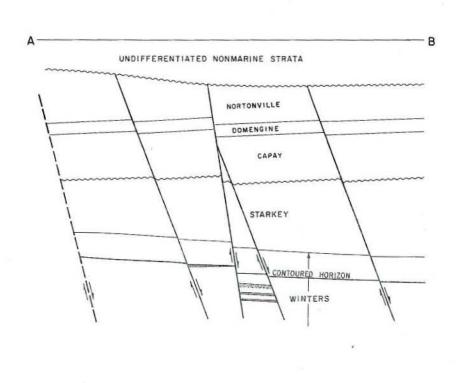
COUNTY: SOLANO

DIXON, EAST, GAS FIELD

## DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Coastal Oil & Gas Corp. "E. Dixon" 1	Gas Producing Enterprises "E. Dixon" 1	7 7N 2E	MD	7,088	Mokelumne River	Winters Late Cretaceous
Deepest well	Same as above	111			"	"	"


			POOL DATA		
ITEM	MOKELUMNE RIVER				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (McC/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("f") Initial rise content (MSCF/acft.) Initial go content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	May 1979  1,350 1,530 3/16 1,970 115 370 Mokelumne River Late Cretaceous 4,300 15 60				
		R	ESERVOIR ROCK PROPE	RTIES	 A CHAD 1854
Porosity (%)	15† 58† 42†				
		R	ESERVOIR FLUID PROPE	ERTIES	
Oil: Oil gravity ("API)  Oil gravity ("API)  Sulfur content (% by wt.)  Initial solution  GOR (SCF/STB)  Bubble point press. (psia)  Viscosity (cp) @ "F  Gas:  Specific gravity (air = 1.0)  Heating value (Btu/cu. ft.)  Water:  Salinity, NaCl (ppm)  T.D.S. (ppm)  Rw (ohm/m) (77F)	.580 965				
		ENI	HANCED RECOVERY PR	OJECTS	
Enhanced recovery projects  Date started  Date discontinued					
Peak oil production (bbl) Year					


Base of fresh water (ft.): 2,700-2,800

Remarks: Commercial gas deliveries have not yet begun.

## DRY SLOUGH GAS FIELD

SERIES		MATION AND EMBER	-	TRIC
POST - EOCENE	UND	FF MARINE		10000 M 20000
~~	NOR	TONVILLE		3000
EOCENE	DOM	ENGINE	7	}
EOC	CAP	AY		- 3500
~~	~~~	S-3		4000
	STARKEY	5-4	Norman N	
ACEOUS	STA	S-5	Murmor Manney Ma	4500
UPPER CRETACEOUS	WIN	TERS	NO €	5000
			WWW WIM	





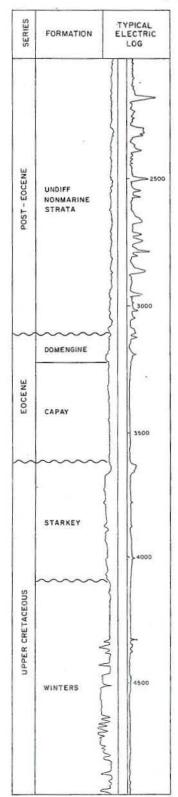
#### DRY SLOUGH GAS FIELD

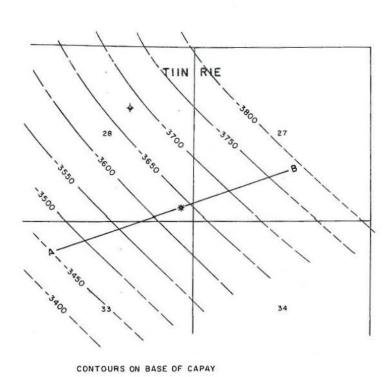
#### DISCOVERY WELL AND DEEPEST WELL

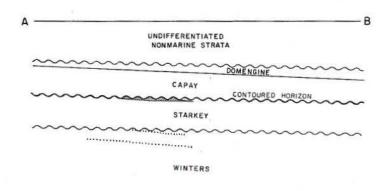
	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mariposa Petroleum Co. "Russell" 2	Same as present	9 8N	1 IE	MD	5,543 a/	McCune	
Deepest well	Cities Service Co. "Reardon A" 1	Same as present	3 8N	1 1E	MD	8,301		Forbes Late Cretaceous

**POOL DATA** FIELD OR AREA DATA (East Area) WINTERS (West Area) McCUNE ITEM August 1978 February 1978 2,575 1,775 1/4 2,340 1,000 2.140 2,619 118-124 140 940-1,200 980-1,200 Winters Late Cretaceous 5,030-5,350 Winters Late Cretaceous 6,040 10-20 15 180 RESERVOIR ROCK PROPERTIES 26-301 24-271 35-40* 60-65* 45-50 t 50-55 t RESERVOIR FLUID PROPERTIES Oil: Oil gravity (*API)
Sulfur content (% by wt.)....
Initial solution
GOR (SCF/STB) ss: Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)..... 859 976 Water: Salinity, NaCl (ppm) .... T.D.S. (ppm) .... R_W (ohm/m) (77*F) ..... **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects...

Date started ......


Date discontinued ..... Peak oil production (bbf) Year Peak gas production, net (Mcf)


Base of fresh water (ft.): 2,400-2,700


Remarks: Commercial gas deliveries began in January 1979. The West Area was abandoned in July 1980. Cumulative production for the West Area is 248,455 Mcf.
One well has been completed in the East Area and commercial gas deliveries there have not yet begun.

Directional well, true vertical depth is 5,398 feet.

# DUFOUR GAS FIELD





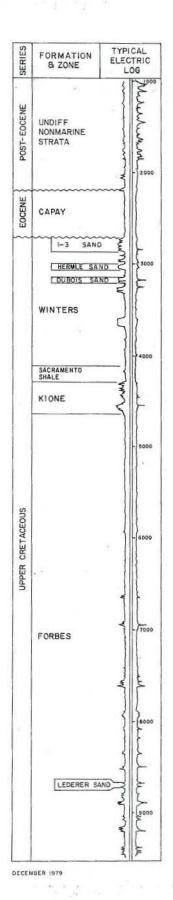


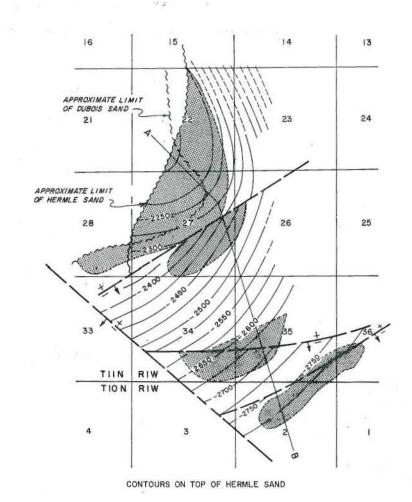
DECEMBER 1980

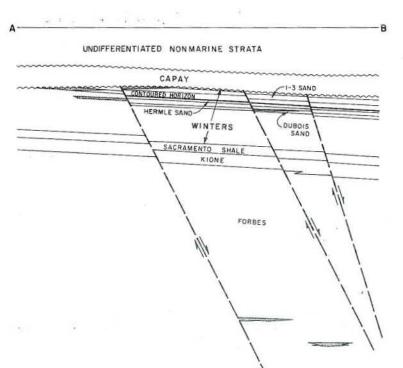
## **DUFOUR GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Paol (zone)	Strata & age at total depth
Discovery well	ARCO Oil and Gas Co. "Dufour" 1	Atlantic Richfield Co. "Dufour" 1	28 11N 1E	MD	5,118	Starkey	Bacramento shale
Deepest well	Same as above		"	"	"	"	"


_		POOL DATA	
ITEM	STARKEY		FIELD OR AREA DATA
Discovery date	3,615 1,475 1/2 1,880 101 960-1,200 Starkey Late Cretaceous 3,700 30		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	28-32*** 40-45*** 55-60***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia). Viscosity (cp) @ "F.  Gas: Specific gravity (air = 1.8) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.577 968		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Year Year	605,613 1979		


Base of fresh water (ft.): 2,100


Remarks: Commercial gas deliveríes began in December 1978.

## DUNNIGAN HILLS GAS FIELD

(Abandoned)







#### **DUNNIGAN HILLS GAS FIELD** (ABD)

#### DISCOVERY WELL AND DEEPEST WELL

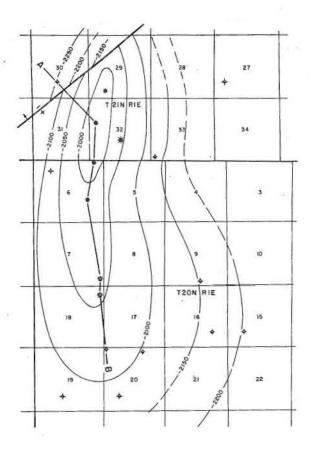
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Dunnigan Unit One" 1	The Texas Co. "Hermle" 1	22 11N 1W	MD	4,022	Hermle & Dubois	
Deepest well	Hunnicutt & Camp Drilling Co. "A. M. Richie" 1	Standard Oil Company of Calif, "A. M. Richie" 1	36 11N 1W	MD	9,500		Forbes Late Cretaceou

no	0		- 4
PO	υ	 A	P

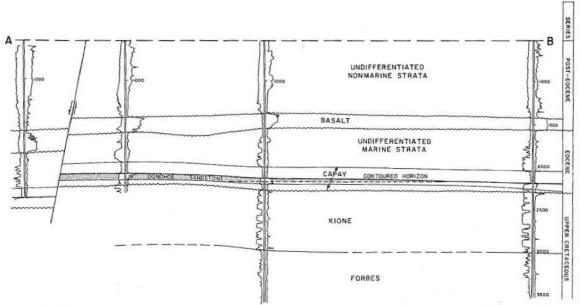
			POOL DATA			acie introduction management
ITEM	1-3	HERMLE	DUBOIS	LEDERER	ų.	FIELD OR AREA DATA
Discovery date	August 1947	February 1946	February 1946	May 1960		
Initial production rates	1470-1-1	Contraction Co.				
Oil (bbl/day) Gas (Mcf/day)	5,000 a/	3,030 b/	3,030 b/	2,250 c/		
Flow pressure (psi)		926	926	950		
Bean size (in.)	28/64	3/8	3/8	5/16		
nitial reservoir	1,040	1,060	1,080	5,005		
pressure (psi) deservoir temperature (*F)	103	104	109	155		
nitial oil content (STB/acft.)	PERSONAL I		985.1			1
nitial gas content (MSCF/acft.).	720-920	730-940	730-940	900-1,400		
ormation	Winters Late Cretaceous	Winters Late Cretaceous	Winters Late Cretaceous	Forbes Late Cretaceous		1
Geologic age Average depth (ft.)	2,450	2,465	2,650	8,400		1
Average net thickness (ft.)	40	65	30	15		
Maximum productive						67523
area (acres)						1,300
			RESERVOIR ROCK PROPE	RTIES		
Porosity (%)	34-38	34-38	34-38	16-25†		
5oj (%)	25-35	25-35	25-35	551		
świ (%)	65-75	65-75	65-75	45†		I .
Sgi (%)Permeability to air (md)	300-1,700	03-75	03-73	101		
crincadinty to an (ind)	TOST NEXT		1			
		T	RESERVOIR FLUID PROPE	ERTIES		
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F						
Gas:	.577††	.577††	.57711	.555††		
Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	970	970	970	1,035		
ricating value (bio/co. it./	370	270	370	1,035		
Water:				1		1
Salinity, NaCl (ppm)	5,500	5,800	8,200	1		
T.D.S. (ppm) R _W (ohm/m) (77°F)		1				
		1	NHANCED RECOVERY PR	OIECTS		
		T	I RECOVERT PA	l l		T
Enhanced recovery projects  Date started				3 (1)		
Date discontinued				1		1
				1		
				1 1		
		1	147			
	E.					
Peak oil production (bbl) Year						1,441,810

Base of fresh water (ft.): 1,750

Remarks: Commercial gas deliveries began in January 1950. The field was abandoned in Becember 1977. Seventeen wells were completed and cumulative production was 10,373,228 Mef of gas and 808 barrels of condensate.


a/ Formation test in August 1947. First commercial production from this zone: The Texas Co. (now Texaco Inc.) "Dunnigan Unit One" 6, Sec. 27, T. 11N., R. 1N., completed in September 1950; initial daily production: 1,500 Mcf, flow pressure 960 psi, 1/4-inch bean.

b/ Production from Hermie and Dubois zones commingled.


C/ Twenty barrels of condensate was also produced.

Selected References: Corwin, C. H., 1951, Dunnigan Hills Gas Field; Calif. Div. of Oil and Gas, Summary of Operations - Calif. Oil Fields, Vol. 37, No. 2.

## DURHAM GAS FIELD



CONTOURS ON TOP OF DONOHOE SANDSTONE

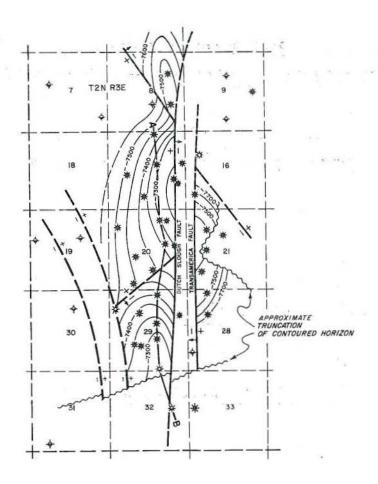


DECEMBER 1979

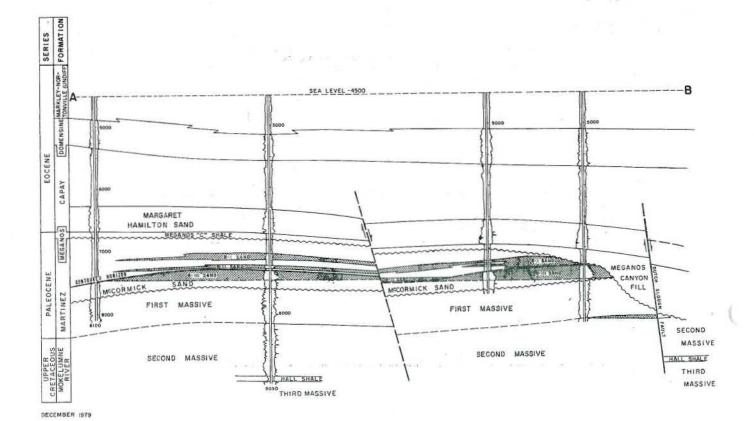
COUNTY: BUTTE

## **DURHAM GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Donohue Fee" 1	Standard Oil Co. of Calif. "Donohue Fee" 1	6 20N 1E	MD	6,000	Donohue	Guinda Late Cretaceou
Deepest well	Same as above			"		n	"

, -	POOL DA	TA FIELD OR
ITEM	DONOHOE	AREA DATA
Discovery date  nitial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) nitial reservoir pressure (psi) Reservoir temperature (*F) nitial oil content (5TB/acft.) nitial gas content(MSCF/acft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1946  10,937 824 7/8 970 94  510 Capay Eocene 2,130 35	
	RESERVOIR ROCK P	OPERTIES
Porosity (%)	25* 30* 70*	
	RESERVOIR FLUID P	OPERTIES
Oil: Oil gravity (*API)	.678 711 22,600	
	ENHANCED RECOVER	Y PROJECTS
Enhanced recovery projects		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,703,625	


Base of fresh water (ft.): 1,150

Remarks: Commercial gas deliveries began in October 1949. Btu value of gas is low due to high nitrogen content.

Selected References: Weddle, J. R., 1962, Durham Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2,



CONTOURS ON TOP OF MCCORMICK SAND

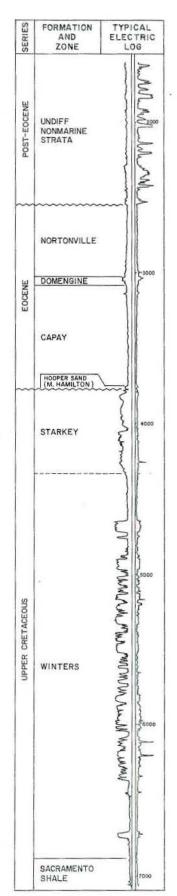


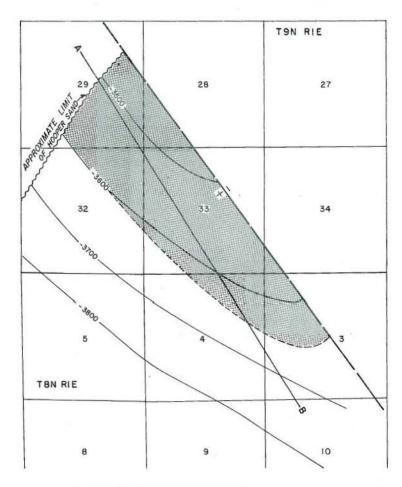
COUNTY: CONTRA COSTA

## **DUTCH SLOUGH GAS FIELD**

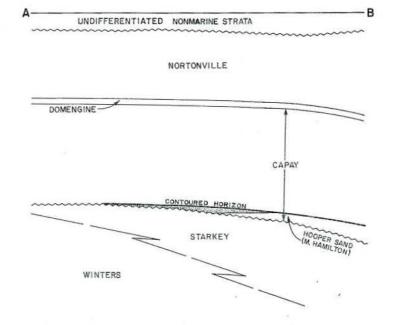
#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. а	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc., Unit Oper. "Tract	Signal Oil and Gas Co. "Signal-Burroughs"	20	2N	3E	MD	7,600	Anderson	
Deepest well	Signal Oil and Gas Co., Oper. "Tract 1" 1-7	Union Oil Company of Calif. "U.S.GDelta Properties" 7	17	2N	3E	MD	13,000		Winters Late Cretaceou


1			POOL DATA			
ITEM	ANDERSON	B-I	B-11	B-III	SECOND MASSIVE	FIELD OR AREA DATA
Discovery date	March 1964	March 1964	March 1964	October 1963	October 1963	
Oil (bbl/day)						
Gas (Mcf/day)	3,470	2,415	4,730	9,700	1,280	1
Flow pressure (psi)	1,205	2,260 14/64	2,191 18/64	2,200 26/64	1,435 12/64	
Bean size (in.)				N. C. Service	1150000000	
pressure (psi)	3,161	3,257	3,281	3,317	3,505	1
Reservoir temperature (*F)	163	166	167	169	181	1
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	1,600	1,600	1,600	1,300-1,400		1
Formation	Martinez	Martinez	Martinez	Martinez	Mokelumne River	
Formation	Paleocene	Paleocene	Paleocene	Paleocene	Lake Cretaceous	
Average depth (IL)	7,000	7,200 50	7,300	7,400	8,100 15	
Average net thickness (ft.) Maximum productive	30	30	30	33	3972	
area (acres)						2,360
		RE	SERVOIR ROCK PROPER	TIES		
Porosity (%)	28	27	27	26		
Soj (%)	33	33	33	40-45		
Sgi (%)	67	67	67	55-60		
Permeability to air (md)	-	195	195	34	1	
		PE	SERVOIR FLUID PROPER	TIEF		
Oil:	7	, and	SERVOIR FEOID FROTER	iles ,	T	
Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ F						
Gas:		la contra				
Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	.591 1,060	.591 1,060	.597 1,065	.603 1,070	1,060	
Water:	1,000	.,,,,,	-,,,,,,	7,000		
Salinity, NaCl (ppm)	-	325	428	4,622	1,301	
		ENH	ANCED RECOVERY PRO	JECTS		
Enhanced recovery projects			10			
Peak oil production (bbl)						
Peak gas production, net (Mcf)						23,170,081
Year						1966


Base of fresh water (ft.): 800

Remarks:


Selected References: Hunter, W. J., 1964, Dutch Slough Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 50, No. 2.

## FAIRFIELD KNOLLS GAS FIELD





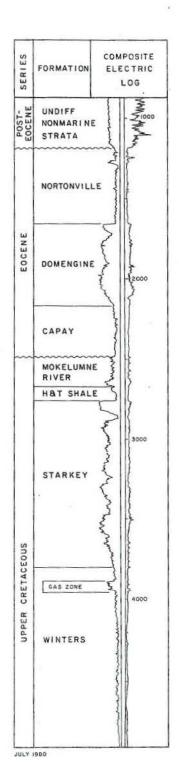
CONTOURS ON TOP OF HOOPER (MARGARET HAMILTON) SAND

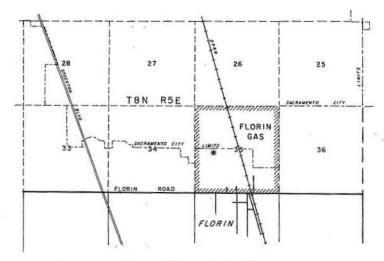


## **FAIRFIELD KNOLLS GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "E.E. Hooper" 1	Standard Oil Company of California	32 9N	OP.	(Birth)	5,181	Hooper	
Deepest well	Supreme Oil & Gas Corp; "Corcoran" 1	Franco Western Oil Co. "Corcoran" 33-4	33 9N	1E	MD	7,069		Sacramento shale Late Cretaceous


$\mathbf{n} \mathbf{c}$		DAT	T A
POO	L	DA	M


100			POOL DATA		
ITEM	HOOPER	UNNAMED			FIELD OR AREA DATA
Discovery date	November 1937	April 1964			
nitial production rates	november tour	100000000000000000000000000000000000000		1	
nitial production rates Oil (bbl/day) Gas (Mcf/day)		1		1	
Gas (Mcf/day)	13,000	2,930		1 1	
Flow pressure (psi)	720	1,900		1 1	
Bean size (in.)	1/2	1/4		1 1	
nitial reservoir		5.0		1 1	
pressure (psi)eservoir temperature (°F)	1,610	2,280		1 1	
eservoir temperature (°F)	108	124	l l	1	
nitial oil content (STR/acft.)				1 1	
nitial gas content (MSCF/acft.).	1,000	1,100-1,300 Winters		1 1	
ormationnortsmin	Capay	Late Cretaceous		1 1	
eologic age	Eocene	5,040		1 1	
verage depth (ft.)	3,625	5,040		1	
verage net thickness (ft.)	25	3		1	
taximum productive		1 1		1 1	400
area (acres)				1	100
		RES	RVOIR ROCK PROPERTIES		
orosity (%)	30**	26-301			
oi (%)			1	1 1	
wi (%)	30**	35-40***		1	
gi (%)	70**	60-65***	1	1	
ermeability to air (md)				1 1	
east and and a transfer and a second and a s			RVOIR FLUID PROPERTIES		
		RES	RVOIR FEUID PROPERTIES	T	-
Oil: Oil gravity ('API)					
Gast					
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)		880-930			
ricating value (bits/car (t.)				1 1	
Water:		1		1 1	
Salinity, NaCl (ppm)	670	840		1 1	
T.D.S. (ppm)		1		1	
R _W (ohm/m) (77°F)					
		ENH	NCED RECOVERY PROJECTS		
Enhanced recovery projects		,			
Date started		1		1	
Date discontinued		1	1		
3		1		1	
		1		4 1	
1		1	1	1	
		1			
		1		1 1	
		1 3		1 1	
1		1			
		-			
Peak oil production (bbl)		1			
Year		1		1	357,826
Peak gas production, net (Mcf)		1	1	1 1	1951
Year		1		1	

Base of fresh water (ft.): 2,500

Remarks: Formerly known as Plainfield Ridge Gas field. Commercial gas deliveries began in September 1943. The field was abandoned in 1954 and was reactivated in April 1964 when the deeper zone was discovered.

Selected References: Kirby, J. M., 1943, Fairfield Knolls Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 599-600.





SUBSURFACE DATA NOT AVAILABLE

COUNTY: SACRAMENTO

FLORIN GAS FIELD

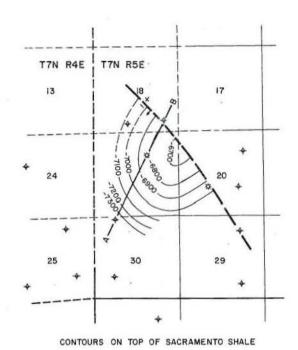
DIS	COVERY WELL AND DEEPEST WE	LL				Strata & age (zone) at total depth
gnation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	C0101101101000000000000000000000000000

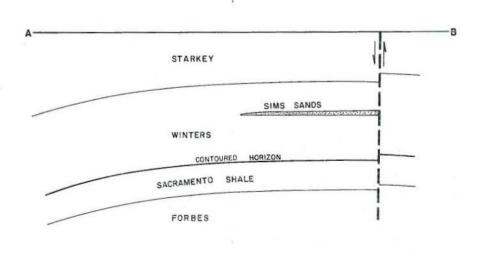
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well Deepest well	Union Oil Company of California "Flori 1 Same as above	" Same as present	35 8N 5E	MD "	4,921 <u>a</u> /	Winters "	Winters Late Cretaceous
		POOL DATA					
ITE	M WINTERS						FIELD OR AREA DATA

			POOL DATA			
ITEM	WINTERS					FIELD OR AREA DATA
Discovery date	December 1977	*				
initial production rates Oil (bbl/day)	2,326 1,102					4.
Initial reservoir pressure (psi)	1,518					
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	890-1,000 Winters					
Geologic age	Late Cretaceous 3,800 30					
Average net thickness (ft.)	40				,	
×		RE	SERVOIR ROCK PROPERTIES			
Porosity (%)	29-33					
Soj (%)	30-35* 65-70*					
Permeability to air (md)	10-27					
		RE	SERVOIR FLUID PROPERTIES			
Oil: Oil gravity ('API) Sulfur content (% by wt.)				a,		
Gas:  Specific gravity (air = 1.0)	.598 904					
14		ENH	ANCED RECOVERY PROJECTS	s		
Enhanced recovery projects						
					,	
Peak oil production (bbl)						
Year						

Base of fresh water (ft.): 1,300

Remarks: The gas is being purchased by a nearby manufacturing plant. Commercial gas deliveries began in July 1980.


a/ Directional well, true vertical depth is 4,807 feet.


# FREEPORT GAS FIELD

(Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	- 1000
EOCENE }	UNDIFF MARINE STRATA CAPAY	1 th.
	MOKELUMNE RIVER	3000
	H &T SHALE	
	STARKEY	-\5000
CRETACEOUS	SIMS SD:	- 6000
UPPER CR	SACRAMENT( SHALE	7000
		8000
CRET	FORBES & OLDER	
PRE-U	BASEMENT	1

DECEMBER 1979

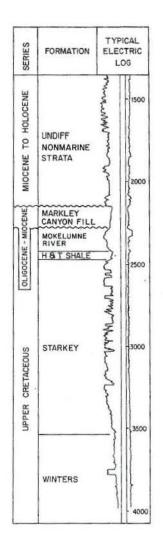


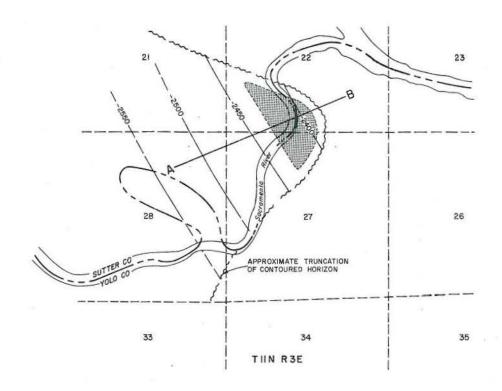


COUNTY: SACRAMENTO

# FREEPORT GAS FIELD (ABD)

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Sims Community" 1	Standard Oil Company of California "Sims	19 7N 5E	MD	7,000	Sims	
Deepest well	Chevron U.S.A. Inc. "Sims Community" 2	Community" 1 Standard Oil Co. of Calif. "Sims Community" 2	18 7N 5E	MD	9,419		basement pre-Lt. Cret.


-		POC	DL DATA	FIELD OR
ITEM	SIMS	UNNAMED		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/aC-fL.) Initial gas content (MSCF/aC-fL.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	9,784 1,582 1/2 2,710 124 1,500-1,800 Winters Late Cretaceous 5,780 20	May 1962  17,300 1,000 1 3,600 126  1,300 Forbes Late Cretaceous 8,040 50		
		RESERVOIR	ROCK PROPERTIES	
Porosity (%)	28-32 † 30-35 † 65-70 †	22* 40* 60*		
		RESERVOIR	FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F.  Gas: Specific gravity (air = 1.0) Healing value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.60611 910	.670†† 735		
		ENHANCED R	ECOVERY PROJECTS	
Enhanced recovery projects  Date started  Date discontinued				
Peak oil production (bbl) Year ————————————————————————————————————				614,927 1953

Base of fresh water (ft.): 650-1,450

Remarks: Commercial gas deliveries began in January 1953 and ceased in 1976. The field was abandoned in 1977. Two wells were completed and cumulative gas production was 2,647,000 Mcf.

# FREMONT LANDING GAS FIELD





CONTOURS ON TOP OF STARKEY

А-----В

UNDIFFERENTIATED NONMARINE STRATA

MARKLEY CANYON FILL

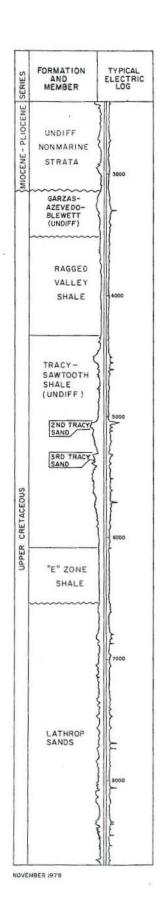
MOKELUMNE RIYER CONTOURED HORIZON

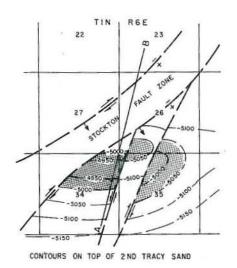
H B T SHALE

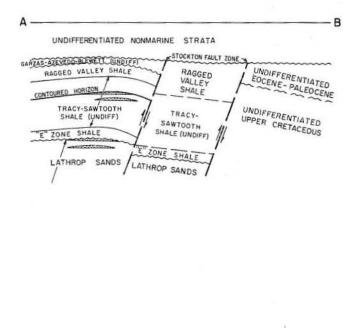
STARKEY

# FREMONT LANDING GAS FIELD

## DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Centura, Inc. "Deseret Farms" 2	B. Pete Jackson "Deseret Farms" 2	22 11N 3E	MD	2,603 a/	unnamed	7000/F0/3 (F0) F5
Deepest well	Centura, Inc. "Deseret Farms" 3	Same as present	27 11N 3E	MD	4,500		Winters Late Cretaceous


-		POOL DATA	TIFLD OR
ITEM	UNNAMED		FIELD OR AREA DATA
Discovery date	October 1976 1,000 900		
Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,000 121 600-670 Mokelumne River Late Cretaceous 2,320 25		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	32-34† 26-30† 70-74†		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ("API) Sulfur content (% by wt.)	.637†† 820		
	40	ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Peak gas production, net (Mcf)			


Base of fresh water (ft.): 1,400

Remarks: Commercial gas deliveries have not yet begun.

2/ Directional well, true vertical depth is 2,490 feet.



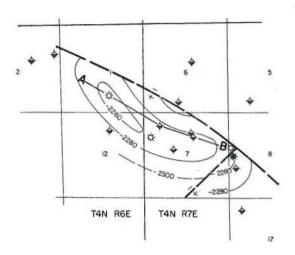




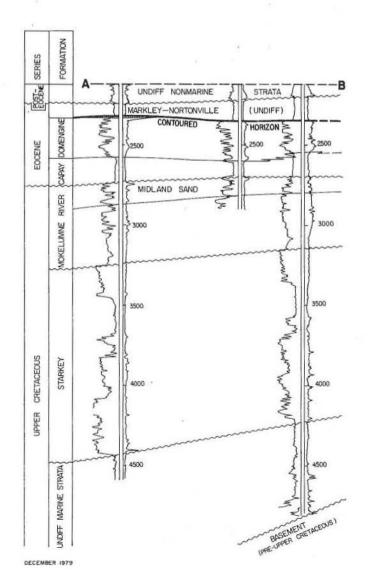
COUNTY: SAN JOAQUIN

## FRENCH CAMP GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Laymac Corp. "Reynolds & Carver-West" 1	Ferguson & Bosworth "Reynolds & Carver- West" 1	26 1N 6E	MD	8,750	Tracy	Lathrop sands Late Cretaceous
Deepest well	Same as above	"	**	.11	"	"	**

			<b>POOL DATA</b>		
ITEM	2ND TRACY	3RD TRACY	LATHROP		FIELD OR AREA DATA
Discovery date	March 1967	March 1967	October 1967		
nitial production rates Oil (bbl/day) Gas (Mcf/day)	2002-07-22022	0.40-0.40.000.000.00			1
Oil (bbl/day)	-1				1
Gas (Mcf/day)	a/ 7,550	a/ a/	8,300	1	1
Flow pressure (psi)	1,250	a/	1,300	E.	10
Bean size (in.)	1/2	= 1	1/2	1	40
pressure (psi)	2,320	2,420	4,990	t I	1
Reservoir temperature (*F)	119	123	146		1
nitial oil content (STB/acft.)	100000000	THE PARTY OF THE P		1	T .
nitial gas content (MSCF/acft.).	450-900	790-1,000	1,200-1,600	1	-
		Tracy-Sawtooth-Shale	Lathrop sands	1	1
Geologic age	Late Cretaceous	Late Cretaceous	Late Cretaceous	1	- 1
Average depth (ft.)	5,000	5,308	6,925 45	1	1
Average net thickness (ft.)	30	*/	43	1	_ 1
Maximum productive area (acres)				1	400
		RES	SERVOIR ROCK PROPER	TIES	-H-WITH A
	22-26 †	20-24 1	18-22***		
Porosity (%)		W. 10-200/01		1	
Swi (%)	35-40 †	40-45 †	40-45***	1	
Sei (%)	60-65 t	55-60 t	55-60***	1	1
Permeability to air (md)					
		RES	SERVOIR FLUID PROPER	TIES	
Oil:					1 2
Oil gravity (*API)		1		1-	)   N
Sulfur content (% by wt.)					11/
Initial solution				1	1
GOR (SCF/STB)				1	1
Initial oil FVF (RB/STB)		1 1			1
Bubble point press. (psia)		1 1		1	
Viscosity (cp) @ *F					
Gas: Specific gravity (air = 1.0)	.666	.666	.639 1 1	1	1
Heating value (Btu/cu. ft.)	760	770	830	1	
ricating value (btu/cu. 11.)					71/
Water:		227		1	
Salinity, NaCl (ppm)	14,000	14,000	24,100		N-
T.D.S. (ppm)					
T.D.S. (ppm) R _W (ohm/m) (77°F)					
		ENH	ANCED RECOVERY PRO	OJECTS	
Enhanced recovery projects					
Date started		1 1			1
Date discontinued		1		1 2	
		1			
1				1	
		1		1	
- 3				1	
		1		1	1
					1
Peak oil production (bbl)					
Year				1	2 343 543
				1	2,101,502
Peak gas production, net (Mcf) Year		1			1970


Base of fresh water (ft.): 100

Remarks: Commercial gas deliveries began in October 1969.

a/ Commingled production from the 2nd and 3rd Tracy zones.



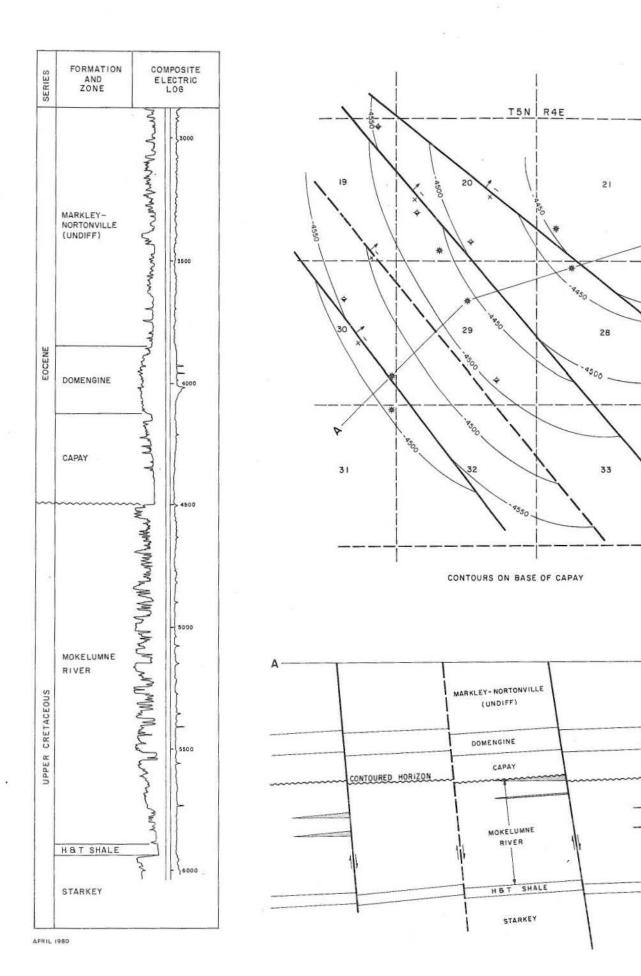
CONTOURS ON TOP OF DOMENGINE



**GALT GAS FIELD** 

COUNTY: SAN JOAQUIN

## DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. &	R. B.	&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Opr. "Community"	Bankline Oil Co. "Community" 1-1	1 4N 6	6E 1	MD	5,765	Domengine	basement (gneiss
Deepest well	Same as above		.0		"	.01	**	"

No. 1		P	DOL DATA	
ITEM	DOMENGINE	UNNAMED		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	April 1943  7,765 692 3/4  1,004 96  560-670 Domengine Eocone 2,330 15	November 1970  1,295 926 1/4 936 97 330 Domengine Eocene 2,433 5		140
		RESERVO	IR ROCK PROPERTIES	
Porosity (%)	25-30 25 75 15-70	20 40 60		
		RESERVO	IR FLUID PROPERTIES	
Oil: Oil gravity ('API)	.690 680 3,938	.666 752		
		ENHANCE	D RECOVERY PROJECTS	
Enhanced recovery projects  Date started  Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				261,063 1956

Base of fresh water (ft.): 1,850

Remarks: Commercial gas deliveries began in October 1946.

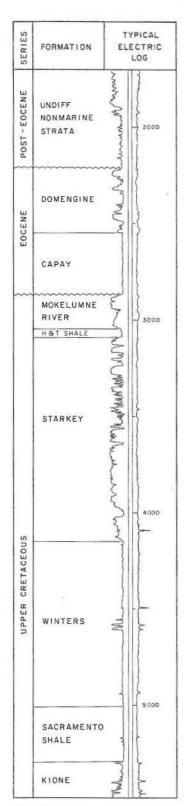
Selected References: Huey, W. F., 1957, Galt Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.



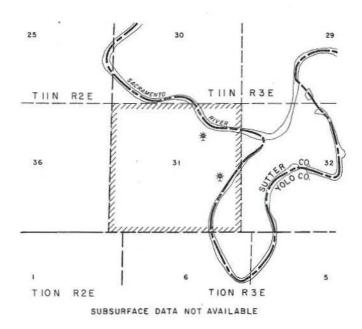
В

COUNTY: SACRAMENTO

## **GRAND ISLAND GAS FIELD**


## DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Nahama & Weagant, Inc. "Garin GU" 1	Amerada Petroleum Corp. "Garin Gas Unit" 1	29 51	N 4E	MD	6,565	unnamed	
Deepest well	Atlantic Oil Co. "Gemignani" 2	Same as present	31 51	N 4E	MD	8,950		Winters Late Cretaceou


			POOL DATA	
ITEM	UNNAMED	UNNAMED		FIELD OR AREA DATA
Discovery date	2,780 1,730 1/4 2,010 105 1,100-1,400 Mokelumme River Late Cretaceous 4,672 5	November 1960  1,300 1,850 3/16  2,200 110  1,200-1,500 Mokelumme River Late Cretaceous 5,071 5		460
		RESERV	OIR ROCK PROPERTIES	
Porosity (%)	28-32 † 35-40 † 60-65 †	28-32† 35-40† 60-65†		
		RESERV	OIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.)				
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	.57011 975	-570 [†] † 975		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	9,900	16,700		
		ENHANC	ED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				380,078 1976

Base of fresh water (ft.): 2,000

Remarks: Commercial production began in June 1976.



DECEMBER 1980

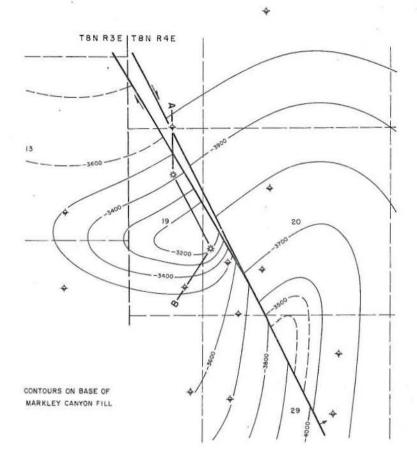


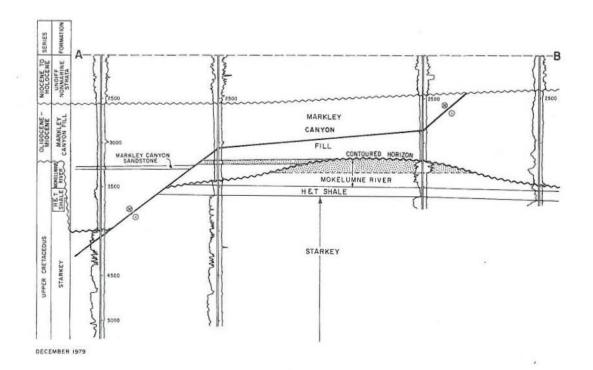
## **GRAYS BEND GAS FIELD**

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Hilliard Oil & Gas, Inc. "Hershey A" 1	Same as present	31 11N 2E	MD	a/	unnamed	Winters Late Cretaceous
Deepest well	Samo as above	**			.00		ii

	POOL	DATA
ITEM	UNNAMED	FIELD AREA D
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	January 1980  Confidential Confidential Confidential 1,969 105 740-1,025 Winters Late Cretaceous 4,500 20	
	RESERVOIR RO	CK PROPERTIES
Porosity (%)	22-28*** 40-45*** 55-60***	
	RESERVOIR FLU	ID PROPERTIES
Oil: Oil gravity ('API)	.626 842	
Salinity, NaCl (ppm)		
	ENHANCED RECO	OVERY PROJECTS
Enhanced recovery projects		
Peak oil production (bbl) Year		


Base of fresh water (ft.): 1,400


Remarks: Commercial gas deliveries have not yet begun.

a/ Confidential.

## GREENS LAKE GAS FIELD

(Abandoned)

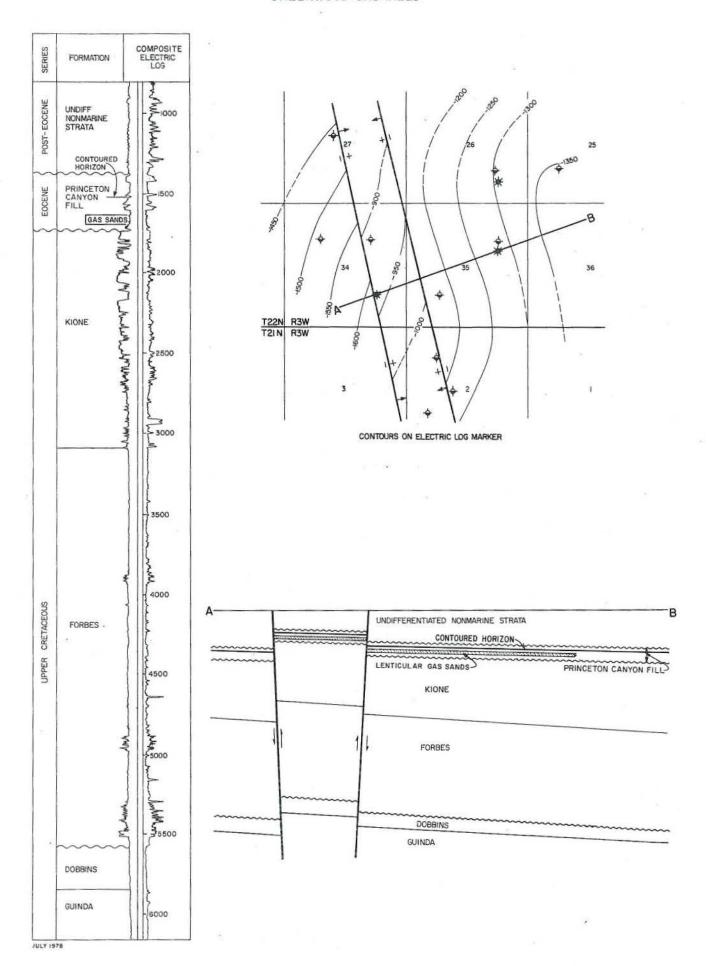




# GREENS LAKE GAS FIELD (ABD)

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Nahama & Weagant, Inc. "Greens Lake Unit 1" 1	The Superior Oil Co. "Greens Lake	19 8N 4E	MD	5,062	Markley Canyon	
Deepest well	Nahama & Weagant, Inc. "Greens Lake Unit 1" 2	Unit" 1-1 The Superior Oil Co. "Greens Lake Unit" 1-2	18 8N 4E	MD	5,200	fill	Starkey Late Cretaceous


			POOL DATA	FIFT OR
ITEM	MARKLEY CANYON FILL	MOKELUMNE RIVER		FIELD OR AREA DATA
Discovery datenitial production rates Oil (bbl/day)	June 1969	April 1970		
Gas (Mcf/day)	1,097 760 1/4	6,959 1,202 1/2		76
pressure (psi) eservoir temperature (*f) nitial oil content (STB/acft.)	1,440 130	1,460	1	
nitial gas content (MSCF/acft.). ormation Geologic age	850 Markley Canyon fill Oligocene-Miocene 3,200 40	Mokelumne River Upper Cretaceous 3,200 110		
Maximum productive area (acres)				220
		RESER	OIR ROCK PROPERTIES	
orosity (%)oj (%)	30	25		
wi (%)gi (%)ermeability to air (md)	35 65	45 55	4	
		RESER	OIR FLUID PROPERTIES	
Oil: gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F				
as: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Vater: Salinity, NaCl (ppm)	.628 820	.624 840		
T.D.S. (ppm)	1			
		ENHANG	CED RECOVERY PROJECTS	
Enhanced recovery projects				
				100
reak oil production (bbl) Yearreak gas production, net (Mcf)				215,130

Base of fresh water (ft.): 2,000

Remarks: Commercial gas production began in 1973. The field was abandoned in 1976. Two wells were completed and cumulative gas production was 337,669 Mcf.

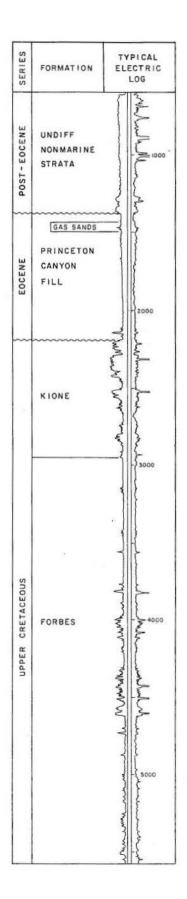
Selected References: Curtin, R. F., 1972, Greens Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 58, No. 1.

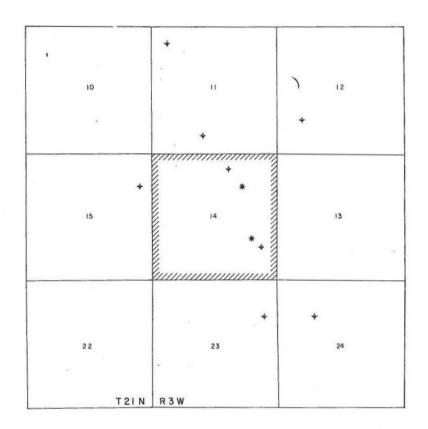
## GREENWOOD GAS FIELD



COUNTY: GLENN

#### **GREENWOOD GAS FIELD**


#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Energy Production and Sales Co.	Same as present	35 22N 3W	MD	3,150	Eocene	
Deepest well	"Livingston" 1 Union Oil Company of California "UTGM Orland" A-1	Same as present	35 22N 3W	MD	6,137		Guinda Late Cretaceou

# **POOL DATA** FIELD OR AREA DATA EOCENE ITEM August 1977 150 410 1/8 600 380 Princeton Cyn. fill Eocene 1,460 100 RESERVOIR ROCK PROPERTIES 30* 30* 70* RESERVOIR FLUID PROPERTIES .559 1,005 Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.) ..... Water: Salinity, NaCl (ppm) ..... T.D.S. (ppm) ..... R_w (ohm/m) (77°F) ..... **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started..... Date discontinued ..... Peak oil production (bbl) Year Peak gas production, net (Mcf) Year 31,368 1980

Base of fresh water (ft.): 920

Remarks: Commercial gas production began in 1979.



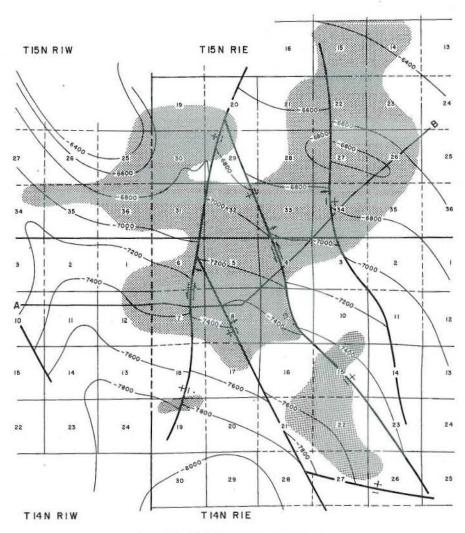


SUBSURFACE DATA NOT AVAILABLE

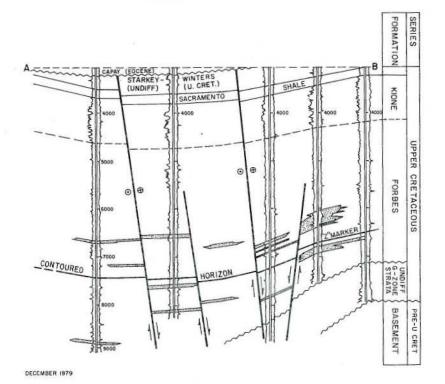
COUNTY: GLENN

# GREENWOOD, SOUTH, GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. Y. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Energy Production and Sales Co. "Rehse"	Same as present	14 21N 3W	MD	3,000	Eocene	
Deepest well	Shell Oil Co. "Rehse et al" 1-14	Same as present	14 21N 3W	MD	8,346		Guinda Late Cretaceous

ITEM	EOCENE		FIELD OR AREA DATA
Discovery date	October 1977  511 586 3/16 639- 99  Princeton Cyn. fill Econe 1,410 20 80		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	30* 30* 70*		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.)	.587 935		æ
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	145,970 1980		


Base of fresh water (ft.): 1,040

Remarks: Commercial gas deliveries began in January 1980.

# GRIMES GAS FIELD



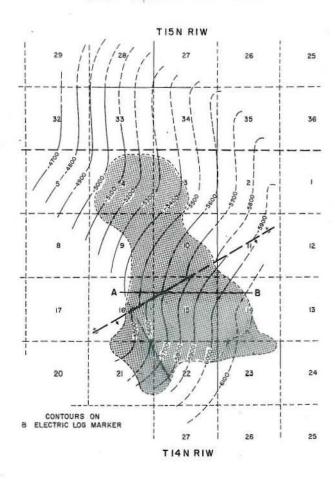
CONTOURS ON Z ELECTRIC LOG MARKER

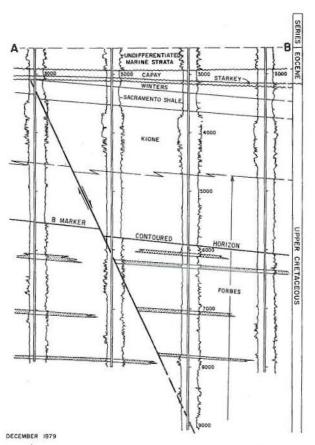


COUNTY: COLUSA and SUTTER

**GRIMES GAS FIELD** 

#### DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Mobil Oil Corp. "Grimes Operating Unit 7" 2	Cameron Oil Co. "Cameron-Armstrong" 1	7 14N 2W	MD	7,528	Forbes	
Deepest well	Buttes Resources Co. "Unit 25" 4	Patrick A. Doheny "Unit 25" 4	26 15N 1W	MD	9,485		Forbes Late Cretaceous


		Po	OOL DATA				
ITEM	FORBES			FIELD OR AREA DATA			
Discovery date Initial production rates Oil (bbl/day)	January 1960  2,820 1,040 3/8  2,780-6,000 152-164 1,300-2,200 923 Forbes Late Cretaceous 4,900-8,800 5-50 14,990						
		RESERVO	IR ROCK PROPERTIES				
Porosity (%)	25-30 35-40 60-65 15-70						
		RESERVO	IR FLUID PROPERTIES				
Oil: Oil gravity ("API) Sulfur content (% by wt.)	.56 1,007 13,688 16,823 0.40		15				
	ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	55,023,637 1966						

Base of fresh water (ft.): 1,100

Remarks: Commercial gas deliveries began in December 1961. Abnormally high pressure gradient at depth. Many of the gas sand stringers have been given local names by operators.

# WEST GRIMES GAS FIELD



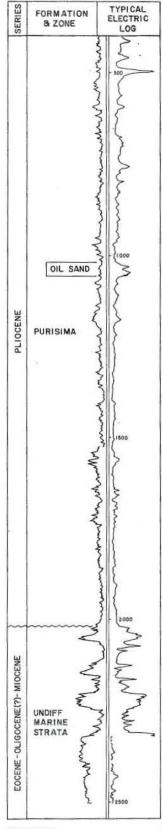


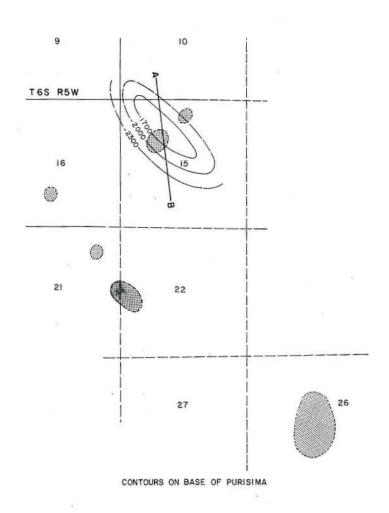
COUNTY: COLUSA

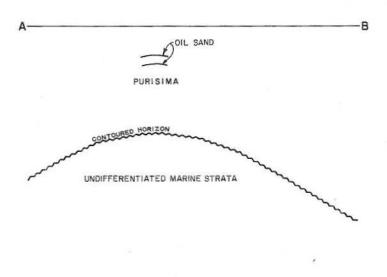
GRIMES, WEST, GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp, "Sachreiter"	Same as present	4 14N 1W	MD	8,263	Forbes	
Deepest well	Getty Oil Co. "Balsdon" 2	Tidewater Oil Co. "Balsdon" 2	22 14N 1W	MD	9,585		Forbes Late Cretaceous


		PO	OL DATA	
ITEM	FORBES			 FIELD OR AREA DATA
Discovery date	December 1960			
Bean size (in.)	2,300		ŧ	
pressure (psi) teservoir temperature (*F) nitial oil content (STB/acft.)	3,055-5,425 120-132			
nitial gas content (MSCF/acft.).	1,400-1,700 Forbes Late Cretaceous		Ĭ	
Geologic age	6,050-7,850 3-35			
area (acres)	3,350			
		RESERVOIR	ROCK PROPERTIES	 
Porosity (%)	22-28 35-46 54-65			
		RESERVOIR	FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F				
Sas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 970-1,010			
Valer: Salinity, NaCI (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	16,200-25,300			
	11 11 11 11 11 11 11 11 11 11 11 11 11	ENHANCED I	RECOVERY PROJECTS	 -
Enhanced recovery projects				
			191	
		-		
Peak oil production (bbl)				
Peak gas production, net (Mcf) Year	5,921,389 1964			


Base of fresh water (ft.): 1,400-2,450


Remarks: Commercial gas deliveries began in December 1961.

Selected References: Beecroft, G. W., 1962, West Grimes Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

# HALF MOON BAY OIL FIELD







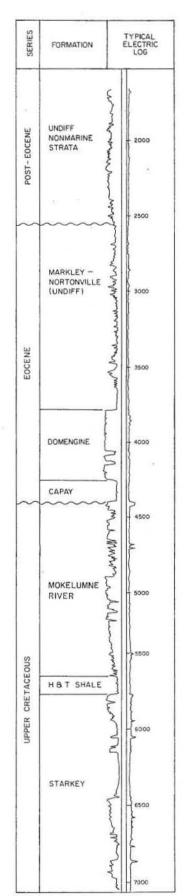
DECEMBER 1970

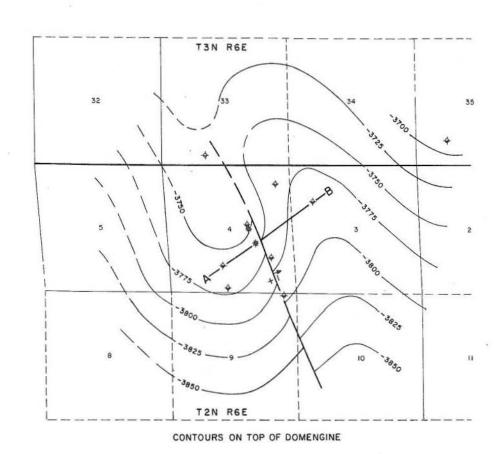
COUNTY: SAN MATEO

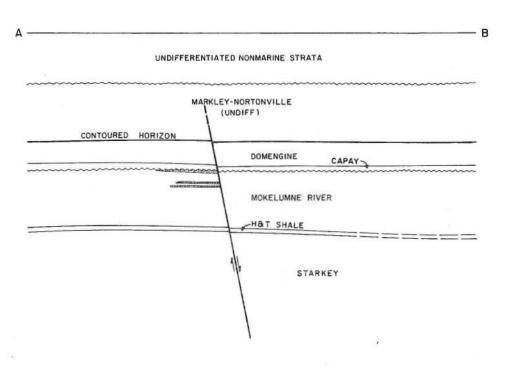
# HALF MOON BAY OIL FIELD

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	J. Berger (?)	Same as present	15 6S 5W	MD	(?)	Purisima	
Deepest well	Wilshire Oil Co., Inc. "Cowell" 1	Same as present	21 6S 5W	MD	7,982		undiff. marine Eccene


			POOL DATA			
ITEM	PURISIMA					FIELD OR AREA DATA
Discovery date  Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.), Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	Purisima Piriocene 800-2,700 50					
		RES	ERVOIR ROCK PROPERT	IES		
Porosity (%)	28-34					
Sgi (%) Permeability to air (md)	1-40					
		RES	ERVOIR FLUID PROPERT	IES		
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (R8/STB) Bubble point press. (psia) Viscosity (cp) @ 'F  Gas: Specific gravity (air = 1.0)	18-45				×	
Heating value (Btu/cu. ft.)	3					
		ENHA	ANCED RECOVERY PROJ	ECTS		
Enhanced recovery projects  Date started  Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf)	unknown					


Base of fresh water (ft.): 100


Remarks:

Selected References: Crandall, R. R., 1945, Half Moon Bay District in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 478-480.

# HARTE GAS FIELD







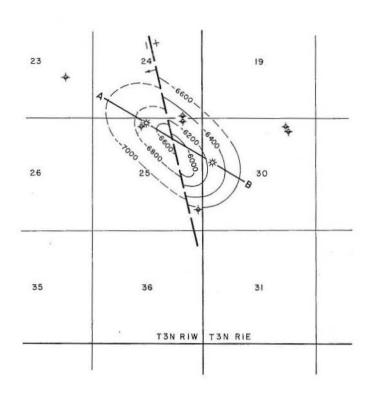
SEPTEMBER 1978

COUNTY: SAN JOAQUIN

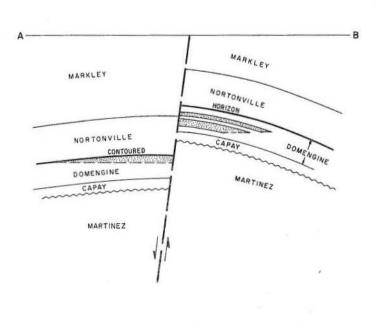
HARTE GAS FIELD

	Present operator and well design	Present operator and well designation		operator and well designation	Sec	Sec. T. & R.		B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well Deepest well	Tri-Valley 0il & Gas Co. "Dawang Tenneco West, Inc. "KCY-Reserve Unit" 1		Same as pro Kern Count Podesta	Land Co., Oper. "KCY-Reserve		2N 2N	6E 6E	MD MD	6,940 8,785	Mokelumne River	Sacramento shale Late Cretaceous
ITE				POOL DATA	_						FIELD OR

1		POO	L DATA	
ITEM	MOKELUMNE RIVER	STARKEY		FIELD OR AREA DATA
Discovery date initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,443 1,672 14/64 2,032 119-122 1,300 Mokelumne River Late Cretaceous 4,400-4,700 10-25	1,250 2,250 10/64 3,488 151 2,000 Starkey Late Cretaceous 6,970 10		60
		RESERVOIR R	OCK PROPERTIES	
Porosity (%)	30** 30** 70**	30** 70**		
		RESERVOIR FI	UID PROPERTIES	
Oil: Oil gravity ("API)	.603 902	.581 961		
		ENHANCED RE	COVERY PROJECTS	
Enhanced recovery projects  Date started  Date discontinued				
Peak oil production (bbl) Year				233,541 1978


Base of fresh water (ft.): 600-700

Remarks: Commercial gas deliveries began in March 1976.


# HONKER GAS FIELD

(Abandoned)

SERIES	FORMATION	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	- 1500
~	~~~~	
		3000
		3500
EOCENE	MARKLEY	- 4000 - 4500 - 5500 - 5500
	NORTONVILLE	_ {     esoo
	DOMENGINE	JANA MATONO
	CAPAY	)   (
PALEOCENE	MARTINEZ	- 7500



CONTOURS ON TOP OF DOMENGINE



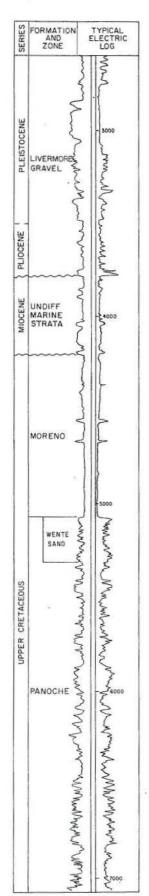
DECEMBER 1979

COUNTY: SOLANO

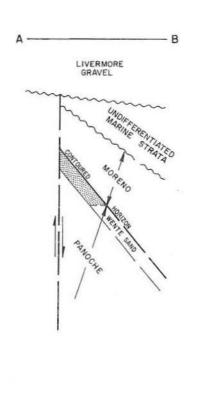
# HONKER GAS FIELD (ABD)

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. а	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Honker Community" 1-A	Standard Gil Co. of Calif. "Honker Community" 1-A	25	3N	1W	MD	8,304	Domengine	
Deepest well	Aminoil USA, Inc. "Standard-King" 1	Signal Oil & Gas Co. "Standard-King" 1	24	3N	1W	MD	11,070 a/		undiff. marine


( <u>-</u>		POOL DATA	
ITEM	DOMENGINE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	3,200 2,229 1 1/4 3,200 151 920-1,200 Domengine Eocene 6,500 180		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	18-22*** 40-45*** 55-60***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)	.597f1 1,040 12,300		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects  Date started  Date discontinued			
Feak oil production (bbl) Year Feak gas production, net (Mcf) Year	277,436 1947		


Base of fresh water (ft.): 150


Remarks: Commercial gas deliveries began in January 1947. The field was abandoned in November 1949. Two wells were completed and cumulative gas production was 300,788 Mcf.

a/ Directional well, true vertical depth is 10,512 feet.

# HOSPITAL NOSE GAS FIELD (Abandoned)

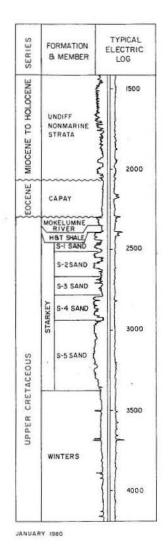


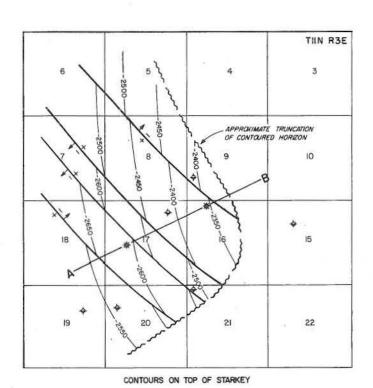


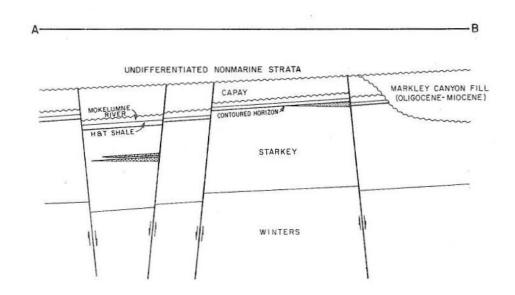


COUNTY: ALAMEDA

# HOSPITAL NOSE GAS FIELD (ABD)


# DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Hancock-Signal (NCT-1) Kente" 1	The Texas Co. "Hancock-Signal (NCT-1) Wenter 1	27 38 2E	MD	7,062	Kente	Panischi Late Eretages
Deepest well	Sume as above		.00	."	н	0	*


		POOL	DATA		
ITEM	WENT!				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	April 1952  150 500 1/8  1,610 136 510 Panoche Late Cretaceous 5,070 110 40				
		RESERVOIR RO	CK PROPERTIES		
Porosity (%)	20** 50** 50**				
	-	RESERVOIR FLU	ID PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)	.70 ^{††} 1,285				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	561				
		ENHANCED RECO	OVERY PROJECTS		
Enhanced recovery projects					
			19		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	9,424 1954			A.	

Base of fresh water (ft.): 1,500

Remarks: Commercial gas deliveries began in November 1952. The field was abandoned in June 1956. Only one well was completed and cumulative gas production was 14,185 Mcf.





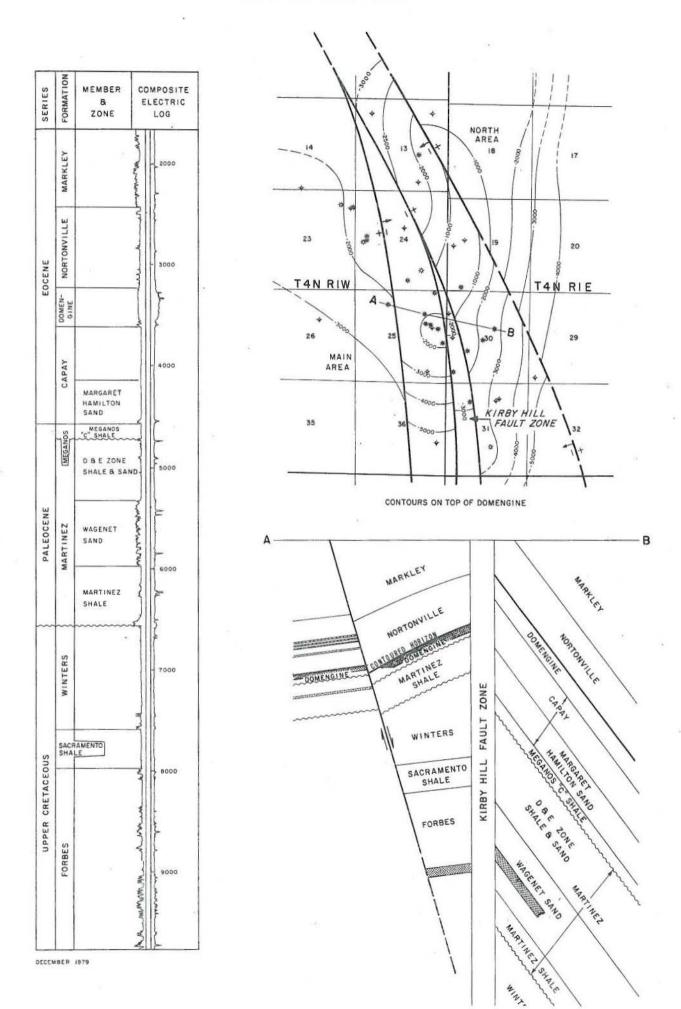


COUNTY: SUTTER

KARNAK GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL

*	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Dow Chemical Co. "Anderson Farms" 1	Same as present	16 11N 3E	MD	4,232 a/	Starkey	
Deepest well	The Dow Chemical Co. "Richter, et al Unit Well" 1	Same as present	17 11N 3E	MD	4,567		Winters Late Cretaceous


		POOL DA	TA	
ITEM	STARKEY			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	August 1976  1,400-2,670 940-1,210 16/64-20/64  1,060-1,350 99-106  640-680 Starkey Late Cretaceous 2,400-3,000 115-30  100			
		RESERVOIR ROCK PI	OPERTIES	
Porosity (%)	29-33 † 40-45 † 55-60 †			
		RESERVOIR FLUID PI	OPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ 'F  Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77"F)	.569625 842-980			
		ENHANCED RECOVER	Y PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				

Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries have not yet begun.

a/ Directional well, true vertical depth is 4,469 feet.

# KIRBY HILL GAS FIELD



COUNTY: SOLANO

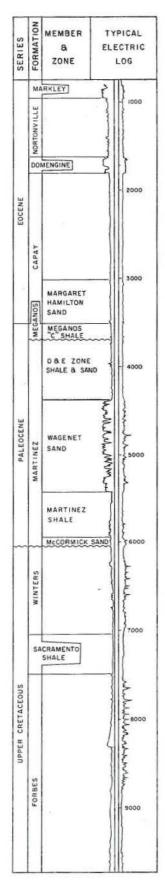
# KIRBY HILL GAS FIELD

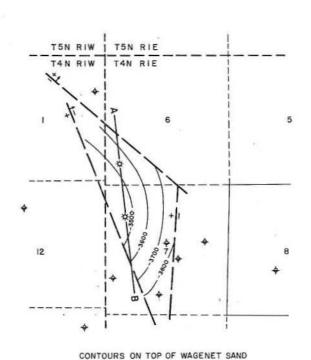
# DISCOVERY WELL AND DEEPEST WELL

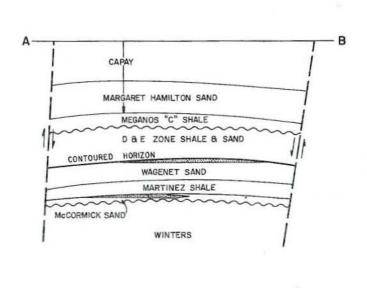
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Dow Chemical "Lambie" 1-A	Shell Oil Co. "Lambie" 1-A	24 4N 1W	MD	2,617	Domengine	
Deepest well	The Dow Chemical Co. "Lambie" 6	Shell Oil Co. "Lambie" 6	30 4N 1E	MD	7,897		undiff. marine Late Cretaceous

POO	חו	AT	ГΑ
FUU	LU	<b>^</b>	

			<b>POOL DATA</b>			
ITEM	MARKLEY	NORTONVILLE	DOMENGINE	NAGENET	(UNNAMED)	FIELD OR AREA DATA
Discovery date	July 1972	August 1947	January 1945	March 1945	February 1948	
nitial production rates						
Oil (bbl/day)	238	1,090	3.980	14,400	4,720	
Flow pressure (psi)	95	693	650	1,641	807	
Bean size (in.)	5/16	1/4	1/2	5/8	1/2	
itial reservoir	250	1,160	1,195	2,205	3,915	
pressure (psi)eservoir temperature (*F)	89	93-105	97-112	110-140	150	
itial oil content (STB/acft.)			5.257.12.5434	505/06(%	1000	
itial gas content (MSCF/acft.).	80-110	580-600	450-470 Domengine	870-1,200 Martinez	Forbes	
ormation	Markley Eccene	Nortonville Eocene	Eocene	Paleocene	Late Cretaceous	
eologic ageverage depth (ft.)	1,100	1,250-2,250	1.550-2.850	2,850-5,400	5,425	
verage net thickness (ft.)	30	35	130	150	40	
laximum productive				N. Control of the Con		1,060
area (acres)						165.00
		R	ESERVOIR ROCK PROPER	TIES		
orosity (%)	18-24***	25	19	20-24***		
orosity (%)	40-45***	35	36	30-35***	1	
%i (%)	60-65***	65	64	65-70***		
ermeability to air (md)	(300) (300)	1081	200			
-						
		T	ESERVOIR FLUID PROPER	THES	1-07	
Oil gravity (*API) Sulfur content (% by wt.)						
as: Specific gravity (air = 1.0)	,595 ft	.590 11	.600 11	.595 11	.585 ^{††}	
Heating value (Btu/cu. ft.)	990	985	995	990	980	
Vater:	viantau art		042 16 779	7,704-14,723	4,280-6,848	
Salinity, NaCl (ppm)	8,217	1,968-14,124	942-16,778	7,704-14,723	1,200-0,040	
T.D.S. (ppm) R _W (ohm/m) (77*F)						
		EN	HANCED RECOVERY PRO	DIECTS		
inhanced recovery projects						
Date discontinued						
Peak oil production (bbl)						
Year Peak gas production, net (Mcf)	3,715,880 1949					
Year			1			1


Base of fresh water (ft.): 250-1,800


Remarks: Abnormally high pressures encountered at depth. Commercial deliveries began in November 1946. Part of the field is being used for gas storage purposes by the Dow Chemical Company. The working gas storage capacity is 12,000,000 Mcf with an approximate maximum withdrawal rate of 5,000 Mcf/day.


Selected References: Frame, R. G., 1949, Preliminary Report on Kirby Hill Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 35, No. 1.

# NORTH KIRBY HILL GAS FIELD

(Abandoned)



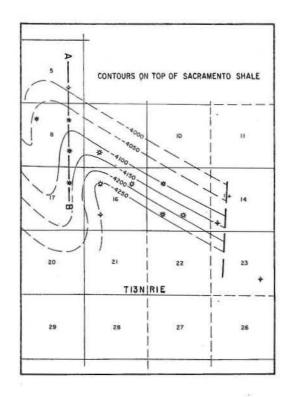


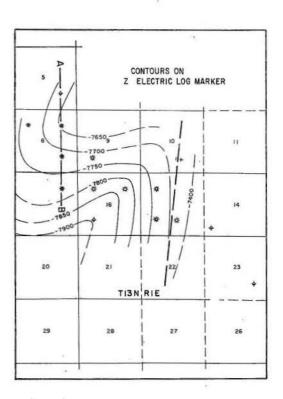


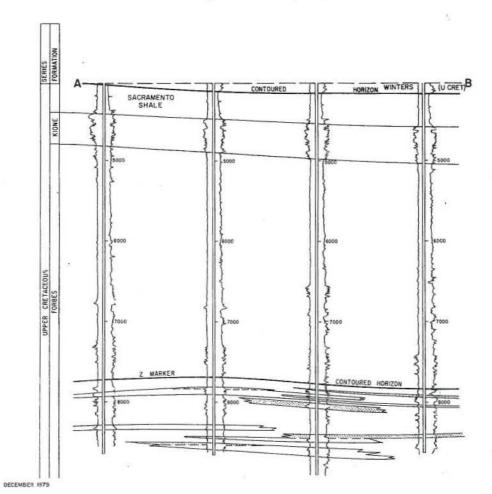
COUNTY: SOLANO

# KIRBY HILL, NORTH, GAS FIELD (ABD)

# DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B,&M,	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Longden Petroleum Co. "Unit B" 1	Shell Oil Co. "Unit B" 1	7 4N	1E	MD	4,309	Wagenet	
Deepest well	Shell Oil Co. "Stewart" 1	Same as present	7 4N	1E	MD	9,667		F-zone Late Cretaceous


1		POO	L DATA	
ITEM	WAGENET	McCORMICK		FIELD OR AREA DATA
Discovery date	July 1953	February 1954		
Oil (bbl/day)	5,000	4,640		4
Flow pressure (psi)	385	1,420		
Bean size (in.)	3/4	3/8		100
nitial reservoir			l l	4
pressure (psi)	1,695 124	1,650 133		- 1
eservoir temperature (°F) nitial oil content (STB/acft.)	124	133		1
nitial gas content (MSCF/acft.).	670-860	490-700		
ormation	Martinez	Martinez		
eologic age	Paleocene	Paleocene	L 9	
verage depth (ft.)	3,510	4,260	1	
verage net thickness (ft.)	40	20	1	
Naximum productive				4
area (acres)	<u> </u>			100
		RESERVOIR R	OCK PROPERTIES	
Porosity (%)	20-24***	18-22***		,
ioj (%)	30-35***	35-45***		
5wi (%)	65-70***	55-65***		1
Permeability to air (md)	03-70	33-03	1	
_				
	THE STATE OF THE S	RESERVOIR F	LUID PROPERTIES	
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F				
Gas:		i i		- B
Specific gravity (air = 1.0)	.57311	.590 ft		
Heating value (Btu/cu, ft.)	980	1,025		i.
ricaning raise (prayear ray amin	15.00	1,000		1
Water:				
Salinity, NaCl (ppm)	5,500	16,600-24,000		1
T.D.S. (ppm) R _W (ohm/m) (77°F)		70		
	4	ENHANCED RE	COVERY PROJECTS	71
Enhanced recovery projects				
Date started				
Date discontinued				
			4	
				4
Peak oil production (bbl)				
Year				Teconomic
Peak gas production, net (Mcf)		1		184,294 1956


Base of fresh water (ft.): None

Remarks: Commercial gas deliveries began in March 1956. The field was abandoned in March 1957. Two wells were completed and cumulative gas production was 187,461 Mcf.

# KIRK GAS FIELD





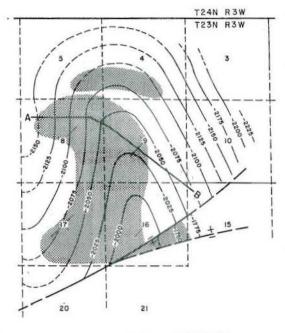


COUNTY: COLUSA and SUTTER

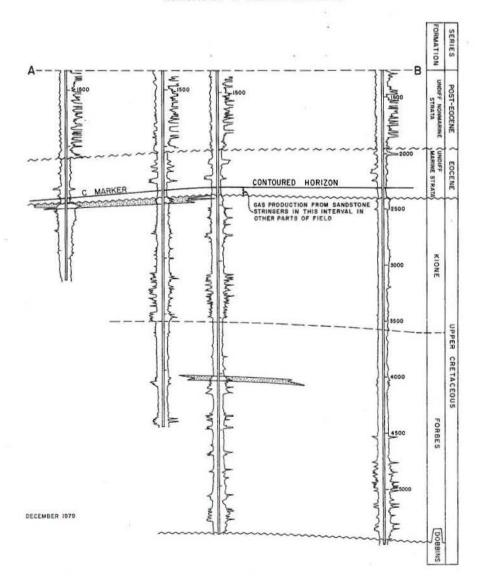
KIRK GAS FIELD

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Goff-Erdman Unit A" 1	Western Gulf Oil Co. "Gulf-Erdman Unit A"	15 13N 1E	MD	9,522	Forbes	Guinda
Deepest well	Same as above		"	"	11	"	Late Cretaceous


**POOL DATA** FIELD OR AREA DATA FORBES ITEM Discovery date ...... Initial production rates Oil (bbl/day) ...... Gas (Mcf/day) ..... October 1960 3,037 1,150 18/64 3,750-5,750 139-154 1,400-1,600 Forbes Late Cretaceous 7,330-8,710 15-95 1,560 RESERVOIR ROCK PROPERTIES 24-29 48-55 45-52 RESERVOIR FLUID PROPERTIES Gas: Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)..... .650-.57011 Water: Salinity, NaCl (ppm) .... T.D.S. (ppm) ..... R_W(ohm/m) (77*F) ..... 11,200-18,000 **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started ...... Date discontinued ...... Peak oil production (bbl) 1,018,815

Base of fresh water (ft.): 1,950


Remarks: Commercial gas deliveries began in December 1961.

Selected References: Hunter, W. J., 1962, Kirk Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 1.

# KIRKWOOD GAS FIELD



CONTOURS ON C ELECTRIC LOG MARKER



COUNTY: TEHAMA

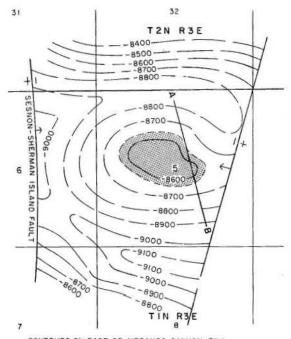
# KIRKWOOD GAS FIELD

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	James W. Morgan "James W. Morgan et al" 1	Humble Oil & Refining Co. "James W. Morgan et al" 1	9 23N 3W	MD	5,435	Forbes	
Deepest well	Sum Oil Co. "Tucker-Gay" 1	Sunray DX Oil Co. "Tucker-Gay" 1	10 23N 3W	MD	5,900		Dobbins Late Cretaceou

			<b>POOL DATA</b>		
ITEM	UNDIFFERENTIATED MARINE STRATA	KIONE	FORBES		FIELD OR AREA DAT
Discovery date	July 1960	May 1960	December 1958		
Gas (Mcf/day)	4,550	3,280	1,120	1	
Flow pressure (psi)	750	640	750	1	
Bean size (in.)	1/2	25/64	1/2		
pressure (psi)	1,080	1,020	1,970		
eservoir temperature (*F)	94	95	105		
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).	410-670	480-580	580-970		
ormation	undiff. marine strata	Kione	Forbes	1	
Geologic age	Eocene 2,400	Late Cretaceous	Late Cretaceons	1	
Average depth (ft.) Average net thickness (ft.)	2,400	2,430	30	Tp	
Maximum productive		2,000	1,5550		1.270
area (acres)					
		R	ESERVOIR ROCK PROPE	ERTIES	
Porosity (%)	20-30***	25-28***	18-25		
Soj (%)	35-40**	35-40***	40-50		
Sri (%)	60-65**	60-65***	50-60		
Permeability to air (md)					
		R	ESERVOIR FLUID PROPE	ERTIES	
Oil:					
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (\$CF/\$TB) Initial oil FVF (\$B/\$TB) Bubble point press. (psia) Viscosity (cp) @ *F	¥				
Gas:					Ť
Specific gravity (air = 1.0)	.560	.55711	.55711		
Heating value (Btu/cu. ft.)	1,005	1,010	1,010	1	
Water	22100000	1202020	100		
Salinity, NaCl (ppm)	2,100	2,200			1
T.D.S. (ppm)			1		
		EN	HANCED RECOVERY PR	OJECTS	
Enhanced recovery projects					
Date started				1	
Date discontinued	1		1	1	1
					1
	1				
				4:	- 1
			1		1
					777.77
Peak oil production (bbl)					
Peak oil production (bbl) Year Peak gas production, net (Mcf)					1.490.884

Base of fresh water (ft.): 2,000


Remarks: Commercial gas deliveries began in May 1961. Some of the Eocene sand stringers have been given local names by the operators.

Selected References: Beecroft, G. W., 1964, Kirkwood Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. 0il Fields, Vol. 50, No. 1.

# KNIGHTSEN GAS FIELD

SERIES		LECTRIC LOG
	MARKLEY	
	NORTONVILLE	5000
	DOMENGINE	and the second second
EOCENE	CAPAY	6000
~	MARGARET HAMILTON SAND	7000
PALEOCENE	MEGANOS CANYON FILL	9000
UPPER CRETACEOUS	THIRD MASSIVE	Amooo in the internal war
UPI	UNDIFF MARINE STRATA	10000

BECEMBER 1980



CONTOURS ON BASE OF MEGANOS CANYON FILL

MARKLEY	
 NORTONVILLE	
DOMENGINE	
CAPAY	
MARGARET HAMILTON SD.	

MEGANOS CANYON FILL

THIRD MASSIVE

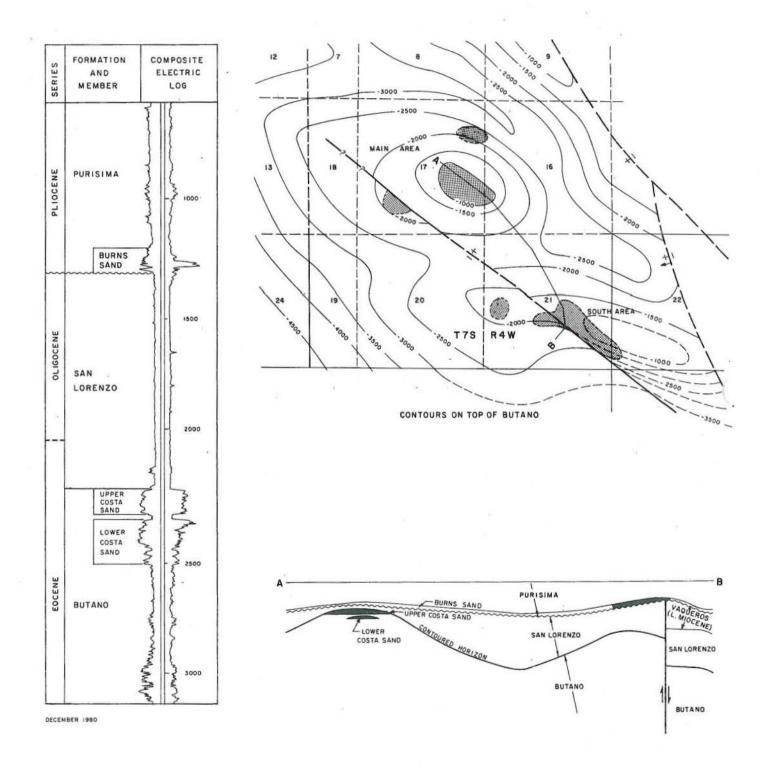
UNDIFFERENTIATED
MARINE/ STRATA

UNDIFFERENTIATED
MARINE, STRATA

COURTESY OF WESTERN CONTINENTAL OPERATING CO.

COUNTY: CONTRA COSTA

#### KNIGHTSEN GAS FIELD


#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Natural Gas Corp. of Calif. "Western- Murphy-et al" 1	Same as present	5 1N 3E	MD	10,673	Third Massive	Tracy Late Cretaceous
Deepest well	Same as above		"	"	"		"

**POOL DATA** FIELD OR AREA DATA THIRD MASSIVE ITEM Discovery date
Initial production rales
Oil (bbl/day)
Gas (Mcf/day)
Flow pressure (psi)
Bean size (in.)
Initial reservoir
pressure (psi)
Reservoir temperature ("F)
Initial oil content (STB/ac.-ft.)
Initial gas content (MSCF/ac.-ft.)
Formation
Geologic age
Average depth (ft.)
Average net thickness (ft.)
Maximum productive
area (acres) March 1980 1,098 2,250 10/64 3,350 178 1,100-1,600 Mokelumne River Late Cretaceous 8,700 25 RESERVOIR ROCK PROPERTIES 18-25 30-35† 65-70† RESERVOIR FLUID PROPERTIES as: Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.)..... .611 1,083 Water:
Salinity, NaCl (ppm) ....
T.D.S. (ppm) .....
R_W (ohm/m) (77*F) ..... **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects. Date started ...... Date discontinued . Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year

Base of fresh water (ft.): 100-300

Remarks: Commercial gas deliveries have not yet begun.



COUNTY: SAN MATEO

#### LA HONDA OIL FIELD MAIN AREA

# DISCOVERY WELL AND DEEPEST WELL

4	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Zia La Honda, Ltd. "Carter-Lane" 2	Neaves Petroleum Developments "Neaves- Union Oil-Lane" 3	17 75	4W	MD	1,795	Costa	5/2/04
Deepest well	Neaves Petroleum Developments "Neaves- Union Oil Co. Lane" 1	Same as present	16 75	4W	MD	4,271		Butano Eocene

N.			POOL DATA		
ITEM	BURNS	COSTA			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.)	May 1958 17 -	December 1956 100 15 195 - 87 1,300-1,700			
Formation Geologic age Geologic	Purisima Pliocene 1,120 30	Butano Eocene 1,800 60			70
		RESER	OIR ROCK PROPERTIES		
Porosity (%)	Ē	30-35 60-70 30-40	1		
		RESER	OIR FLUID PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F	24	32-40 200 1.1		F	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.)  Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	¥	19,700			
		ENHANG	ED RECOVERY PROJECTS		
Enhanced recovery projects Date started					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					178,184 1957

Base of fresh water (ft.): 150

Remarks:

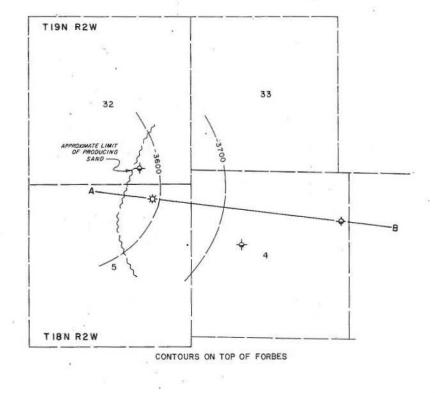
Selected References: Fothergill, H.L., 1962, La Honda Oil Field, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.:
Div. of Mines and Geology Bull. 181, p. 221-222.

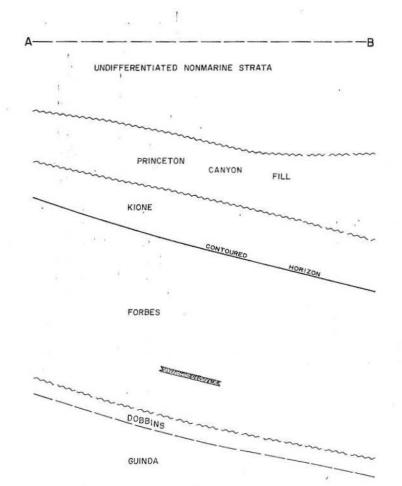
COUNTY: SAN MATEO

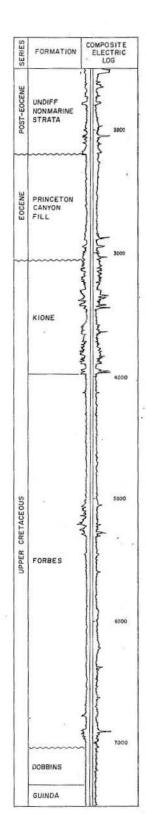
# LA HONDA OIL FIELD SOUTH AREA

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. 1	r. & F	2.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Zia La Honda, Ltd. "Burns" 1	Neaves Petroleum Developments "Neaves- Union-Burns" 1	21 7	7S 4	W	MD	1,451	Burns	
Deepest well	Zia La Honda, Ltd. "Burns-Texaco" 1	Neaves Petroleum Developments "Neaves- Union Burns" 14	22	7S 4	W	MD	4,015		Butano Eocene


**			POOL DATA		 
ITEM	BURNS	COSTA			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1959 25 Insufficient to flow 93 900-1,400 Purisima Mioceme 1,400 75	January 1961 30 110 1,300-1,700 Butano Eocene 2,500 30		,	65
		RES	ERVOIR ROCK PROPERT	TES	
Porosity (%)	22-30 60-65 35-40	30-35 60-70 30-40			
		RES	ERVOIR FLUID PROPERT	TIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F.	16 150 1.1	31 150 ± 1.1	1		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)			*.		
Nater:         Salinity, NaCl (ppm)           T.D.S. (ppm)         R _W (ohm/m) (77°F)	41,000	81			
		ENH	ANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued					
			~		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					95,717 1960


Base of fresh water (ft.): 150


Remarks:

# WEST LARKIN GAS FIELD

(Abandoned)





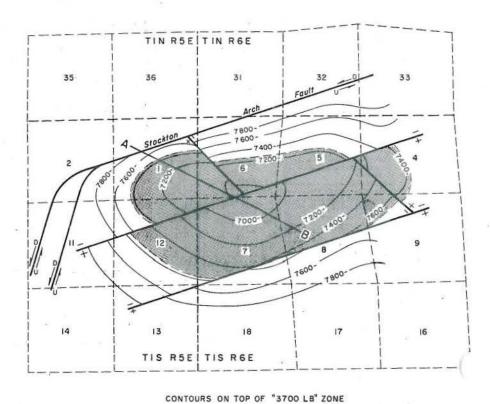


COUNTY: GLENN

LARKIN, WEST, GAS FIELD (ABD)

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T, &	R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Capital Company" 1	Gene Reid Drilling, Inc. "Capital" 1	5 18N	2W	MD	5,993	unnamed	
Deepest well	Chevron U.S.A. Inc. "Transamerica Development Co." 1	Houston Oil & Minerals Corp. "Transamerica Development Co." 1	32 19N	2W	MD	7,876		Guinda Late Cretaceous


10		POOL DA	TA	
ITEM	UNNAMED			FIELD OR AREA DATA
Discovery date	1,000 650 16/64 3,040 118 720-1,050 Forbes Late Cretaceous 5,933 18		+	
		RESERVOIR ROCK PR	OPERTIES	
Porosity (%)	15-20*** 45-50*** 50-55***			
		RESERVOIR FLUID PR	ROPERTIES	
Oil: Oil gravity ('API)	.57011 980*			
		ENHANCED RECOVER	Y PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcl) Year	3,340 1957			

Base of fresh water (ft.): 1,600

Remarks: Originally named the Willow Creek Gas area. No commercial gas sales were made; all gas produced was used to provide fuel to drill Gulf Oil Corp.
"Capital Company" 2, Sec. 8, T. 18 N., R. 2 W. The field was abandoned in May 1958. Only one well was completed and cumulative gas production was 3,340 Mcf.

# LATHROP GAS FIELD

SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
MIOCENE -PLIOCENE	UNDIFF. NONMARINE STRATA	3000
	GARZAS - AZEVEDO - BLEWETT (UNDIFF.)	4000
	RAGGED VALLEY SHALE	
	TRACY - SAWTOOTH SHALE (UNDIFF.)	5000
	"E" ZONE SHALE	
CRETACEOUS		7000
UPPER CRET	LATHROP	Transition and the same
	SACRAMENTO SHALE	19,000
	FORBES	11,000
4	DOBBINS	12,006



UNDIFFERENTIATED NONMARINE STRATA GARZAS - AZEVEDO - BLEWETT (UNDIFF.) SHALE VALLEY RAGGED TRACY - SAWTOOTH SHALE (UNDIFF.) "E" ZONE 3600 LB ZONE CONTOURED HORIZON-3700 LB ZONE 3800 LB ZONE 3900 LB 8 4000 LB ZONE 4200 LB 8 4300 LB ZONE 4400 LB 8 4600 LB ZONE SACRAMENTO SHALE

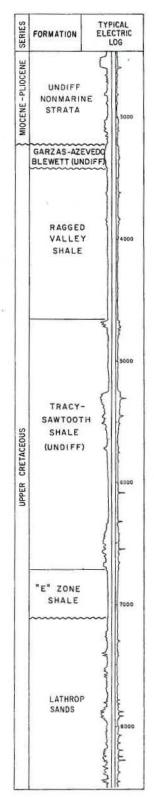
NOVEMBER 1979

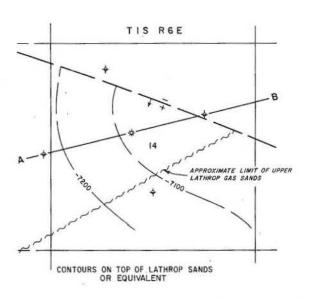
COUNTY: SAN JOAQUIN

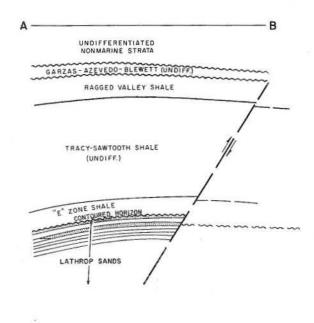
# LATHROP GAS FIELD

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R. E	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Lathrop Unit A" 1	Same as present	5 18	22.0	MD	7,860	Lathrop	
Deepest well	Occidental Petroleum Corp. "Lathrop Unit B" 5	Same as present	7 1S	6E	MD	12,787		G-zone Late Cretaceou


			POOL DATA		
ITEM	AZEVEDO	TRACY	LATHROP		FIELD OR AREA DATA
Discovery date	December 1971	January 1962	October 1961		
Initial production rates		5.515,4639, 3434,4		1	
Oil (bbl/day)				1	
Gas (Mcf/day)	2,225	150-540 a/	4,280-21,800	f-	
Flow pressure (psi)	1,465	160-430	1,600-2,510		597
Bean size (in.)	1/4	1/8-3/8	5/16-3/4		
Initial reservoir	1,920	2,240-2,810	3,610-4,240		
pressure (psi)	113	121-137	143-159	1	
Reservoir temperature (*F)	113	121-137	143-139	1	
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	900	1,200-1,400	1,600	1	1
Formation	Azevedo	Tracy	Lathrop	1	1
FormationGeologic age	Late Cretrieous	Late Cretaceous	Late Cretaceous	1	1
Average depth (ft.)	3,950	4,747-6,295	6,906-8,422		
Average net thickness (ft.)	75	50-75	75-550	1	
Maximum productive		50-75	75-455	i	
area (acres)			1		2,330
			TETRICON ROCK PROPERTY		
			ESERVOIR ROCK PROPERTIES		1
Porosity (%)	*		23-27		
Soj (%)			1		
Swi (%)	-		35-40		1
Sgi (%)		1	60-65		
Permeability to air (md)			48-79		
			ESERVOIR FLUID PROPERTIES		
Oil:					
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F					
Con					
Gas:	.59711	.56411	**** *****		.620
Specific gravity (air = 1.0)			.57863611 825-960		863
Heating value (Btu/cu. ft.)	920	1,000	825-960		503
Water:					
Salinity, NaCl (ppm)	17,000		10,700-25,900		15,000-27,000
T.D.S. (ppm)			1		
R _W (ohm/m) (77°F)					
		EN	HANCED RECOVERY PROJEC	rs	
Enhanced recovery projects					
Date started					
Peak oil production (bbl)					<u> </u>
Year					
Peak gas production, net (Mcf)			1	1	33,199,970 1972
Year					1972


Base of fresh water (ft.): 500


Remarks: Commercial gas deliveries began in January 1963, a/ Results of open-hole tests; zone not open to production.

Selected References: Park, W. H., 1962, Lathrop Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.
Teltsworth, R. A., 1964, Geology and Development of the Lathrop Gas Field, San Joaquin County, Calif., in Selected Papers Presented to San Joaquin Geological Society, Vol. 2, p. 19-29.

# LATHROP SOUTHEAST GAS FIELD (Abandoned)







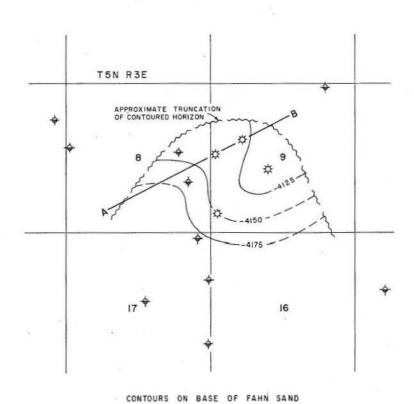
NOVEMBER 1979

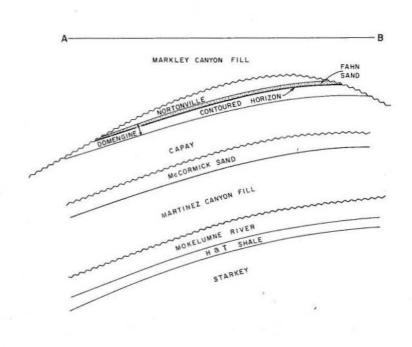
COUNTY: SAN JOAQUIN

# LATHROP, SOUTHEAST, GAS FIELD (ABD)

# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	E. B. Towne, Oper, "Lathrop Southeast Unit A" 1	Same as present	14 15 6E	MD	8,493	Lathrop	
Deepest well	E. B. Towne, Oper, "Lathrop Southeast Unit A" 3	Same as present	14 1S 6E	MD	9,680		Panoche Late Cretaceous


_		PC	OOL DATA	
ITEM	LATHROP			FIELD OR AREA DATA
Discovery date	2,350 1,490 1/4 3,670 154 1,400-1,800 Panoche Late Cretaceous 7,110 82			¥.
		RESERVO	R ROCK PROPERTIES	 
Porosity (%)	35-40 *** 60-65 ***			
		RESERVO	R FLUID PROPERTIES	
Oil:  Oil gravity ('API)  Sulfur content (% by wt.)  Initial solution  GOR (SCF/STB)  Initial oil FVF (RB/STB).  Bubble point press. (psia)  Viscosity (cp) @ "F	.557†† 1,010 26,200			
		ENHANCED	RECOVERY PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	66,258 1969			


Base of fresh water (ft.): Above 900

Remarks: Commercial gas deliveries began in July 1969. The field was abandoned in November 1971. Only one well was completed and cumulative gas production was 98,469 Mcf.

# LIBERTY CUT GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	COMPOSITE ELECTRIC LOG
MIOCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	January Many
OLIGOCENE - MIOCENE	MARKLEY CANYON FILL	
« ×	NORTONVILLE	4000
EOCENE	CAPAY	McJanner
~~	McCORMICK SAND	5000
PALEOCENE	MARTINEZ CANYON FILL	A
~~	MOKELUMNE RIVER	- 1000
UPPER	H & T SHALE	3
CRET	STARKEY	3



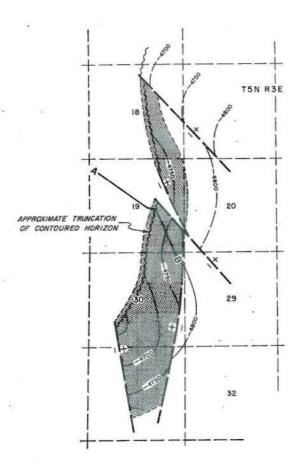


COUNTY: SOLANO

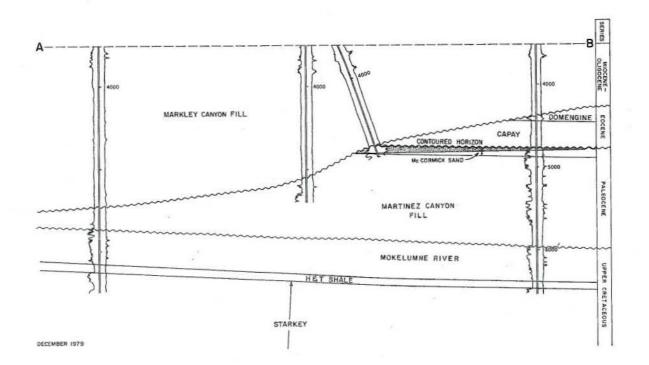
# LIBERTY CUT GAS FIELD (ABD)

#### DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Arcady Oil Co. "Fahn" 1	Same as present	9 SN 3E	MD	5,000	Fahn	
Deepest well	Arcady Oil Co. "Fahn" 5	Same as present	8 5N 3E	MD	6,463		Starkey Late Cretaceou


100		POOL DATA					
ITEM	UNNAMED	FAHN	FIELD OR AREA DATA				
Discovery date	0ctober 1954 1,000 a/ 1,100 14/64 1,770 117 Nortonville Eocene 4,060 10	2,000 1,500 12/64 1,820 118 950-1,200 Domengine Eocene 4,130	190				
		RESERVOIR ROCK PROPER	nes				
Porosity (%)	*	25-30 · · · 30-35 · · · 65-70 · · ·					
	RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/57B) Initial oil FVF (RE/57B) Bubble point press. (psia) Viscosity (cp) @ *F  Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCI (ppm) T.D.5. (ppm)	.563†† 996 9,930	.563†† 996 9,930					
	ENHANCED RECOVERY PROJECTS						
Enhanced recovery projects  Date started  Date discontinued							
Peak oil production (bbl) Year			114,677 1957				

Base of fresh water (ft.): 2,600


Remarks: Gas production was commingled from both the Fahn zone and unnamed sand stringers in the Nortonville Formation. Commercial gas deliveries began in June 1957. The field was abandoned in October 1965. Four wells were completed and cumulative gas production was 179,030 Mcf.

a/ Gas production was commingled with Fahn zone.

# LIBERTY ISLAND GAS FIELD



CONTOURS ON TOP OF McCORMICK SAND



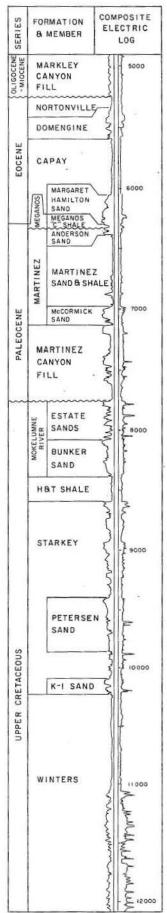
COUNTY: SOLANO

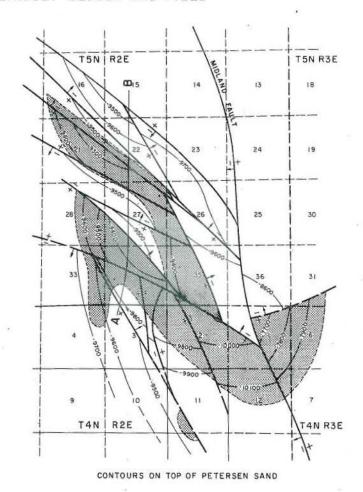
# LIBERTY ISLAND GAS FIELD

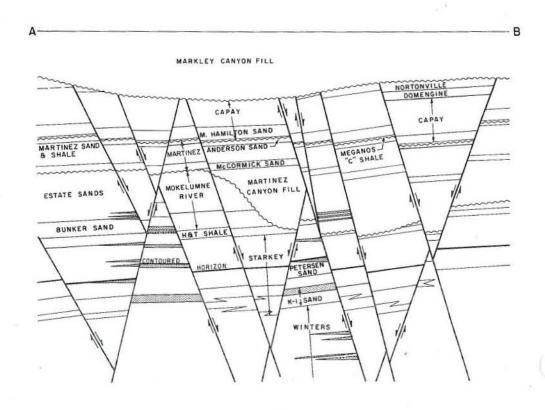
# DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Reserve Oil Inc. "Liberty Farms-	Reserve Oil and Gas Co. "Liberty Farms-	19 5N 3E	MD	6,500	McCormick	
Deepest well	Reynolds" 2 Cities Service Co. "Moresco" A-1	Reynolds" 2 Same as present	30 5N 3E	MD	10,011		Confidential

no	$\alpha$	DAT	T A
ru	UL	DAT	M


			POOL DAT	^	TIELD OR		
ITEM	McCORMICK				FIELD OR AREA DATA		
Discovery date	3,900 1,400 3/8						
pressure (psi)  Reservoir temperature (°F)  Initial oil content (STB/acft.)  Initial gas content (MSCF/acft.),  Formation  Geologic age  Average depth (ft.)  Average net thickness (ft.)  Maximum productive	2,020 123 920-1,200 Martinez Paleocene 4,725 30			*			
area (acres)	090						
			RESERVOIR ROCK PRO	OPERTIES			
Porosity (%)	25-30 † 35-40 † 60-65 †						
	RESERVOIR FLUID PROPERTIES						
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F							
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.572 986						
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _w (ohm/m) (77*F)	7,900						
	THE STATE OF		ENHANCED RECOVERY	PROJECTS			
Enhanced recovery projects  Date started  Date discontinued							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	4,948,162 1963						


Base of fresh water (ft.): 2,500-3,350


Remarks: Commercial gas deliveries began in August 1961.

Selected References: Beecroft, G. W., 1961, Liberty Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

# LINDSEY SLOUGH GAS FIELD







COUNTY: SOLANO

# LINDSEY SLOUGH GAS FIELD

# DISCOVERY WELL AND DEEPEST WELL

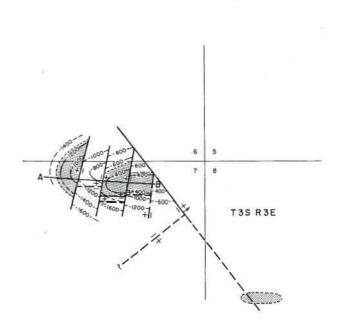
	Present operator and well designation	Original operator and well designation	Sec. T. &	ŁR.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess, Oper. "Union-Pet. Est." 1	Amerada Petroleum Corp, "Petersen" 1	3 4N	2E	MD	10,690	Petersen	
Deepest well	Chevron U.S.A. Inc. "Peter Cook" 16	Standard Oil Co. of Calif. "Peter Cook"	10 4N	2E	MD	15,050		Forbes Late Cretaceous

POC		

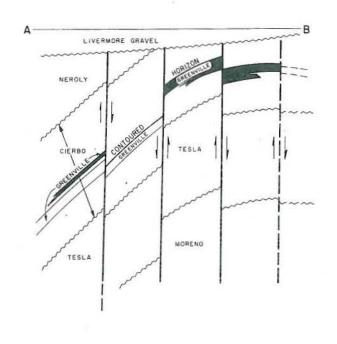
POOL DATA						
ITEM	UNNAMED	McCORMICK	ESTATE	1ST STARKEY	2ND STARKEY	FIELD OR AREA DATA
Discovery datenitial production rates	June 1969	March 1963	November 1964	January 1963	December 1965	
Oil (bbl/day)	1,370 1,720 3/16	3,120 2,440	1,925 2,900 3/4	3,100 2,640	4,500 2,300 20/64	-
pressure (psi)eservoir temperature (*F)	3,050 148	3,120 150	2,330-3,640 141-177	4,070 181	4,350 172	
nitial oil content (STB/acft.) itital gas content (MSCF/acft.). ormation eologic age verage depth (ft.) verage net thickness (ft.) laximum productive	1,100 Martinez Paleocene 6,820 25	1,300-1,600 Martinez Paleocene 6,975 82	920-950 Mokelumme River Late Cretaceous 5,480-8,360 59	930-1,200 Starkey Late Cretaceous 8,700 47	980- 1,300 Starkey Late Cretaceous 9,025 65	
area (acres)			1	J	<u> </u>	3,145
		·	RESERVOIR ROCK PROPER	RTIES		
orosity (%)	20**	24-28	20-22***	18-22†	18-22†	
wi (%)gg (%)ermeability to air (md)	40** 60**	35-40 60-65	40-50*** 50-60***	45-50† 50-55†	45-501 50-551	
			RESERVOIR FLUID PROPER	RTIES		0.00
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,080	1,080	1,075	1,070	1,080	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	860	21,000	16,900	19,900	15,400	
		E	NHANCED RECOVERY PRO	DJECTS		
Enhanced recovery projects  Date started  Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						16,065,898 1971

Base of fresh water (ft.): 2,500-3,000

Remarks: Commercial gas deliveries began in October 1964. Cumulative condensate production through 1979 is 638,099 bbl.


COUNTY: SOLANO

# LINDSEY SLOUGH GAS FIELD

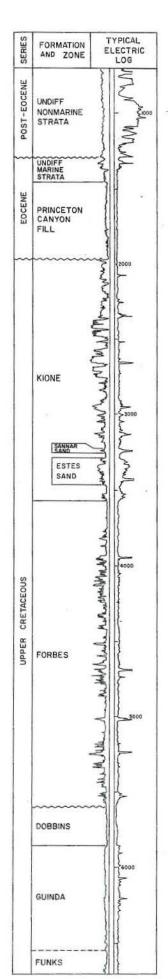

	Present op	erator and well designa	tion Orig	inal operator and well designat	ion	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total dept
Discovery well Deepest well		124						, ,		
<u> </u>	T-			POOL DATA			<u> </u>			
ITEM		PETERSEN	K-1	FIRST WINTERS						FIELD OR AREA DATA
Discovery date	: ('F)	8,860 2,570 3/8 3,330-4,630 168-175 1,100-1,200 Starkey Late Cretaceous 7,665-9,940	July 1963  2,340 1,440 1/4 4,650 180  970-1,300 Starkey Late Cretaceou 10,228 94	June 1969  4,650 2,640 13/64  4,320 170  790-1,200 Winters Late Cretaceous 9,130 25		×				,
				RESERVOIR ROCK PROPER	TIES				- 111 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121 - 121	
Porosity (%) Soj (%) Swj (%) Sgj (%) Permeability to air (n		19-23 † 45-50 † 50-55 †	17-21 45-50 50-55 3-8	18-22 † 50-60 † 40-50 †				ē.		
to all (ii				RESERVOIR FLUID PROPER	ries			7-0-		
Oil: Oil gravity ("API) . Sulfur content (% i Initial solution GOR (SCF/STB) Initial oil FVF (RB, Bubble point press. Viscosity (cp) @ "F	STB)								4/1	v
Gas: Specific gravity (air Heating value (Btu	/ = 1.0) /cu. ft.)	1,080	1,070	1,080						
Water: Salinity, NaCl (pp T.D.S. (ppm) R _w (ohm/m) (77*F		16,950	17,000	1,370						
Salaries de las les				ENHANCED RECOVERY PRO	ECTS	-				
Enhanced recovery pr Date started Date discontinued										
Peak oil production ( YearPeak gas production, Year	net (Mcf)					*				
Base of fresh water (f	t.):									(a)
Selected References:										

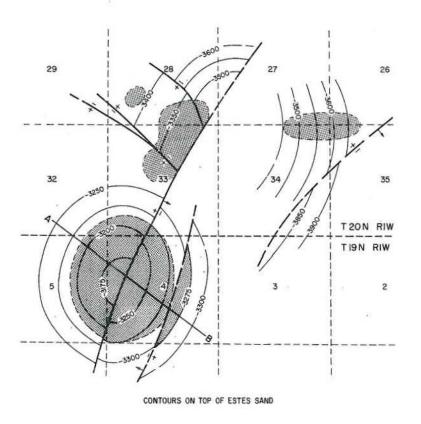
## LIVERMORE OIL FIELD

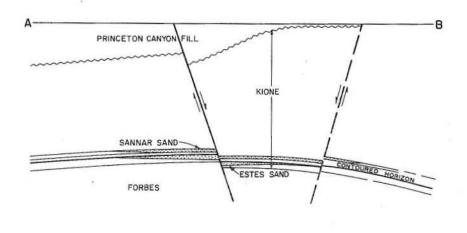
SERIES	FORMATIO AND ZONE	N	TYPIC ELECT LOG	RIC
PLIOCENE -	LIVERMORE GRAVEL		John Workshippy Com	, == =-
	NEROLY		Markenine	500
		- Warman		1000
	CIERBO	}	السما	
MIOCENE		GREENVILLE SANDS	My Mary Mary Mary	> 1500
			mountain	2000
EOCENE	TESLA		" Mondon hampen	2500
~~~			Mary	3000
CRETACEOUS		1	11	

CONTOURS ON TOP OF GREENVILLE SANDS

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. 1	r. & R	. B.&A	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Hershey 0il Corp. "Greenville Investment Group" 1	McCulloch Oil Corp. of California "Greenvile Investment Group" 1	7 3	S 3	E MD	2,173	Greenville	
Deepest well	Hershey Oil Corp. "Nissen" 3	McCulloch 0il Corp. of California "Nissen" 3	8 3	SS 3	MD	6,819	-	Moreno Late Cretaceous


		POO	L DATA	
ITEM	GREENVILLE	TESLA		FIELD OR AREA DATA
Discovery date	January 1967 397	October 1967 40		
Bean size (in.)	104 1,200 Cierbo Late Miocene 900-2,000 40-250	Tesla Eccene 5,300		110
		RESERVOIR I	OCK PROPERTIES	
Porosity (%)	26 65 35 250	23 40-45 55-60		
		RESERVOIR E	LUID PROPERTIES	
Oil: Oil gravity ('API)	21-25 115 1.07	29		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)				3
Water: Salinity, NaCI (ppm)	3,400-9,400	9,400		
		ENHANCED R	ECOVERY PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	3 4 4			161,829 1969


Base of fresh water (ft.): 200

Remarks: Cumulative oil production from the Tesla Formation was 1,670 barrels. One well was completed in October 1967 and abandoned in March 1969.

LLANO SECO GAS FIELD

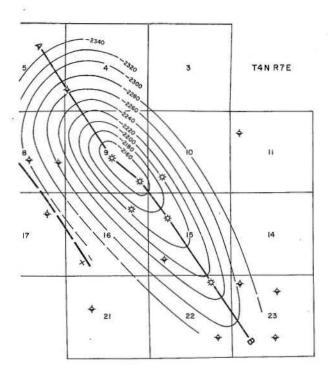
COUNTY: BUTTE and GLENN

LLANO SECO GAS FIELD

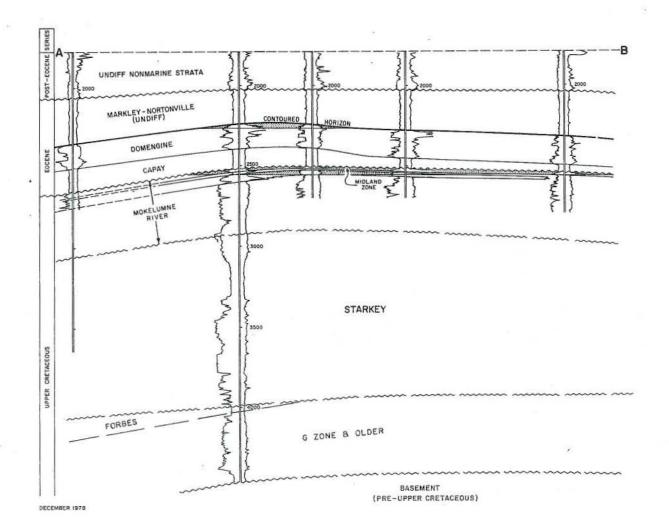
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Parrott Inv. Co." 2	Humble Oil & Rfg. Co. "Parrott Inv. Co." 2	4 19N 1W	MD	6,700	Sannar-Estes	
Deepest well	Mobil Oil Corp, "Llano Seco" 1	General Petroleum Corp. "Llano Seco" 1	33 20N 1W	MD	8,306		Funks Late Cretaceous

9			POOL DATA		
ITEM	UNNAMED	SANNAR -ESTES	UNNAMED		FIELD OR AREA DATA
Discovery date	December 1961	November 1954	October 1961		
Gas (Mcf/day)	3,300	4,030 a/	4,000 b/	1	
Flow pressure (psi)	605	1,600	1,170	1	
Bean size (in.)	1/2	3/8	3/8_	1	
Initial reservoir	740	1,494-1,762	2,086-2,686	1	
pressure (psi) Reservoir temperature (*F)	85	96	103-110	1	1
Initial oil content (STB/acft.)					
Initial gas content (MSCF/ac,-ft.).	370	980-1,100	1,200-1,300		į.
Formation	undiff. marine strata	Kione	Forbes	1	
Geologic age	Eocene	Late Cretaceous	Late Cretaceous		
Average depth (ft.)	1,600	3,275 17	4,550-5,200 5-20	1	
Average net thickness (ft.)	20	17	5-20	1	
Maximum productive area (acres)					655
1			RESERVOIR ROCK PROPER	TIES	
Porosity (%)	25*	26-32***	22-28***		
Soi (%)				1 1	
Swi (%)	35*	30-35***	35-40***		
Sgi (%)	65*	65-70***	60-65***	1	
Permeability to air (md)					
			RESERVOIR FLUID PROPER	TIES	
Oil: Oil gravity ("API)				7	
Gas:	.570	.580	.570		
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	975	960	975		A.
Water: Salinity, NaCl (ppm)	8,200	4,100	8,200	E.	
T.D.S. (ppm) R _w (ohm/m) (77°F)					
		EN	HANCED RECOVERY PRO	DIECTS	
Enhanced recovery projects		N 4			- 20.282
Date discontinued					
Peak oil production (bbl)					
Year			1		1 207 200
Peak gas production, net (Mci)					1,207,199 1957
Year					1957


Base of fresh water (ft.): 1,300

Remarks: Commercial gas deliveries began in July 1957.


a/ Production from Sannar and Estes zones commingled in discovery well.

b/ Open-hole formation test.

(Abandoned)

CONTOURS ON TOP OF DOMENGINE

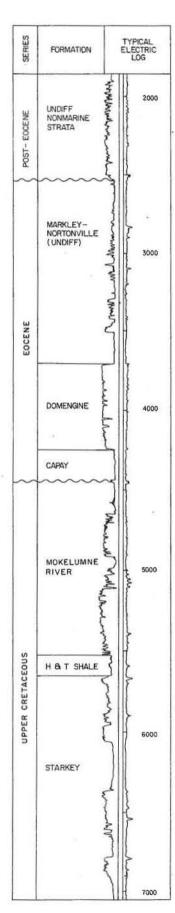
COUNTY: SAN JOAQUIN

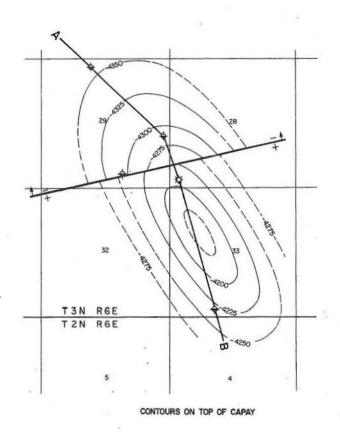
LODI GAS FIELD (ABD)

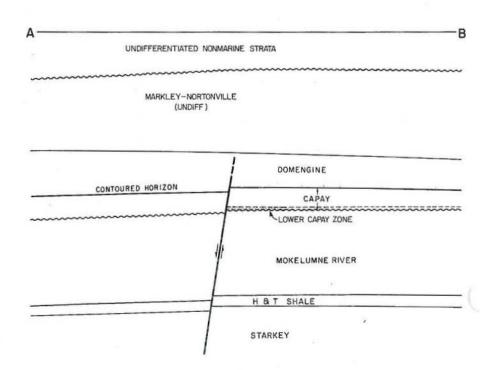
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Unit Oper. "LGZU" 101	Amerada Petroleum Corp. "Community 9" 1	9 41	N 7E	MD	4,471	Domengine	
Deepest well	Amerada Hess Corp., Unit Oper. "LGZU" 201	Amerada Petroleum Corp. "Community 10" 1	10 41	N 7E	MD	4,495		basement pre-Lt. Cret.

Discovery date				POOL DATA	
Initial production rates Oil (bbl/day) Gas (Mcf/day) Gas (Mcf/day) Reservoir temperature (rF) Initial oil content (STB/ac-fL) Initial oil content (STB/ac-fL) Initial oil content (STB/ac-fL) Initial oil content (STB/ac-fL) Initial oil content (MSC/pac-fL) Initial o	ITEM	DOMENGINE	MIDLAND		FIELD OR AREA DATA
Case (Mcf/day)	Initial production rates	April 1943	March 1953		
Signature Sign	Oil (bbl/day)	7 222	2 800	1	
1/2 3/8 1,093	Flow pressure (psi)	355			1
1,093 987 1,093 987 1,093 987 1,093 987 98	Bean size (in.)			1	
See Para See S	nitial reservoir		100.00	1	
Second S	pressure (psi)				
Second S	Reservoir temperature (*F)	92	93		
Domengine Econe Contend Cont	Initial oil content (STB/actt.)	800	580-750		
December	formation		Mokelumne River		1
Average depth (ft.)	Geologic age	Eocene			
Average net thickness (ft.)	Average depth (ft.)	2,280	2,515		
Table Tabl	Average net thickness (ft.)	25	35		
RESERVOIR ROCK PROPERTIES 25-30 *** Sig (%)	Maximum productive				1.450
Porosity (%)	area (acres)				1,450
Soi (%) 25 75 70-75***			-T	VOIR ROCK PROPERTIES	
Sign (%)	Porosity (%)	25-30	25-30 ***		
To -/3-11 To -	Soci (%)	25	25-30***	1	
RESERVOIR FLUID PROPERTIES	Sg; (%)	75	70-75***	1 1	1
Oil: Oil gravity ('API)	Permeability to air (md)			1 1	
Oil: Oil gravity ('API)			DESE	VOIR FILLID PROPERTIES	
Oil gravity ("API)			T T	VOIR TEOD PROFERIES	
Specific gravity (air = 1.0)	Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia)				
Heating value (Btu/cu, ft.)	Gas:	100.84	1		
Water: Salinity, NaCl (ppm)	Specific gravity (air = 1.0)				
Salinity, NaCI (ppm)	Heating value (Btu/cu. ft.)	750	700	1	
Salinity, NaCI (ppm)	Water:			1	
Rw (ohm/m) (77°F) ENHANCED RECOVERY PROJECTS Enhanced recovery projects Date started	Salinity, NaCl (ppm)	1,883	3,424		
ENHANCED RECOVERY PROJECTS Enhanced recovery projects Date started	T.D.S. (ppm)			1	
Enhanced recovery projects	KW (Onlin/m) (// F)		1		
Enhanced recovery projects Date started			ENHAN	CED RECOVERY PROJECTS	
Date discontinued	Date started				
	- 2. Secondiaco minimum				
Peak oil production (bbl) Year	Year				
Peak gas production, net (Mcf) Year 1947	Peak gas production, net (Mcf)				1,301,472


Base of fresh water (ft.): 1,700


Remarks: Commercial gas deliveries began in October 1946 and ceased in January 1971. The field was abandoned in March 1972. Six wells were completed and cumulative gas production was 23,204,145 Mcf.


Selected References: Huey, W. F., 1957, Lodi Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

LODI AIRPORT GAS FIELD

(Abandoned)

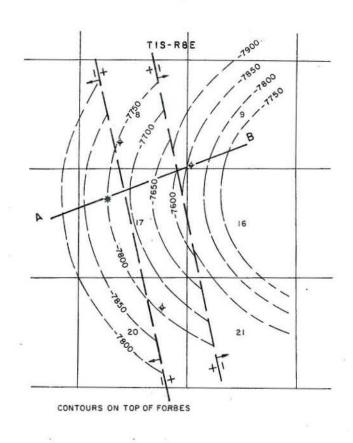
JULY 1978

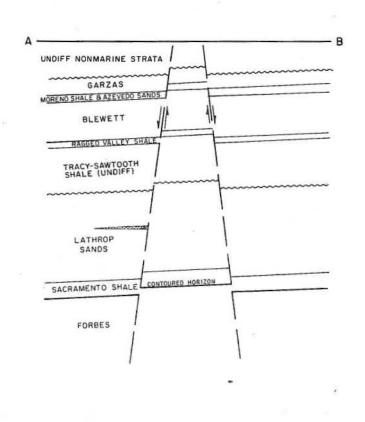
COUNTY: SAN JOAQUIN

LODI AIRPORT GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Great Basins Petroleum Co. "Phillips Olagaray" 1	Same as present	28 3N 6E	MD	7,040	Capay	Starkey Late Cretaceou
Deepest well	Same as above	"	"	"		11	11


·_		POOL DATA	
ITEM	CAPAY		FIELD OR AREA DATA
Discovery date	July 1976		
Initial production rates Oil (bbl/day)			1
Gas (Mct/day)	3,560 1,425	l-	
Flow pressure (psi) Bean size (in.)	20/64	1	
Initial reservoir	2399827		1
pressure (psi)	1,920	1 1	
Reservoir temperature (*F)	123		
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).	1,200	1	4 1
Formation	Capay		1
Geologic age	Eocene		
Average depth (ft.)	4,440		
Average net thickness (ft.)	10	1.	
Maximum productive area (acres)	40		
area (acres)			
	7	RESERVOIR ROCK PROPERTIES	
Porosity (%)	30**		
Soi (%)	1200000		
Swi (%)	30** 70**	I. I	1
Sgj (%) Permeability to air (md)	70		
remeability to all (IIId)			2
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)			
Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.611 882		
	100		
Water:			A A
Salinity, NaCl (ppm) T.D.S. (ppm)			1
R _W (ohm/m) (77°F)			
	The second secon	ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Date started	l l		1
Date discontinued	1		
	1	1	
	1		
9	1		
4	1		3
	1		
	-		
	4	V.	1
Peak oil production (bbl)	1		
Peak gas production, net (Mcf)	10,134		
Year	1978		4
	WWW.		


Base of fresh water (ft.): 700

Remarks: Commercial gas deliveries began in June 1978. The field was abandoned in May 1979. Only one well was completed and cumulative gas production was 10,134 Mcf.

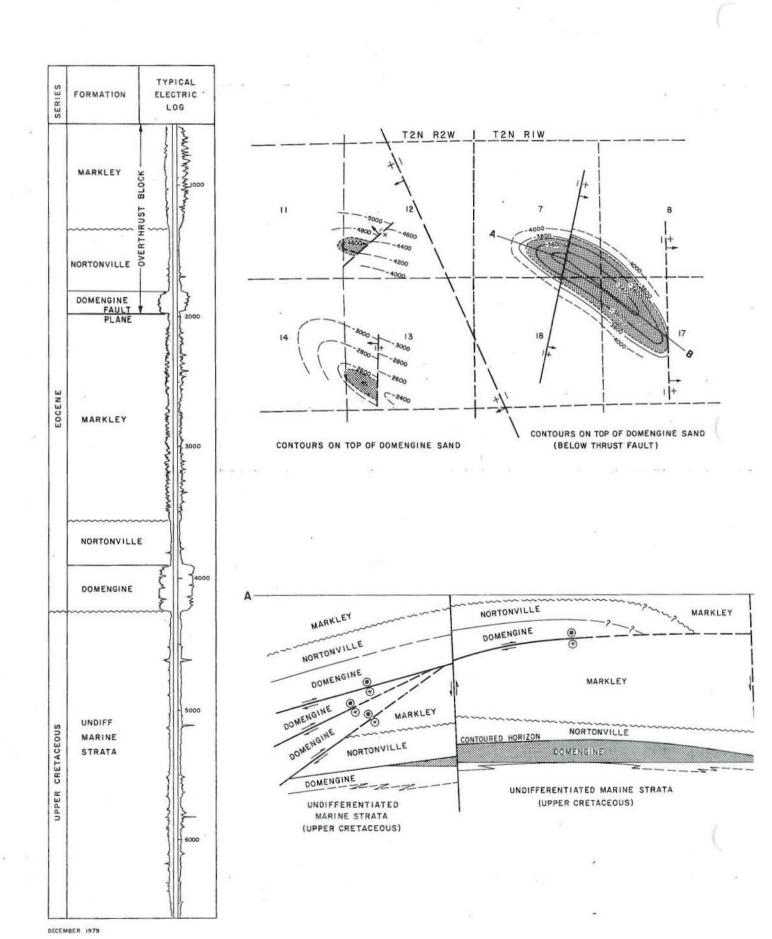
LONE TREE CREEK GAS FIELD

SERIES	FORMATION AND MEMBER	TYPICAL ELECTRIC LOG
MIO-PLIOCENE	UNDIFF NONMARINE STRATA	2000
	GARZAS	
	MORENO SHAI AZEVEDO SAI (UNDIFF)	
72-117	BLEWETT	White the state of
	RAGGED VALL SHALE	EY
CRETACEOUS	TRACY-SAWTOO SHALE (UNDIF	лтн {
UPPER	LATHROP SAN	DS }
	SACRAMENTO SHALE	
	FORBES	

COUNTY: SAN JOAQUIN

LONE TREE CREEK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Vieira" 1	Same as present	17 1S 8E	MD	9,800	Lathrop	Forbes Late Cretaceous
Deepest well	Same as above	"	11	"		н	"

		POO	L DATA	,	FIFT O OS
ITEM	LATHROP				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial gontent (STB/acft.) Initial gontent (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	May 1978 1,644 1,960 3/16 3,180 131 880 Lathrop Late Cretaceous 6,800 10 120				
		RESERVOIR R	OCK PROPERTIES		
Porosity (%)	20† 50** 50**				
		RESERVOIR F	LUID PROPERTIES		
Oil: Oil gravity ('API) Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.625 831				
		ENHANCED RE	COVERY PROJECTS	1	
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					

Base of fresh water (ft.): 1,250

Remarks: Commercial gas deliveries have not yet begun.

LOS MEDANOS GAS FIELD

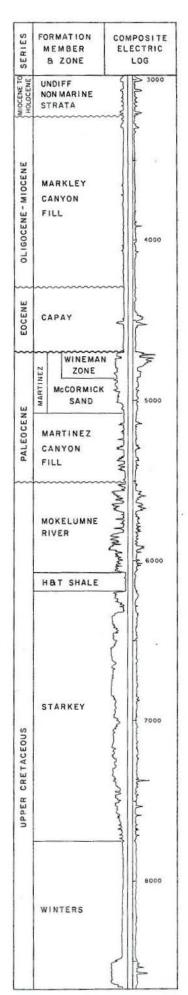
COUNTY: CONTRA COSTA

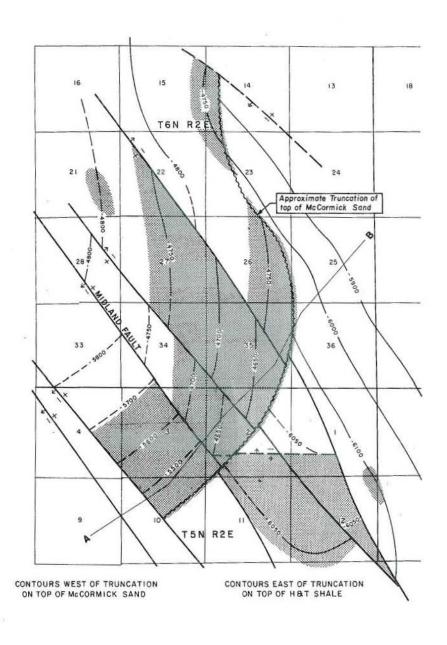
LOS MEDANOS GAS FIELD

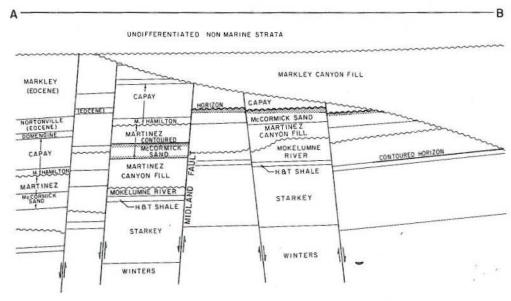
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Pacific Gas and Electric Co. "Ginochio"	McCulloch Oil Corp. of Calif, "McCulloch- Macson-Ginochio" 1	18 2N 1W	MD	3,021	Domengine	
Deepest well	Pacific Gas and Electric Co. "Ginochio" 3-7	McCulloch Oil Corp. of Calif. "McCulloch- Ginochio" 3	7 2N 1W	MD	6,941		undiff. marine Late Cretaceous

DO	\sim 1	DA	TA
PO	UŁ.	υn	14


4			POOL DATA		
ITEM	NORTONVILLE	DOMENGINE	UPPER CRETACEOUS		FIELD OR AREA DATA
Discovery date	June 1959 1,500 425 3/8	May 1958 1,600 425 24/64	April 1962 690 820 3/16		
nitial reservoir pressure (psi)	1,665 114	1,760 112	1,570		
nitial oil content (STB/ac-ft.) nitial gas content (MSCF/ac-ft.) nitial gas content (MSCF/ac-ft.) Ceologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	900 Nortonville Eccene 4,300 40	1,300 Domengine Eocene 4,000 150	Upper Cretaceous Late Cretaceous 2,800 10	2	
	The state of the s		RESERVOIR ROCK PROPERTIE	s	390
Porosity (%)	26 35 65	30 22 78 500			
Ī			RESERVOIR FLUID PROPERTIE	rs .	
Oil: Oil gravity ('API)					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,020	1,020	975		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)		10,800	*		
			NHANCED RECOVERY PROJEC	CTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf)					5,033,197 1961


Base of fresh water (ft.): 150-1,000


Remarks: Commercial gas deliveries began in November 1958. One well was completed in the Upper Cretaceous zone; it was abandoned in December 1962. Pacific Gas and Electric Co. acquired the field in September 1975 and converted it to gas storage. The working gas storage capacity is 15,400,000 Mcf with an approximate maximum withdrawl rate of 230,000 Mcf/day.

Selected References: Matthews, J. F., Jr., 1963, Los Medanos Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1.

MAINE PRAIRIE GAS FIELD

COUNTY: SOLANO

MAINE PRAIRIE GAS FIELD

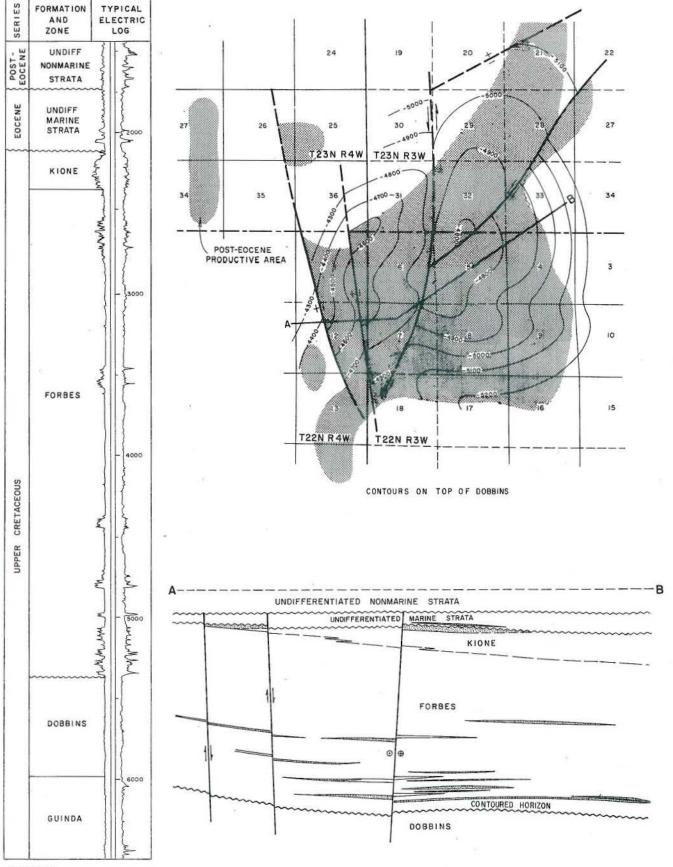
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "WZU" 4	Amerada Petroleum Corp. "I. & L. Wineman"	26	6N .	2E	MD	5,000	Wineman	
Deepest well	Atlantic Oil Co. "Moresco Brothers" I	Same as present	12	5N	ZE	MD	9,834 4/		Winters Late Cretaceous

			POOL DATA			
ITEM	DOMENGINE b/	wineman b/	UNNAMED 5/	PETERS C/	BUNKER b/	FIELD OR AREA DATA
Discovery date	July 1966	March 1945	January 1960	July 1956	October 1951	
Oil (bbl/day)	2,560	19,000	2,420	2,140	11,500	
Flow pressure (psi)	1,600	1,760	1,470	2,420	1,850	
Bean size (in.)	1/4	3/4	10/64	13/64	3/8	1
nitial reservoir pressure (psi)	1,790	2,135	2,560	2,880	2,535	1
teservoir temperature (°F)	112	116	129	135	128	1
nitial oil content (STB/acft.)	630-900	000 1 700	1 100 1 500	1 200 1 700	1 400 1 000	
nitial gas content (MSCF/acft.).	Domengine	990-1,300 Martines	1,100-1,500 Martinez	1,200-1,500 Mokelumne River	1,400-1,800 Mokelumne River	
Geologic age	Eocene	Paleocene	Paleocene	Late Cretaceous	Late Cretaceous	
Average depth (ft.)	4,150	4,740	5,935	6,440	5,740	1
Average net thickness (ft.)	6	40	20	60	35	
Maximum productive area (acres)						2,410
		RI	SERVOIR ROCK PROPER	RTIES		
Porosity (%)	20-261	24-29†	24-28	22-26***	27-31	
Soj (%)	40-45***	35-40 t	35-40***	35-40***	30-35	
Sgi (%)	55-60***	60-65 †	60-65***	60-65***	65-70	
Sgj (%)Permeability to air (md)	•	1000	8-80			
		R	SERVOIR FLUID PROPER	RTIES		
Dil:				7		
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas:						
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.562 1,005	.590†† 1,020	.613 1,075	.610†† 1,065	.620†† 1,080	
Water:						
Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	(*)	5,992	685	17,120	68	
		ENI	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl)						
Peak gas production, net (Mcf)	1		I			8,924,860
Year				1		1971

Base of fresh water (ft.): 2,700

Remarks: Formerly known as Duck Slough Gas area. 1979 condensate production was 3,887 barrels; cumulative condensate production was 164,118 barrels. Commercial gas deliveries began in July 1947.


a/ Directional well, true vertical depth is 9,448 feet.
b/ East of Midland fault.
c/ West of Midland fault.

COUNTY: SOLANO

MAINE PRAIRIE GAS FIELD Cont.....

	Present or	perator and well designate	tion (original operator and	well designation	Sec. T. & R.	de	otal pth eet) Pool (zone)	Strata & age at total depti
Discovery well Deepest well		2							1
	1.	*		POO	L DATA				
ITEM	Г	H & T SAND b/	WINTERS		LDAIA		1		FIELD OR
			100000000000000000000000000000000000000		-		+-		AREA DATA
Discovery date Initial production rat Oil (bbl/day) Gas (Mcf/day) Flow pressure (passure (pa	re (*F)	5,200 2,090 5/16 2,695 131 1,500-1,800 Starkey Late Cretaceous 6,160 25	1,200 3,950 165 870-1,2: Winters Late Cretace 8,300 30	00					
				RESERVOIR R	OCK PROPERTIES				
Porosity (%)		27-30 30-35 65-70	18-22† 50-55† 45-50†					í	
				RESERVOIR FI	UID PROPERTIES				
Oil: Oil gravity ('API) Sulfur content (% Initial solution GOR (SCF/ST# Initial oil FVF (R! Bubble point pres Viscosity (cp) @ Gas: Specific gravity (a Heating value (Bt Water: Salinity, NaCl (p T.D.S. (ppm) Rw (ohm/m) (77	3)	.613 1,075 14,466	.636 983 -						
				ENHANCED RE	COVERY PROJECTS				
Enhanced recovery Date started Date discontinue									
Peak oil production YearPeak gas production Year	, net (Mcf)								

MALTON-BLACK BUTTE GAS FIELD

COUNTY: GLENN and TEHAMA

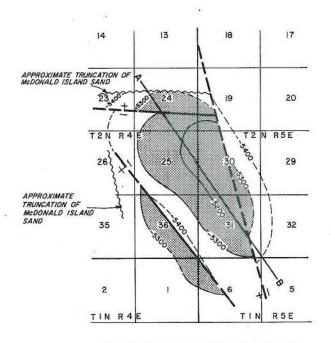
MALTON -- BLACK BUTTE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

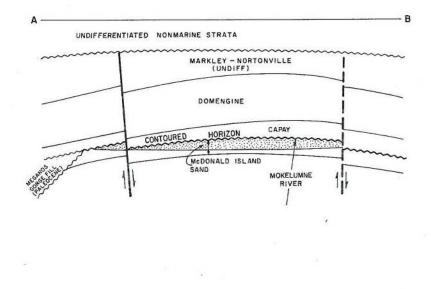
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "H-T Malton Unit 1" 1	Humble Oil & Refining Co. "H-T Malton Unit 1" 1	5 22N 3W	MD	5,480	Forbes	
Deepest well	Bender Oil Operations "Bryan" 1	Same as present	33 23N 3W	MD	6,692		Guinda Late Cretaceou

			POOL DATA			
ITEM	TEHAMA	UNDIFF. MARINE STRATA	KIONE	FORBES		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	September 1975 1,436 400 3/8 592 90 220-350 undiff. nonmarine post-Eocene 1,550 70	January 1969 1,070 a/ 1/4 760 89 280-460 undiff. marine Eccene 1,900 10	1,500 730 12/64 860 89-93 400-490 Kione Late Cretaceous 1,900-2,200	October 1964 1,740 & 1,250 b/ 1,480-750 17/64-3/8 1,580-2,940 100-125 640-770 Forbes Late Cretaceous 3,250-4,950 5-40	=	9,350
		R	ESERVOIR ROCK PROPER	TIES		
Porosity (%)	25-33 30-35 65-70	20-30 35-40 ** 60-65 **	25-28 † 35-40 † 60-65 †	18-25 40-50 50-60 100-1,200		
		R	ESERVOIR FLUID PROPER	TTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.557 1,010	.557 1,010	,557 1,010	.557 1,010		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	(#)	987	18,000	21,600		
		EN	HANCED RECOVERY PRO	OJECTS		
Enhanced recovery projects						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					Yes	8,006,641 1973

Base of fresh water (ft.): 1,500-1,800


Remarks: Commercial gas deliveries began in December 1966.

a/ Commingled with production from the Kione formation.


b/ Completed from two intervals in the Forbes Formation.

McDONALD ISLAND GAS FIELD

CONTOURS ON TOP OF McDONALD ISLAND SAND

COUNTY SAN JOAQUIN

McDONALD ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	т. а	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Pacific Gas and Electric Co. "McDonald Island Farms" 1	Standard Oil Co. of Calif, "McDonald Island Farms" 1	25	2N	4E	MD	5,227	McDonald Island	
Deepest well	Union Oil Co. of Calif. "McDonald Island"	Same as present	24	2N	4E	MD	12,502		undiff. marine Late Cretaceou

POOL DATA

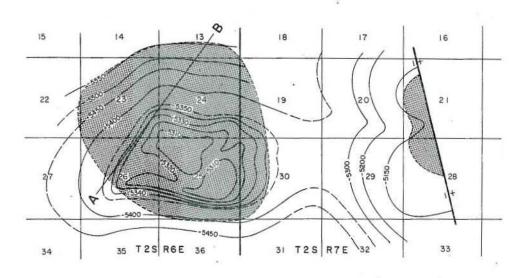
	POOL DATA					
ITEM	McDONALD ISLAND		FIELD OR AREA DATA			
	May 1936					
Discovery date	May 1936					
Initial production rates						
Oil (bbl/day)	26,650	1 1				
Gas (Mcf/day) Flow pressure (psi)	2,080	4 1	1			
Bean size (in.)	3/4	1				
nitial reservoir	3/4	1	1 1			
	2,350					
pressure (psi)		1 1	1 1			
eservoir temperature (*F) nitial oil content (STB/acft.)	142	1				
nitial gas content (MSCF/acft.)	1,700					
	Mahalama Plana	1	1 1			
ormation	Mokelumne River	1 1	1 1			
eologic ageverage depth (ft.)	Late Cretaceous	1 1				
verage depth (ft.)	5,220	1				
verage net thickness (ft.)	45	1 1	1 1			
laximum productive	2.140					
area (acres)	2,140	1				
		RESERVOIR ROCK PROPERTIES				
	21.74					
orosity (%)	31-34					
oi (%)			1 1			
wi (%)	25					
gi (%)	75					
Permeability to air (md)	1,500					
		RESERVOIR FLUID PROPERTIES				
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gas:						
Specific gravity (air = 1.0)	.61	1 1	1 1			
Heating value (Btu/cu. ft.)	1,067					
Vater:			1 1			
Salinity, NaCl (ppm)	12,000	1				
T.D.S. (ppm)	11.11.11.11.11.11					
Rw (ohm/m) (77°F)	1					
		ENHANCED RECOVERY PROJECTS				
nhanced recovery projects	1					
Date started			1 1			
Date discontinued						
		1	1			
1						
	1					
	1					
	1					
	1					
Peak oil production (bbl)		1				
Peak oil production (bbl)						
Year	15.062.989					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	15,062,989 1972					

Base of fresh water (ft.): 50-100

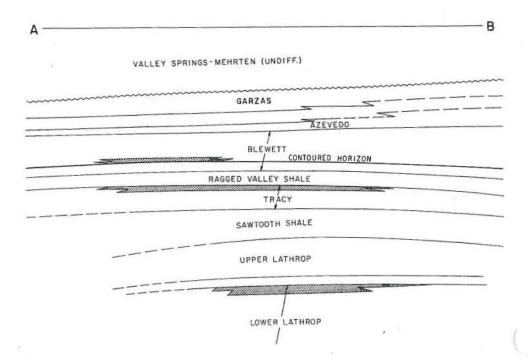
Remarks: Commercial gas deliveries began in April 1937. Pacific Gas & Electric Co. acquired the field in December 1958 and converted it to gas storage in August 1959. The working gas storage capacity is 82,600,000 Mcf with an approximate maximum withdrawl rate of 1,140,000 Mcf/day.

Selected References:

Knox, G. L., 1943, McDonald Island Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.:


Calif. Div. of Mines Bull. 118, p. 588-590.

Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, McDonald Gas Field in Estimate of the Natural Gas Reserves of the State of Calif. as of January 1, 1946: Case No. 4591, Special Study No. S-525, p. 40-42 (1946).


McMULLIN RANCH GAS FIELD

SERIES	FORMATION	MEMBER B ZONE	TYPICAL ELECTRIC LOG
MIOCENE - PLIOCENE	VALLEY SPRINGS-MEHRTEN (UNDIFF)		3000
~~	MORENO	GARZAS	4000
	W	AZEVEDO	-{ }
		BLEWETT	0000
		CONTOURED HORIZON	- 1
		RAGGED VALLEY	6000
		TRACY	AN - 100 - 1
UPPER CRETACEOUS	CHE	SAWTOOTH SHALE	7000
UPP	PANOCHE	UPPER LATHROP	8000
		LOWER	Mary Mary Mary Mary Mary Mary Mary Mary

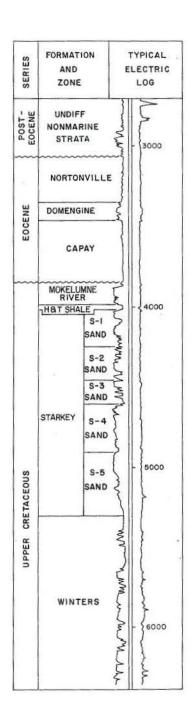
MARCH 1980

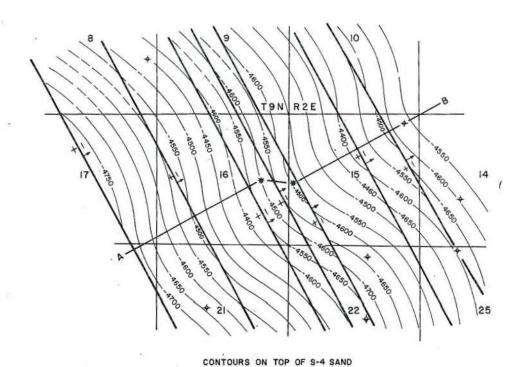
CONTOURS ON BLEWETT ELECTRIC LOG MARKER

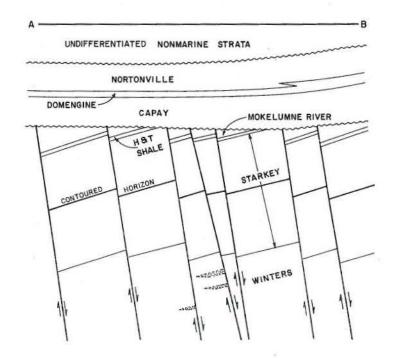
COUNTY: SAN JOAQUIN

MCMULLIN RANCH GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Great Basins Petroleum Co. "Signet- Perrin" 33-25	Same as present	25 2S 6E	MD	6,350	Blewett	
Deepest well	Great Basins Petroleum Co. "Occidental- Whiting" 66X-23	Same as present	23 2S 6E	MD	9,988		Panoche Late Cretaceou


Whiting"	66X-23	**************************************			Late Cretaceo
			POOL DATA		
ITEM	BLENETT	TRACY	E-ZONE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mct/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.)	May 1960 6,020 1,725 3/8 2,415 140 1,200-1,500 Panoche Late Cretaceous 4,525 2-30	May 1960 2,740 775 3/8 2,900 140 1,400-1,800 Panoche Late Cretaceous 6,005 2-15	June 1963 5,200 2,260 5/16 3,625-4,120 172 1,400-1,600 Panoche Late Cretaceous 7,200 3-30		
Average net thickness (ft.)	2-30	2-13	3-30		3,030
		١	RESERVOIR ROCK PROPERT	TIES	
Porosity (%)	26-30 30-35 65-70 597	26-30 30-35 65-70 117	23-27*** 35-40*** 60-65***		
			RESERVOIR FLUID PROPERT	TIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (\$CF/\$TB) Initial oil FVF (RB/\$TB) Bubble point press. (psia) Viscosity (cp) @ *F			11		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.610 ft 895	.610†† 895	.620†† 870		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	10,200	7,900	12,000-23,300		
		EN	HANCED RECOVERY PROJ	ECTS	2
Enhanced recovery projects Date started Date discontinued					-
Peak oil production (bbl) Year					10,790,606 1965


Base of fresh water (ft.): Above 500

Remarks: Dual completions from the Blewett and Tracy zones are common. Gas production from sand strings in the lower portion of the "Ragged Valley" is often commanded with Tracy zone production and considered part of the zone.

Selected References: Hunter, W. J., and Beecroft, G. W., 1960, McMullin Ranch Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 46, No. 2.

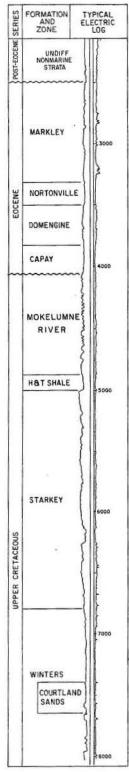
NOVEMBER 1979

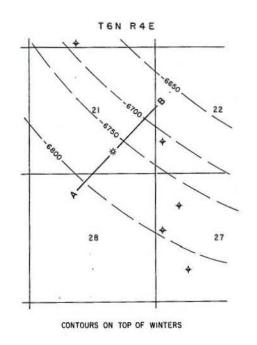
COUNTY: YOLO

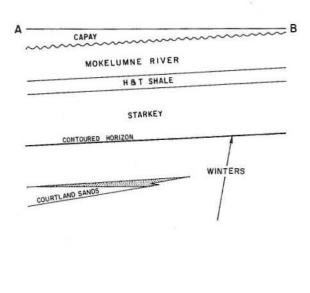
MERRITT GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Russell" 1-15	Same as present	15 9N 2E	MD	6,712 a/	Winters	
Deepest well	Texaco, Inc. "Transamerica" 1-16	Same as present	16 9N 2E	MD	6,800		Winters Late Cretaceous


POOL DATA FIELD OR AREA DATA ITEM WINTERS Discovery date
Initial production rates
Oil (bbl/day)
Gas (Mcf/day)
Flow pressure (psi)
Bean size (in.)
Initial reservoir
pressure (psi)
Reservoir temperature (°F)
Initial oil content (STB/ac.-ft.)
Initial gas content (MSCF/ac.-ft.)
Formation
Geologic age
Average depth (ft.)
Average net thickness (ft.)
Maximum productive
area (acres) November 1974 17,500 2,500 120 960-1,200 Winters Late Cretaceous 5,550 15 160 RESERVOIR ROCK PROPERTIES 25-29 t 45-50† 50-55† RESERVOIR FLUID PROPERTIES Oil:
Oil gravity (*API)
Sulfur content (% by wt.).....
Initial solution
GOR (SCF/STB)
Initial oil FVF (RB/STB)...
Bubble point press. (psia)...
Viscosity (cp) @ *F...... Gas: Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)..... 910 Water:
Salinity, NaCl (ppm)
T.D.S. (ppm)
R_w (ohm/m) (77°F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects...


Date started......


Date discontinued Peak oil production (bbl) Year Peak gas production, net (Mcf) 415,534 1979

Base of fresh water (ft.): 2,230

Remarks: Commerical gas deliveries began in February 1977 a/ Directional well, true vertical depth is 6,703 feet.

DECEMBER 1979

COUNTY: SACRAMENTO and YOLO

MERRITT ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. & I	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Company of California "Greene Unit" 2	Same as present	21	6N 4	E	MD	8,000	Court land	Winters Late Cretaceou
Deepest well	Same as above			**	- 1	**	"	**	"

_		POOL DATA	
ITEM	COURT LAND		FIELD OR AREA DATA
Discovery date	April 1966 6,000 2,600 16/64 3,450 136 980-1,300 Winters Late Cretaceous 7,400 15 80		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	45-50 *** 50-55 ***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Bubble point press. (psia) Viscosity (cp) @ "F	.594†† 930 3,100	*	
AW (Onn) (77 F)		ENCANCED RECOVERY PROJECTS	
Enhanced recovery projects		EN: ANCED RECOVERY PROJECTS	
Peak oil production (bbl)			
Year	388,931 1971		

Base of fresh water (ft.): 1,600

Remarks: Commercial gas deliveries began in June 1971. The field was abandoned in August 1974. One well was completed and cumulative production was 677,643 Mcf gas and 127 barrels condensate.

During December 1980, well Anchor Petroleum Inc. "Hudson" 1 was apparently completed from the interval 7507-7510 feet (true vertical depth is 7489-7492 feet) opposite the Winters formation (Late Cretaceous).

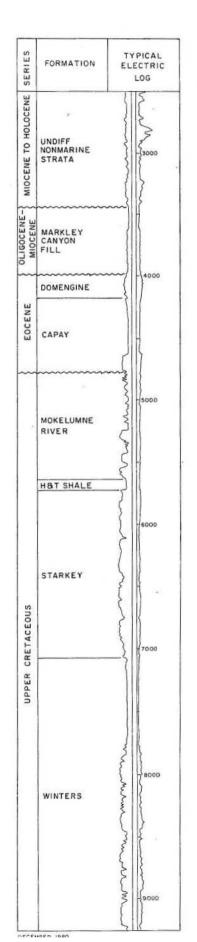
			6					1	6			
				-								
7N RIE	E				T7N	R2E		a			T7N	R3E
	*	WE AR	ST \ EA	į					MA AR	IN EA		
		36	31			\ \(\times\)		36 معر	31			
		ř	6					-	6			
					(T)	(
T6NRIE	Ξ				T6N	R2E					T6NR3	
								N.				
							•					
	1	36	31					36	31			

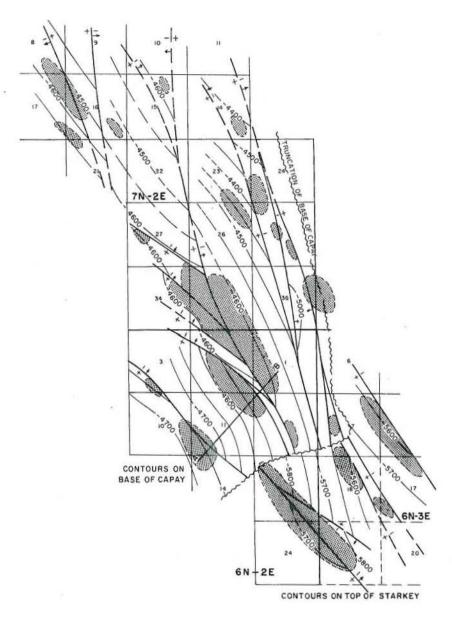
COUNTY: SOLANO and YOLO

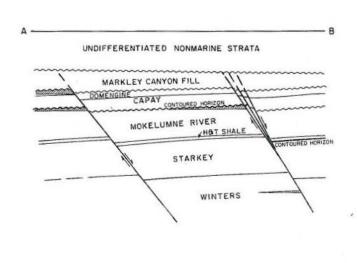
MILLAR GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "Millar" Comm." 1	Amerada Petroleum Corp. "Starkey Fee" 1	2 6N	2E	MD	9,434	Midland	
Deepest well	Hunnicutt & Camp Drilling Co. "Anderson- Rohwer Unit" 1	Same as present	5 6N	2E	MD	9,447		Winters Late Cretaceous


POOL DATA


		POOL DATA	
ITEM	MIDLAND		FIELD OR AREA DATA
Discovery date	August 1944		
Oil (bbl/day) Gas (Mcf/day)	22,570		
Flow pressure (psi)	1,715		
Bean size (in.)	3/8		
pressure (psi)	2,075		1 1
Reservoir temperature (*F)	106		1 1
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.).			1
Formation	Mokelumme River		
Geologic age	Late Cretaceous 4,585		
Average depth (ft.)	40	1	
Maximum productive		1	
area (acres)	4,775		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)			
Soi (%)		1	
Sgj (%) Permeability to air (md)			
Permeability to air (md)			
	-	RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.57211 965		
Water: Salinity, NaCl (ppm)			
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued			
Peak oil production (bbl)			
YearPeak gas production, net (Mcf)	9,753,254		


Base of fresh water (ft.):

Remarks: Millar Gas field was originally known as Dixon Gas area, Cumulative condensate production through 1979, for both areas, was 310 barrels.

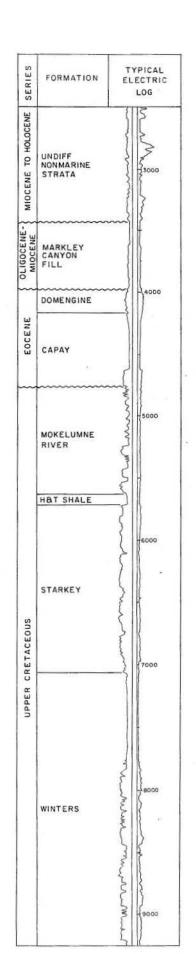
MILLAR GAS FIELD (Main Area)

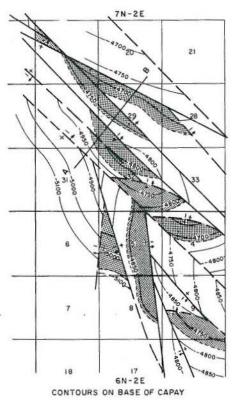
MILLAR GAS FIELD

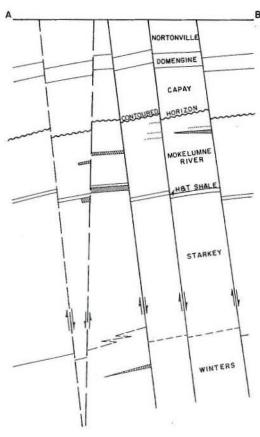
COUNTY: SOLANO and YOLO

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "Millar Comm." 1	Amerada Petroleum Corp. "Starkey Fee" 1	2 6N 2E	MD	9,434	Midland	Winters Late Cretaceous
Deepest well	Same as above	"	"	ш	"	**	" "


	PRTONVILLE					
Initial production rates Oil (bbl/day)		DOMENGINE	MIDLAND	WINTERS	LOWER WINTERS	FIELD OR AREA DATA
Initial production rates Oil (bbl/day)	tember 1965	July 1960	August 1944	September 1969	April 1971	
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	200000	0007 5505		100		1
Flow pressure (psi) Bean size (in.)	2 441 47	200		17202	510	1
Bean size (in.)	2,350 <u>a/</u> 1,560	240 1,075	22,570 1,715	4,000 3,060	1,160	
nitial reservoir	1/4	1/4	3/8	17/64	5/16	
	./-	27.4	370	11704	5-37-5405	1
pressure (psi)	1,520	1,780	2,075	3,400-3,705	3,795	1
Reservoir temperature (*F)	109	108	114	107-111	151	1
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).					800-1,400	1
nitial gas content (MSCF/acft.).		760-970	990-1,300	870-1,400	Winters	1
ormation	ortonville	Domengine	Mokelumne River Late Cretaceous	Winters Late Cretaceous	Late Cretaceous	1
Geologic age	Eocene 3,875	Eocene 4,000	4,585	7,070-7,970	8,245	1
Average depth (11.)	5	20	50	35	14	1
Average net thickness (ft.)		20	50			1000000
area (acres)	1				1	3,525
	1					
			RESERVOIR ROCK PROPER	TIES		
Porosity (%)	1	22-26***	25-29	18-25†	18-25†	
ioj (%)		40-45***	75.40	45-551	45-55†	
Swi (%)		60-65***	35-40 60-65	45-551	45-55† 45-55†	
Sg; (%) Permeability to air (md)	1	00-03		43-331	45-551	
remeability to air (ind)			3-64			
			RESERVOIR FLUID PROPER	TIES		
Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F						
Gast		06/50/0000	20274	832811	700000	
Specific gravity (air = 1.0)	3	.560 † †	.572 11	.620 † †	.630 † †	
Heating value (Btu/cu. ft.)		990	965	850	825	
Water:	9					
Salinity, NaCl (ppm)	*	3,600	6,850	10,440		1
T.D.S. (ppm)	1		1/2/1	100	1	
R _w (ohm/m) (77*F)		EN	HANCED RECOVERY PRO	JECTS		
R _w (ohm/m) (77*F)						


Base of fresh water (ft.): 2,900-3,200


Remarks: Cumulative condensate production through 1979 was 188 barrels. $\underline{a}/$ Commingled production from Domengine and Nortonville zones.

Selected L. 12 ances:

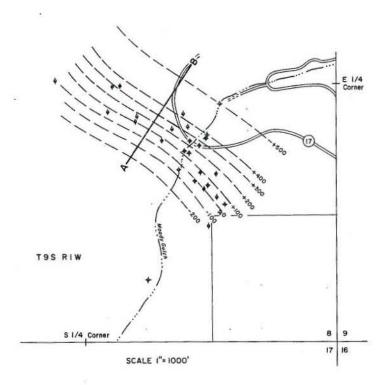
MILLAR GAS FIELD (West Area)

COUNTY: SOLANO and YOLO

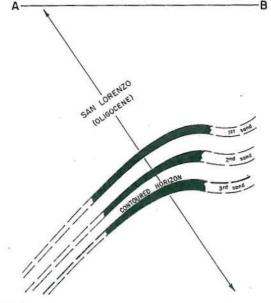
MILLAR GAS FIELD WEST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Opr. "Campbell Ranch"1	The Termo Co. "Amerada-Campbell" 1	4 6N 2E	MD	6,200	Campbell Ranch	
Deepest well	Hunnicutt & Campbell Drilling Co. "Anderson-Rohwer Unit" 1	Same as present	5 6N 2E	MD	9,447		Winters Late Cretaceous


	ATA

			POOL DATA		
ITEM	CAMPBELL RANCH	BUNKER	STARKEY	WINTERS	FIELD OR AREA DATA
Discovery date	October 1967	November 1972	October 1972	January 1973	
Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	2,900 1,930 14/64	7,970 1,600 7/16	9,160 1,830 7/16	10,000	
Initial reservoir pressure (psi)	2,340 115	2,400 115	2,555 119	2,960 142	
initial on content (\$18/4C-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	860-1,400 Mokelumme River Late Cretaceous 5,290 40	970-1,400 Mokelumne River Late Cretaceous 5,350 65	1,100-1,600 Starkey Late Cretaceous 5,665 75	870-1,500 Winters Late Cretaceous 7,840	
area (acres)					1,570
		R	ESERVOIR ROCK PROPE	RTIES	
Porosity (%)	21-28***	23-28	25-30 T	18-25 †	
Swi (%)	35-45*** 55-65***	35-45 55-65	35-45 † 55-65 †	45-55 † 45-55 †	
		R	ESERVOIR FLUID PROPE	RTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ F					
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 ^{††} 980	.575†† 960	.570†† 980	.631 967	
Water: Salinity, NaCl (ppm)	1,700	-	-	-	
		EN	HANCED RECOVERY PRO	OJECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl)					220,750.6 6,2000
Peak gas production, net (Mcf) Year		# 			4,741,398 1972


Base of fresh water (ft.): 2,900

Remarks: Commercial gas deliveries began in August 1968. Cumulative condensate production through 1979 was 128 barrels.

MOODY GULCH OIL FIELD

CONTOURS ON TOP OF 3rd SAND

DECEMBER, 1979

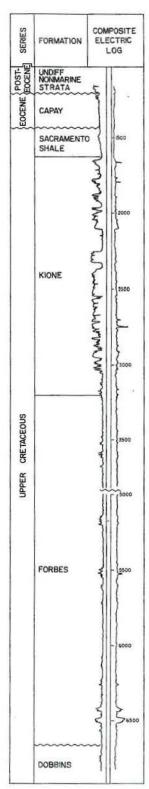
MOODY GULCH OIL FIELD

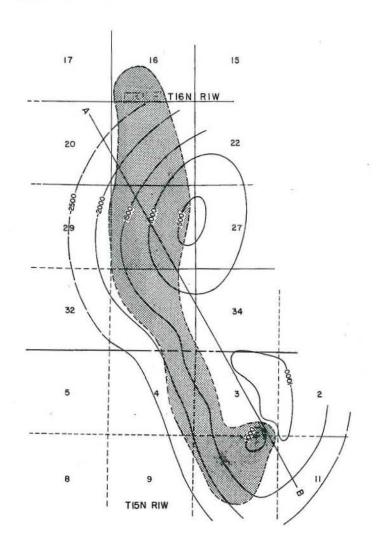
COUNTY: SANTA CLARA

DISCOVERY WELL AND DEEPEST WELL

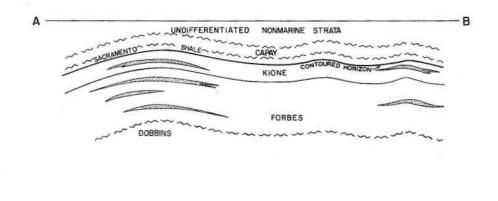
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Division of Highways Well No. 3	Santa Clara Petroleum Co. "Moody" 1	8 95 1W	MD	800	San Lorenzo	
Deepest well	Division of Highways Well No. 2	Continental Oil & Mineral Co. No. 1	8 9S 1W	MD	2,230		San Lorenzo Oligocene

PO	വ	_	M.	ТΑ
ru	U		'n	17


	POOL DATA						
ITEM	SAN LORENZO		FIELD OR AREA DATA				
Discovery date	1878 20-40						
Initial reservoir pressure (psi) pressure (psi) pressure (psi) pressure (rf) mitial oil content (STB/ac-ft.) mitial gas content (MSCF/ac-ft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	San Lorenzo Oligocene 330-930 20-35						
		RESERVOIR ROCK PROPERTIES					
Porosity (%)							
		RESERVOIR FLUID PROPERTIES					
Oil: Oil gravity ('API) Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ F	45						
Gas: Specific gravity (air = 1.8) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)							
SW (OMM) (77 1)		ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects Date started Date discontinued							
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	Prior to 1886						


Base of fresh water (ft.): 35

Remarks: Water production is minor and probably fresh. The last oil production was in 1960.


Selected References: Calif. State Mining Bureau, 1884, Fourth Annual Report of the State Minerologist, p. 302.
Calif. State Mining Bureau, 1887, Seventh Annual Report of the State Minerologist, p. 93-96.
Calif. State Mining Bureau, 1914, Bull. 69, p. 469-470.
Davis, F. F., 1954, Mines and Mineral Resources of Santa Clara County, Calif.: Calif. Div. of Mines, Calif. Journal of Mines and Geology, Vol. 50, No. 2, p. 385-388.
Krueger, M. L., 1943, Moody Gulch Oll Field: Calif. Div. of Mines Bull. 118, p. 77, 79, and 477.
Vander, Leck L., 1921, Petroleum Resources of California: Calif. State Mining Bureau Bull. 89, p. 64-65.

MOON BEND GAS FIELD

CONTOURS ON TOP OF KIONE

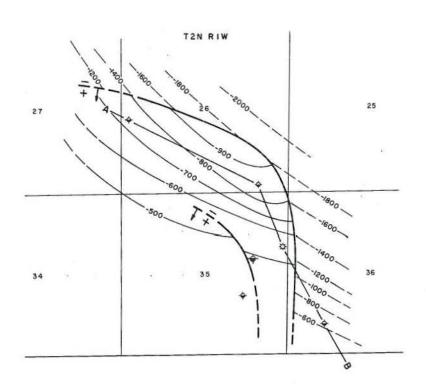
DECEMBER 1978

COUNTY: COLUSA

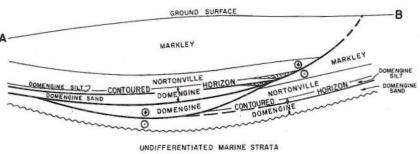
MOON BEND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Great Basins Petroleum Co. "Steidlmayer"	Humble Oil & Rfg. Co. "Steidlmayer" 3	3 15N 1W	MD	2,093	Kione	
Deepest well	Great Basins Petroleum Co. "Great Basins- Davis" 1-9	Colorado Oil & Gas Corp, "Great Basins- Davis" 1-9	9 15N 1W	MD	7,979		Forbes Late Cretaceous


			POOL DATA	
ITEM	KTONE	FORBES		FIELD OR AREA DATA
Discovery date	October 1954	October 1966		
nitial production rates		23 72 72 73 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75		
Oil (bbl/day)	2 222	12000	1	1
Gas (Mcf/day)	1,700 390	514	COLUMN TO THE PARTY OF THE PART	F 1
Flow pressure (psi) Bean size (in.)	24/64	1,710 1/8		1
itial reservoir		V varyweiß and	1	1
pressure (psi)	640	2,600-4,350	1	1 1
eservoir temperature (*F)	95	105-145		
itial oil content (STB/acft.)	310-440	1 700 1 700		1
nitial gas content (MSCF/acft.).	Kione	1,300-1,700 Forbes		1
ormation	Late Cretaceous	Late Cretaceous	1	1 1
verage depth (ft.)	1,400	2,270-6,850		1 1
verage net thickness (ft.)	27	2-70		
laximum productive			-	
area (acres)				1,570
		RE	ERVOIR ROCK PROPERTIES	
sector (96.)	25-33***	24-30		
orosity (%)		24.00	1	
wi (%)	30-35 ***	35-40	1	
gi (%)	65-70***	60-65	1	
Permeability to air (md)				
		RE	ERVOIR FLUID PROPERTIES	
Dilt				
Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F				
Gas				1 1
Specific gravity (air = 1.0)	.570	.603	1	1 1
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	990	910	1	
Vater:			4)	
Salinity, NaCl (ppm)		14,000-19,000	1	
1.D.S. (ppm)		Constitution to the last of		4
R _W (ohm/m) (77°F)				
		ENH	ANCED RECOVERY PROJECTS	
Enhanced recovery projects Date started				
Date discontinued				
Peak oil production (bbl)				
Year		1		7.745.101
Peak gas production, net (Mcf)				6,445,191 1975
Year		1	1	1975

Base of fresh water (ft.): 200-1,300


Remarks: Commercial gas deliveries began in March 1968:

MULLIGAN HILL GAS FIELD (Abandoned)

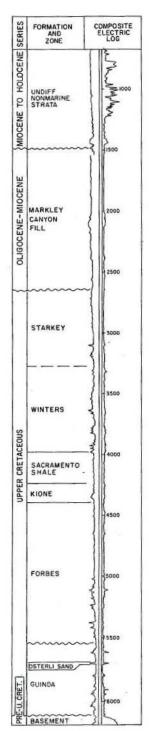
SERIES	FORMATION	MEMBER	ELE	PICAL CTRIC OG .
NE	MARKLEY		ALL WASHINGTON WASHINGTON THE STATE OF THE S	My human what what was a second was the was the was the was the way to be a second when the was the wa
EOCENE	NORTONVILLE		and many the second	-,1500
		DOMENGINE	J/W/www	Alla Marie
~~	DOMENGINE	S DOMENGINE SAND	John John John John John John John John	My mandagan Ingo water has
UPPER CRETACEOUS	UNDIFF MARINE STRATA		month menter that the second	2500

CONTOURS ON TOP OF DOMENGINE SAND

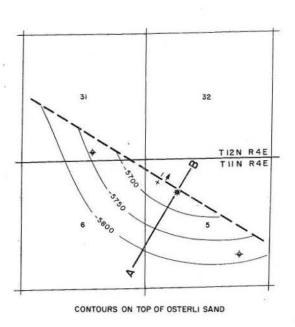
COUNTY: CONTRA COSTA

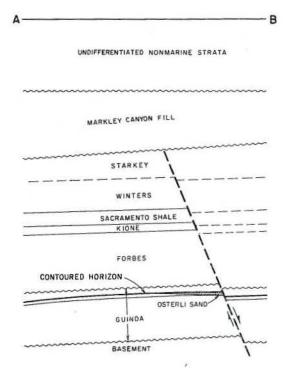
MULLIGAN HILL GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T	. & R	E. S.	&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp, "Keller Estate" 1	Same as present	35 2	N 11	W	MD	4,965	Domengine	G-zone Late Cretaceou
Deepest well	Same as above					"	"		"

4		PO	OL DATA	
ITEM	DOMENGINE #/			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	1,040 300 1/2 490 87 240-330 Domengine Eocene 1,640-1,735 5-30			
		RESERVOIA	ROCK PROPERTIES	
Porosity (%)	25-30*** 25-35*** 65-75***			
		RESERVOII	FLUID PROPERTIES	
Oik Oil gravity ('API)	.57211 985			
		ENHANCED	RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	45,183 1967		,	


Base of fresh water (ft.): Above 500


Remarks: Commercial gas deliveries began in January 1963. The field was abandoned in October 1968. One well was completed and cumulative gas production was 125,576 Mcf.

a/ Commingled production from Domengine silt and Domengine sand.

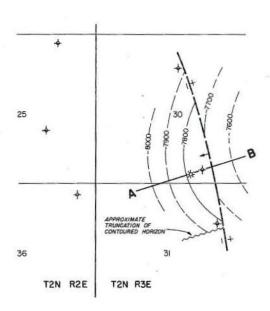
DECEMBER 1979

COUNTY: SUTTER

NICOLAUS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Delcalta International Corp. "Osterli" 1	Sacramento Oil and Gas Co. "Osterli" 1	5 11N 4E	MD	5,762	Osterli	
Deepest well	Delcalta International Corp. "Osterli" 3	Bolsa Chica Oil Corp. "Osterli" 1	31 12N 4E	MD	6,786		basement pre-Lt. Cret.


		POOL DATA	
ITEM	OSTERLI		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1961 5,200 355 3/4 2,525 115 570-710 Guinda Late Cretaceous 5,700 15		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	16-18** 45-50** 50-55**		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.)	.87511 220		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year			

Base of fresh water (ft.): 2,500

Remarks: Gas is 78 percent nitrogen and 22 percent methane. Field has never produced commercially, and the only completed well is shut in.

OAKLEY GAS FIELD (Abandoned)

SERIES	FORMATION	MEMBER AND ZONE	TYPIC: ELECTI LOG	AL RIC
POST- EDCENE	NONMARINE			3000
EOCENE	MARKLEY			
	NORTONVILLE			4000
	DOMENGINE		January Marie	5000
	CAPAY	4		6000
	MEGANOS	MARGARE HAMILTON SAND MEGANOS CANYON FILL		7000
PALEOCENE	MARTINEZ	McCORMIC SAND FIRST MASSIVE	NO.	8000
	RIVER	SECOND MASSIVE HALL SHA	Toward (III)	9000
ACEOUS	MOKELLIMNE RIVER	THIRD MASSIVE	Miles of the second	E 10000
UPPER CRETACEOUS	UNDIFF MARINE STRATA		an Madematory on	11000

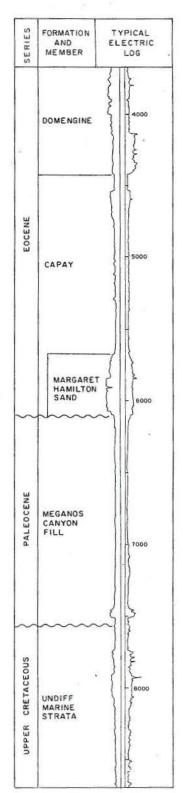
CONTOURS ON TOP OF MCCORMICK SAND

DECEMBER 1979

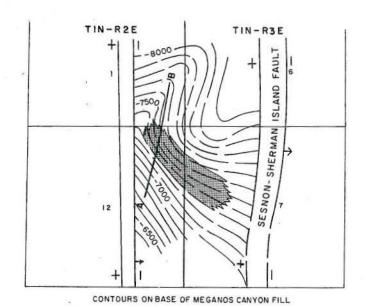
COUNTY: CONTRA COSTA

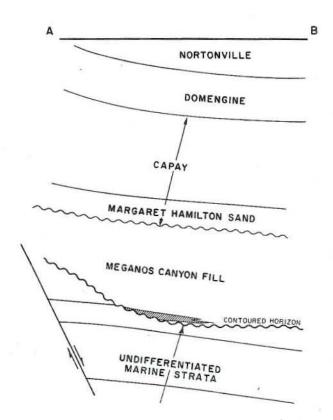
OAKLEY GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	8.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Occidental Petroleum Corp. "Machado" 1	Same as present	30 2N	3E	MD	11,607	B-111	undiff. marine Late Cretaceous
Deepest well	Same as above		. "			"	.00	**

°r	POOL	DATA	FIELD OR
ITEM	B-III		AREA DATA
Discovery date	September 1962		
Discovery datenitial production rates		1 1	
Oil (bbl/day)	241344	1 1	
Gas (Mcf/day)	3,162		
Flow pressure (psi)	1,226		
Bean size (in.)	3,080	1 1	
itial reservoir	166		
pressure (psi)eservoir temperature (*F)		1 1	
itial oil content (STB/acft.)			
itial gas content (MSCF/acft.).	1,100-1,300	1 1	
ormation	Martinez		
eologic age	Paleocene		
verage depth (ft.)	7,822		
verage net thickness (ft.)	60		
aximum productive	120		
area (acres)			
	RESERVOIR RO	K PROPERTIES	
prosity (%)	24-26		
oj (%)	40-45		
w; (%)	55-60	1 1	
5i (%)	33-00		
ermeability to air (md)			
	RESERVOIR FLU	D PROPERTIES	
Dil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F			
as: Specific gravity (air = 1.0)	.591††		
Heating value (Btu/cu. ft.)	1,060		
		1 1 1	
/ater:			
Salinity, NaCl (ppm)	7,000		
T.D.S. (ppm) R _W (ohm/m) (77°F)			
Kw (onm/m) (//*F)			
	ENHANCED RECO	VERY PROJECTS	
nhanced recovery projects Date started Date discontinued			
Date discontinued ,			
-			
eak oil production (bbl)			
Year			
eak gas production, net (Mcf)	15,108 1967		
Year			


Base of fresh water (ft.): Above 800

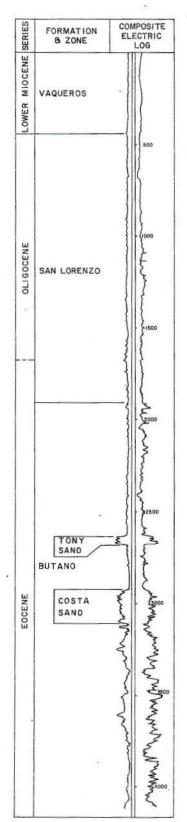

Remarks: Commercial gas deliveries began in January 1967. The field was abandoned in April 1968. Only one well was completed and cumulative gas production was 15,108 Mcf.

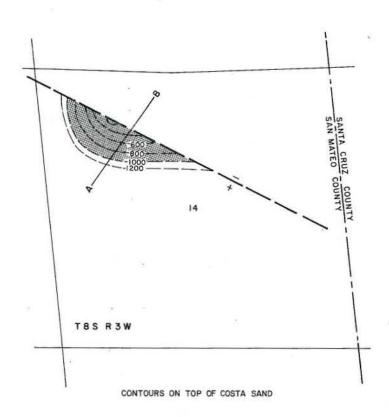
SOUTH OAKLEY GAS FIELD

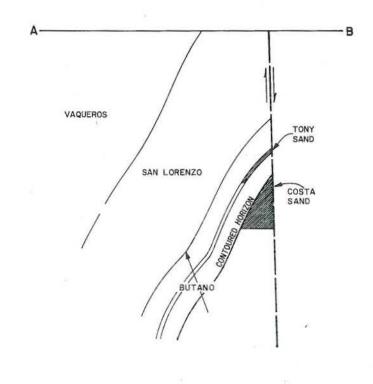
DECEMBER 1980

COUNTY: CONTRA COSTA

OAKLEY, SOUTH, GAS FIELD


DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Conoco Inc. "Marsh Creek Unit" 1	Continental Oil Co. "Marsh Creek Unit" 1	12 1N 2E	MD	8,692	Meganos Canyon fill	Moreno Late Cretaceous
Deepest well	Same as above	•	"	"	"	canyon 1111	


		POOL DATA	
ITEM	MEGANOS CANYON FILL		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	November 1972 500-1,000 2,930 2,819 167 920 Meganos Canyon fill Paleocene 7,475 50 300		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	18 35 65		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.)	.603 1,062		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued			
Peak oil production (bbl) Year Peak gas production, net (Mcf)	1,692,871 1976		

Base of fresh water (ft.): Above 100

Remarks: Commercial gas deliveries began in January 1974. Condensate production in 1979 was 2,762 bbl; cumulative condensate production 12,837 bbl.

DECEMBER 1979

OIL CREEK OIL FIELD

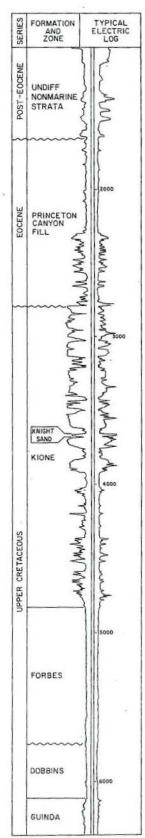
COUNTY: SAN MATEO

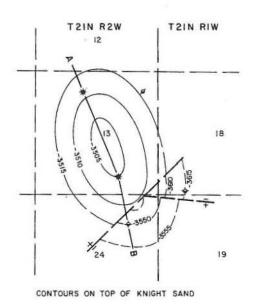
DISCOVERY WELL AND DEEPEST WELL

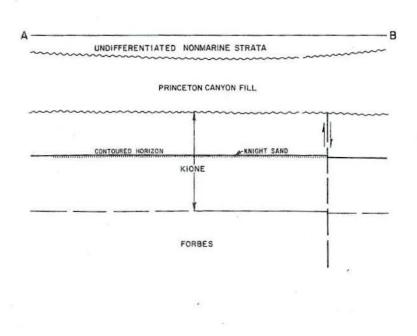
	Present operator and well designation	Original operator and well designation	Sec.	T. & R	B,&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Costa Loma Ltd. "Costa" 1	Union Oil Company of California "Richfield- Costa" 1	14	8S 3V	MD	3,804	Costa	
Deepest well	Union Oil Company of California "Rich- field-Costa" 4	Same as present	14	8S 3N	MD	5,112		Butano Eocene

POOL DATA

		100	LDAIA		EIELD OR
ITEM	TONY	COSTA			FIELD OR AREA DATA
Discovery date	March 1956	October 1955			
nitial production rates	meaning and	A STREET, STRE	i i		
nitial production rates Oil (bbl/day)	24 11/	107			
Cas (Mcf/day)	474	42		1	
Flow pressure (psi)	135	25		l .	
Bean size (in.)	1	14/64			
nitial reservoir		75	1	1	
pressure (psi)		769		1	
teservoir temperature (*F)	99	101		1 1	
eitial oil content (CTR/ac.ft)		580-1,000	1	1	
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.).	- 1	A-64-17-50-64-1		1 1	
ormation	Butano	Butano			
eologic age	Eocene	Eocene		1 1	
Average depth (ft.)	1,860	2,090	1	1	
(verage depth (It.)	55	120		1	
verage net thickness (ft.)	33	120			
Aaximum productive			1	1	80
area (acres)					00
		RESERVOIR R	OCK PROPERTIES		
orosity (%)	15-23	15-23			
ol (%)	60-70	60-70	I.	1	
oj (%) wj (%)	30-40	30-40	į.		
(76)	1905 (3148)	500035			
ermeability to air (md)		30-140	1		
ermeability to air (mo)		38.36.4			
		RESERVOIR F	LUID PROPERTIES	1	
Dil:	41	41	le.		
Oil gravity (*API)	44	7.	1	1	
Sulfur content (% by wt.)			ľ	1	
Initial solution	2/	392		1	
GOR (SCF/STB)	2	1.2	1		
Initial oil FVF (RB/STB)		1+2	1	1	
Bubble point press. (psia) Viscosity (cp) @ *F					
			1		
Gas:			1	1	
Specific gravity (air = 1.0)				1 9	
Heating value (Btu/cu. ft.)					
				1. 3	
Water:	25 222	75 700			
Salinity, NaCl (ppm)	25,300	25,300	1		
T.D.S. (ppm)					
R _w (ohm/m) (77°F)					
		ENHANCED RE	COVERY PROJECTS		
Enhanced recovery projects					
Date started		1		4	
Date discontinued			1		
	/		1		
			ľ	1	
					U
		TIV.		1	
				4	
				1	
			1		
1		1			
				1	15 050
Peak oil production (bbl) Year	9		1		15,058 1976
eak gas production, net (Mcf)				1	
Year			1	1	
					Ü


Base of fresh water (ft.): None


Remarks: Commercial oil production began in October 1955.

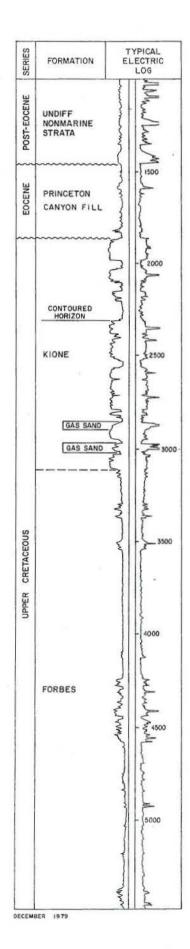

a/ Commingled with production from Costa zone.

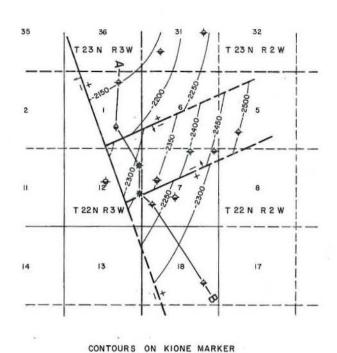
Selected References: Fothergill, H. L., 1962, La Honda Oil Field, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.: Div. of Mines and Geology Bull. 181, p. 223-224.

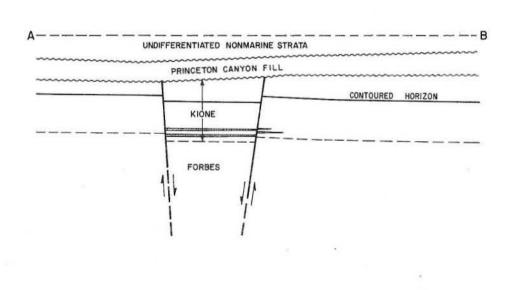
ORD BEND GAS FIELD

COUNTY: GLENN

ORD BEND GAS FIELD


DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Superior Oil Co. "Knight" 1	Same as present	13 21N 2W	MD	6,346	Knight	Guinda Late Cretaceous
Deepest well	Same as above	"		**		***	"


			POOL DA	ATA	
ITEM	KNIGHT				FIELD OR AREA DATA
Discovery date	5,040 1,075 24/64 1,615 112 880-1,200 Kione Late Cretaceous 3,660 13				
			RESERVOIR ROCK	PROPERTIES	
Porosity (%)	26-32*** 30-35*** 65-70***				
			RESERVOIR FLUID	PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Bubble point press. (psia) Viscosity (cp) @ *F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.600 910 15,400	*			
			ENHANCED RECOVE	RY PROJECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,034,566 1947				

Base of fresh water (ft.): 1,200

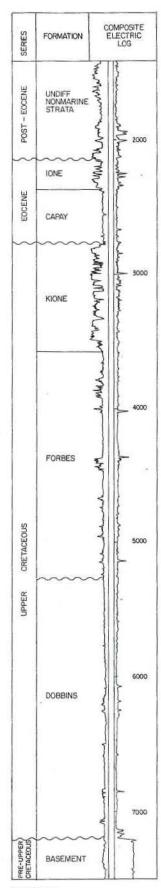
Remarks: Commercial gas deliveries began in January 1945.

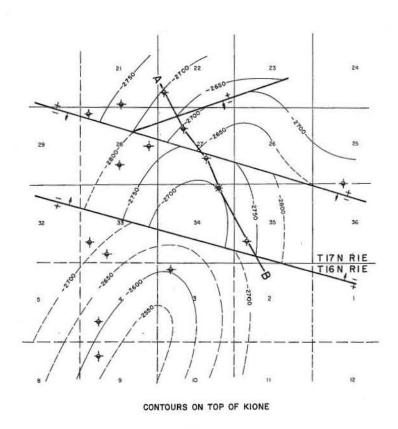
COUNTY: GLENN

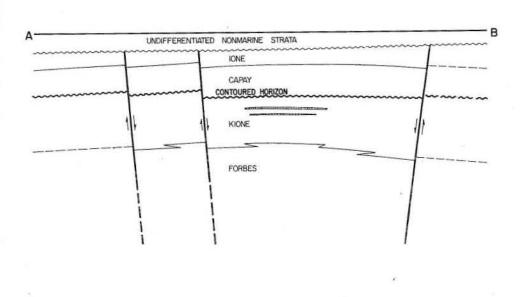
ORLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В,&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Armstrong Petroleum Corp. "Morrissey"	Oxy Petroleum, Inc. "Morrissey" 1-12	12 22N 3W	MD	5,711	unnamed	
Deepest well	Ferguson & Bosworth and Assoc. "Transamerica Dev. Co." 1	Same as present	7 22N 2W	MD	5,850		Forbes Late Cretaceous


POOL DATA


		POOL	7414		FIFTE OF
ITEM	UNNAMED				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Initial reservoir pressure (psi) Reservoir temperature (*f') Initial oil content (STB/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	May 1975 1,160-1,300 1,150-1,260 16/64 1,350-1,400 101-107 740-760 Kione Late Cretaceous 2,710-3,220 10-20				
		RESERVOIR ROCK	PROPERTIES		
Porosity (%)	25-27*** 33* 67*			4	
		RESERVOIR FLUID	PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F Gas: Specific gravity (air = 1.0) Ficating value (Btu/cu, ft.) Water: Salnity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.568591 925-931 84,000				30
		ENHANCED RECOV	ERY PROJECTS		
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	95,454 1979				


Base of fresh water (ft.): 1,700

Remarks: Commercial gas deliveries began in January 1979.

PEACE VALLEY GAS FIELD

DECEMBER 1979

COUNTY: SUTTER

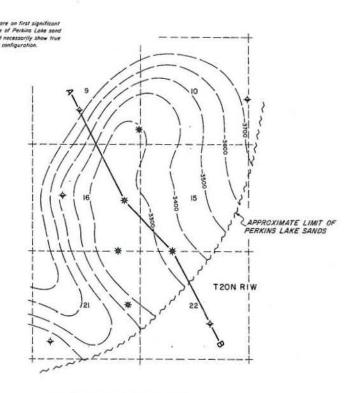
PEACE VALLEY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

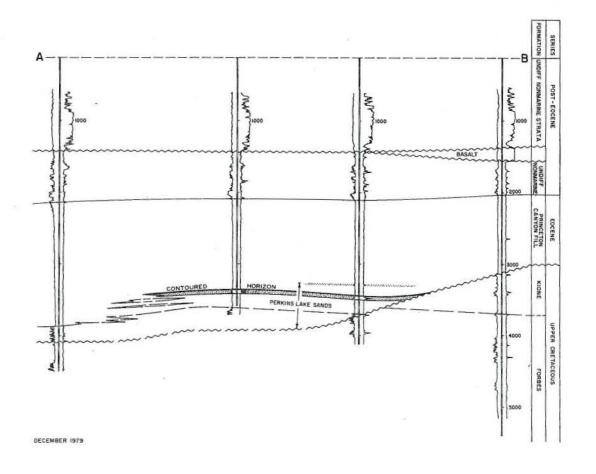
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Buttes Community" 1-34	Same as present	34 17N 1E	MD	6,798	Kione	
Deepest well	Shell Oil Co. "Citco-DeRee" 1-35	Same as present	35 17N 1E	MD	7,236 a/		basement pre-Lt. Cret.

POOL DATA

FIELD OR AREA DATA ITEM KIONE July 1977 5,200 1,395 800 Kione Late Cretaceous 3,150 30 40 RESERVOIR ROCK PROPERTIES 28* 30* 70* RESERVOIR FLUID PROPERTIES Oil: Oil gravity (*API) Sulfur content (% by wt.).... Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F...... Gas: Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.)..... .650 780 Water: Salinity, NaCl (ppm) T.D.S. (ppm) R_W (ohm/m) (77*F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started Date discontinued


Base of fresh water (ft.): 750

Peak oil production (bbl)
Year
Peak gas production, net (Mcf)
Year


Remarks: Commercial gas deliveries have not yet begun.

a/ Directional well, true vertical depth is 7,236 feet.

PERKINS LAKE GAS FIELD

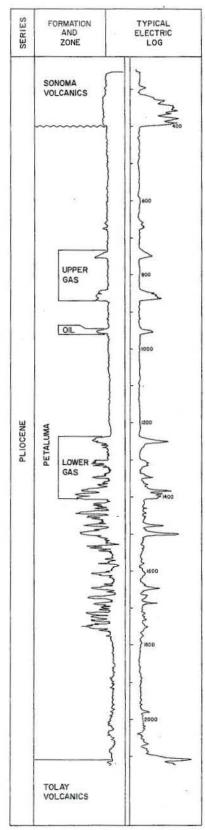
CONTOURS ON TOP OF PERKINS LAKE SANDS

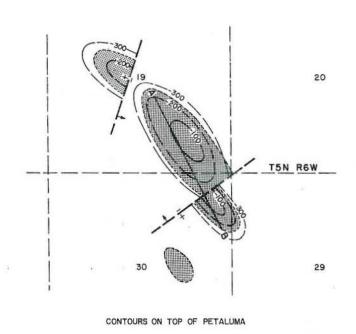
PERKINS LAKE GAS FIELD

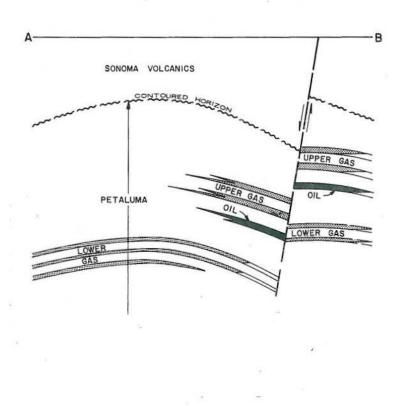
COUNTY: BUTTE

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Parrott Investment Company"	Humble Oil & Refining Co. "Parrott Invest- ment Company" 8-1	16 20N 1W	MD	4,370	Perkins Lake	
Deepest well	Exxon Corp. "Parrott Investment Company" B-6	Humble Oil & Refining Co. "Parrott Invest- ment Company" B-6	16 20N 1W	MD	6,500		Guinda Late Cretaceous


POOL DATA


	POOL DATA							
ITEM	PERKINS LAKE				FIELD OR AREA DATA			
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/ac-ft) Initial gas content (MSCF/acft) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,575-1,600 106 1,200 Princeton Cyn. fill Eocene 3,400							
		RESERVOIR R	OCK PROPERTIES					
Porosity (%)	31 25 75							
		RESERVOIR F	LUID PROPERTIES					
Oil: Oil gravity (*API) Sulfur content (% by wt.)	el.							
		ENHANCED RE	COVERY PROJECTS					
Enhanced recovery projects Date started Date discontinued		B						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	2,841,396 1960							


Base of fresh water (ft.): 1,500

Remarks: Commercial gas deliveries began in December 1965.

Selected References: Harding, T. P., 1962, Perkins Lake Gas Field, Calif. : Calif. Div. of Mines Bull. 181. p. 103-105. Lorshbough, A. L., 1971, Perkins Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 57, No. 1.

DECEMBER 1979

COUNTY: SONOMA

PETALUMA OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Herbert N. Witt No. 2	Same as present	19 5N 6W	MD	1,420	011	-
Deepest well	Shell Oil Co. "Murphy" 1	Same as present	19 5N 6W	MD	6,385		Franciscan(?) late Mesozoic

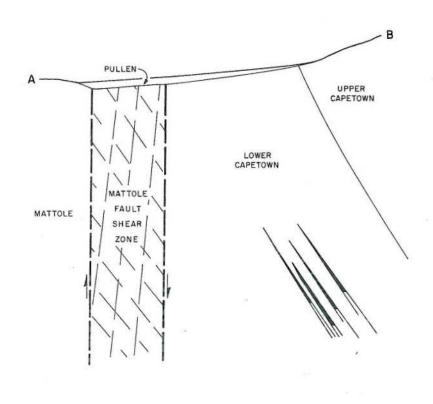
POOL DATA

			POOL DATA		
ITEM	UPPER GAS	OIL	LOWER GAS		FIELD OR AREA DATA
Discovery date	May 1958	May 1926	August 1941		
Discovery date			37.0012 1015	1	i i
Oil (bbl/day)		12	72.295.69	4	
Gas (Mcf/day)	1,000	1	3,030	30	
Flow pressure (psi)			347	1	
Bean size (in.)	1/2	4	5/8		
nitial reservoir	***	1 2		4	
pressure (psi)	315		558		
eservoir temperature (*F)	90	90	100		
nitial oil content (STB/acft.)	190		340		
nitial gas content (MSCF/acft.).	Petaluma	Petaluma	Petaluma		
ormation	Pliocene	Pliocene	Pliocene		
ormation	670	920	1,240	(1)	
verage depth (ft.)	20	25	20		
Maximum productive	20				
area (acres)			1		
-					100
			RESERVOIR ROCK PROPERTIES		
Porosity (%)	30**		30**		
ioj (%)			****		I.
wi (%)	30**		30**		t
gj (%)	70**		70**		£
Permeability to air (md)				1	
			RESERVOIR FLUID PROPERTIES		
Dil:					
Oil gravity (*API)		20	1		
Sulfur content (% by wt.)				1	
Initial solution					
GOR (SCF/STB)		li		N	
Initial oil FVF (RB/STB)					1
Bubble point press. (psia)			1		
Viscosity (cp) @ *F					
ias:					1
Specific gravity (air = 1.0)	.568	1	.568	1	1
Heating value (Btu/cu. ft.)	1,018		1,018	1	
					1
Vater:			1		1
Salinity, NaCl (ppm)	4,600		4,600		1
T.D.S. (ppm)					1
R _W (ohm/m) (77°F)				1	
		E	NHANCED RECOVERY PROJECTS	•	
Enhanced recovery projects					
Date started					
Date discontinued			1		1
T.				1	
				1	
			1		
		1			
1					
					1
				1	
					1,508
Peak oil production (bbl) Year Peak gas production, net (Mcf)					1,508 1951 136,004

Base of fresh water (ft.): 100

Remarks: Commercial gas deliveries began in August 1942 . Maximum proved acrenge is 95 for gas, 10 for oil, and 5 with gas and oil combined.

Selected References: Johnson, F. A., 1943, Petaluma Region in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 622-627.


PETROLIA OIL FIELD (Abandoned)

SERIES	1	FOR MATION AND MEMBER	THICK- NESS (FEET)
HOLO- CENE	LAN (Q)	IDSLIDE s)	0 to 30
\ UPPER \ \ MIOCENE	PUI (Tp	LEN)	0 10 100
		UPPER MEMBER (Kcum)	
CRETACEOUS	CAPETOWN	LOWER MEMBER (Kclm)	±7000
ō	MA'	TTOLE	±5000

	Kcum	14 (5) (5) (4) (6) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		14
QIS	Kolm	Тр	Qis	
MATTOLE.	- 21-	SHE	AR ZONE	Qis
Km	TP 7	- К	m	
29	28	4	27	2
	F40 Indicat	es strike and dip of strata		
		BASED UPON DATA D BY THE DIVISION		

TIS R2W

SERIES	FORMATION	MEMBER AND ZONE	TYPICAL ELECTRIC LOG
CRETACEOUS	CAPETOWN	LOWER MEMBER	
		OIL ZONE	- \$1500

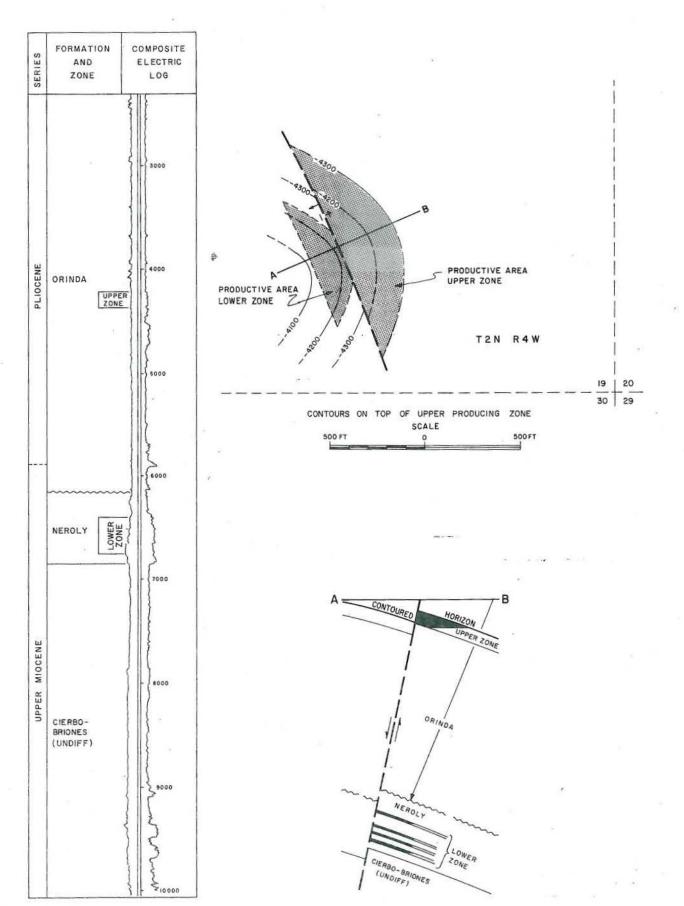
DECEMBER 1979

COUNTY: HUMBOLDT

PETROLIA OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec	. T. 8	LR.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	West Coast Oil Corp. "West Coast" 1	Same as present	16	15	2W	H	1,785	unnamed	
Deepest well	Conoco Inc. "Chambers",1	Continental Oil Co. "Chambers" 1	21	18	2W	Н	4,041		Capetown Cretaceous


POOL DATA FIELD OR AREA DATA UNNAMED ITEM Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Injtial reservoir October 1953 100 Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/ac.-ft.) Initial gas content (MSCF/ac.-ft.), Formation Ceologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres) 642 96 Capetown Cretaceous 1,570 90 10 · RESERVOIR ROCK PROPERTIES RESERVOIR FLUID PROPERTIES 46 Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started..... Date discontinued Peak oil production (bbl) 210 1953 Year Peak gas production, net (Mcf)

Base of fresh water (ft.): 40

Remarks: Commercial oil production began in November 1953. The field was abandoned in September 1971. Two wells were completed and cumulative oil production was 350 barrels. This field is about four miles northwest of California's first oil production (circa 1865).

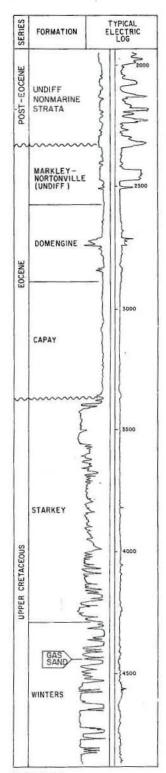
PINOLE POINT OIL FIELD

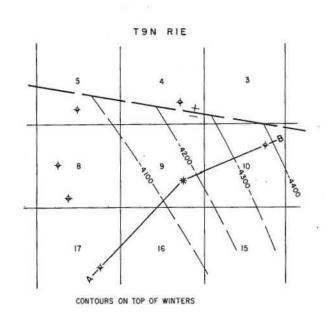
(Abandoned)

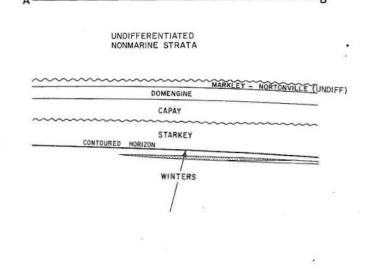
COUNTY: CONTRA COSTA

PINOLE POINT OIL FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation		Sec. T. & R.		(sect)	Pool (zone)	Strata & age at total depth
Discovery well	Bethlehem Steel Corp. "Bethlehem" 1	Standard Oil Company of Calif. "Bethlehem"	19 2N 4W	MD	9,997	Lower	Cierbo-Briones
Deepest well	Same as above	u		**		*	H H


<u>.</u>		POO	L DATA	
ITEM	UPPER	LOWER		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	August 1969 6 1,870 138 Orinda Pliocene 4,350 75	April 1969 208 361 520 12/64 2,795 168 Neroly late Miocene 6,400 70		20
		RESERVOIR R	OCK PROPERTIES	
Porosity (%)				
		RESERVOIR F	LUID PROPERTIES	
Oil: Oil gravity (*API)	11	41		
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)		14,600		
		ENHANCED RE	COVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Feak oil production (bbl) Year Peak gas production, net (Mcf) Year				5,575 1969 65,608 1973


Base of fresh water (ft.): 200

Remarks: Commercial oil production began in April 1969. The field was abandoned in July 1975. Two wells were completed and cumulative oil production was 11,282 barrels.

PLAINFIELD GAS FIELD

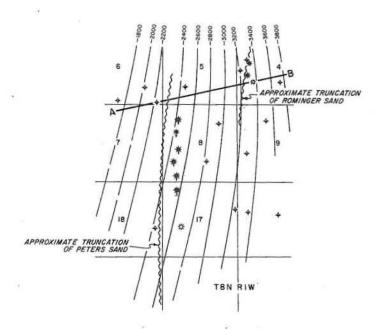
DECEMBER 1979

COUNTY: YOLO

PLAINFIELD GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Supreme Oil & Gas Corp. "Supreme-Bell" 1	Supreme Oil & Gas Corp. "R.M. Bell Community" 1	9 9N	1E	MD	4,553 8	/ unnamed	
Deepest well	Same as above	D. C. Basolo, Jr. "R. M. Bell Community" 1	9 9N	1E	MD	5,070		Winters Late Cretaceous


POOL DATA FIELD OR AREA DATA ITEM UNNAMED September 1967 782 920 3/16 1,585 113 610-770 Winters Late Cretaceous 4,430 4 40 RESERVOIR ROCK PROPERTIES 25-29*** 45-50*** 50-55*** RESERVOIR FLUID PROPERTIES .595† † 915 Specific gravity (air = 1.0)..... Heating value (8tu/cu. ft.)..... Water: Salinity, NaCl (ppm) T.D.S. (ppm) R_w (ohm/m) (77°F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects... Date started Date discontinued ... Peak oil production (bbl) Peak gas production, net (Mcf) Year

Base of fresh water (ft.): 2,500

Remarks: Commercial gas deliveries have not yet begun. The well was originally drilled and abandoned in 1960 by D. C. Basolo, Jr.

a/ Sidetracked hole, redrilled from 2,548 feet.

PLEASANT CREEK GAS FIELD

CONTOURS ON TOP OF WINTERS

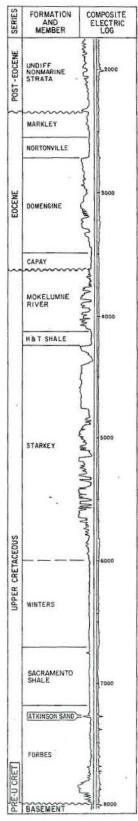
COUNTY: YOLO

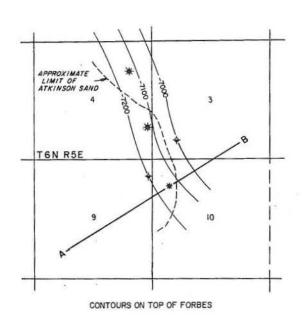
PLEASANT CREEK GAS FIELD

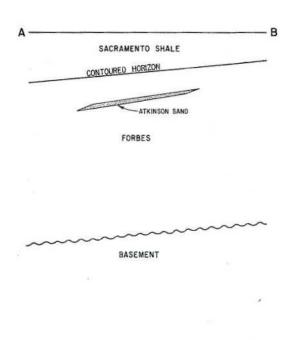
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Pacific Gas and Electric Co. "Pleasant Creek Unit 3" 1	Shell Oil Co. "Pleasant Creek Unit 3" 1	8 8N 1W	MD	3,000	Peters	
Deepest well	The Divide Ridge Oil Co. No. 1	Same as present	8 8N 1W	MD	5,006		Forbes (?) Late Cretaceous

POOL DATA


00		214	POOL DATA		A SUBSTITUTE AND THE
ITEM	ROMINGER	PETERS		100	FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	June 1953 5,250 1,390 1/2 1,670 118 1,000-1,200 Winters Late Cretaceous 5,700 25	9,550 510 1 1,270 107 800-900 Winters Late Cretaceous 2,800			
		RESER	VOIR ROCK PROPERTIES		
Porosity (%)	31-34 30-35 65-70	31-34 30-35 65-70 1,000			
		RESER	VOIR FLUID PROPERTIES		
Oil: Oil gravity (*API)	.572 990	.572 990			
		ENHANG	CED RECOVERY PROJECTS		
Enhanced recovery projects Date started Date discontinued			X.	*	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					1,021,466 1952


Base of fresh water (ft.): 1,700-2,700


Remarks: Commercial gas deliveries began in April 1951. Northeast portion of Pleasant Creek Gas field was also known as Chickahominy Gas field. Pacific Gas and Electric Company acquired the wells that are productive from the "Peters" sand in 1958, and converted them to gas storage in April 1960. The working gas storage capacity is 2,140,000 Mcf with an approximate maximum withdrawl rate of 60,000 Mcf/day.

Selected References: Hunter, G. W., 1955, Pleasant Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

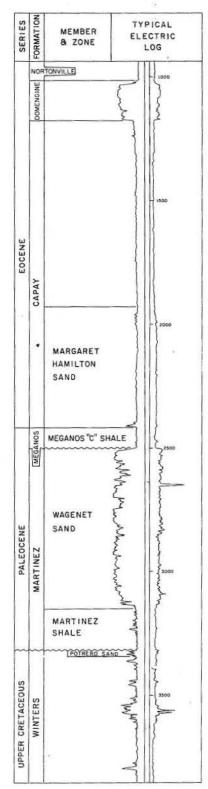
POPPY RIDGE GAS FIELD

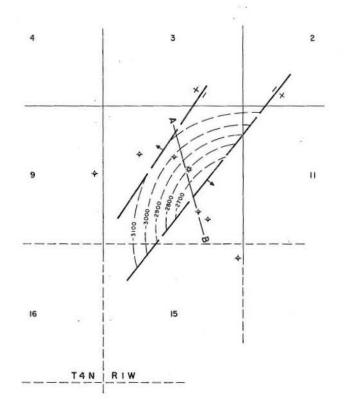
FEBRUARY 1980

COUNTY: SACRAMENTO

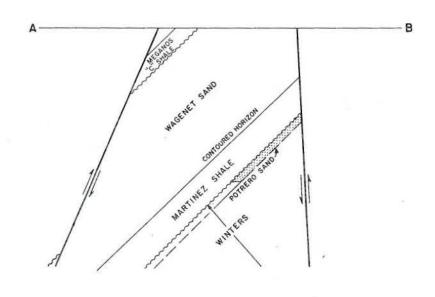
POPPY RIDGE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Milon L. Johnston "Atkinson" 1	Same as present	10 6N SE	MD	7,460	Atkinson	
Deepest well	Milon L. Johnson "Jillson" 1	Same as present	9 6N 5E	MD	8,118		basement pre-Lt. Cret.


2		POOL DATA	
ITEM	ATKINSON		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bb/day) Gas (Mcf/day)	March 1962		
Flow pressure (psi) Bean size (in.)	2,575 17/64		
pressure (psi) teservoir temperature (*F) nitial oil content (STB/acft.)	3,220 138		
nitial gas content (MSCF/acft.). ormation eologic age	1,200-1,600 Forbes Late Cretaceous		
Average depth (ft.)	7,270 9		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	23-27		
soj (%)	35-40*** 60-65***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API)			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu, ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm)	.634 826		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued			
Peak oil production (bbl) Year			
Peak gas production, net (Mcf) Year			

Base of fresh water (ft.): 1,700


Remarks: Commercial gas deliveries have not yet begun

POTRERO HILLS GAS FIELD (Abandoned)

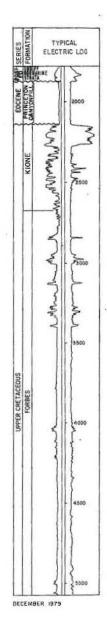
CONTOURS ON BASE OF WAGENET SAND

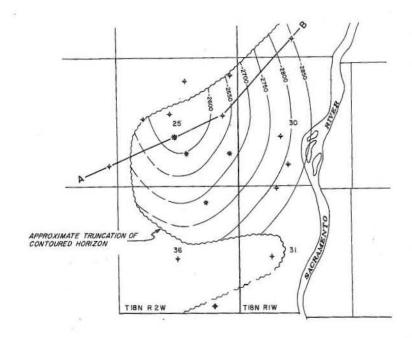
DECEMBER 1979

COUNTY: SOLANO

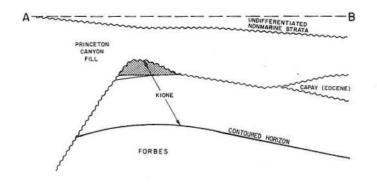
POTRERO HILLS GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec.	T. 8	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	ARCO Oil and Gas Co. "Potrero Hills" 1	Richfield Oil Corp. "Potrero Hills" 1	10	4N	1W	MD	5,334	Potrero	
Deepest well	MCOR Oil and Gas Corp. "McCulloch- Macson Scally Unit" 1	McCulloch Oil Exploration Co. of Calif., Inc. "McCulloch-Macson Scully Unit" 1	10	4N	1W	MD	9,020		undiff. marine Late Cretaceou


-		POOL DATA	PIPE OF
ITEM	POTRERO		FIELD OR AREA DATA
Discovery date	December 1938		
initial production rates		1 1	
Oil (bbl/day)	1,500		
Flow pressure (psi)	1,050	1 1	
Bean size (in.)	1/4	1 1	
pressure (psi)	1,420	1	1
Reservoir temperature (*F)	110		ł
initial oil content (STB/acft.)			1
Initial gas content (MSCF/acft.).	Winters		
Formation	Late Cretaceous		1
Average depth (ft.)	3,245		1
Average net thickness (ft.)	40		1
Average net thickness (ft.) Maximum productive	44		1
area (acres)	40		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)			
Soj (%)			
Sgi (%)			1
Permeability to air (md)		1 1	1
		RESERVOIR FLUID PROPERTIES	
		RESERVOIR PLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F			
Gas:			
Specific gravity (air = 1.0)	.573 11		
Heating value (Btu/cu. ft.)	970		1
Water: Salinity, NaCl (ppm)	5,800		1
T.D.S. (ppm)	-1000		1
R _W (ohm/m) (77°F)			
		ENHANCED RECOVERY PROJECTS	
Ehhanced recovery projects			
Date discontinued	1		
Control and April 1900 (CALIFORNIA CONTROL AND APPLICATION OF THE APPL			1
			1
1			1
			1
Peak oil production (bbl) Year	20,042		

Base of fresh water (ft.): 1,100


Remarks: Commercial gas deliveries began in October 1942. The well was produced for 3 months and was abandoned in April 1943. Cumulative gas production is 21,542 Mef.

Selected References: Tolman, F. B., 1943, Potrero Hills Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 595-598.

CONTOURS ON BASE OF KIONE

COUNTY: COLUSA

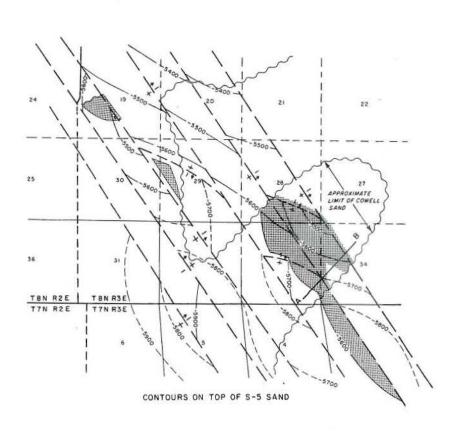
PRINCETON GAS FIELD

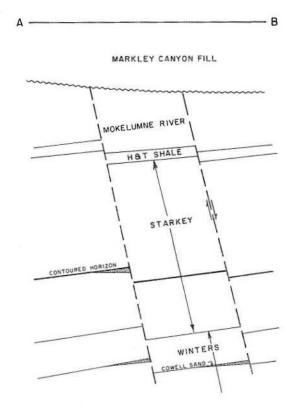
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Rheem Calif. Land Co. "Southam" 1	Richard S. Rheem, Opr. "Southam" 1	25 18N 2W	MD	5,072	Kione	
Deepest well	Intex Oil Co. "Capitol" 1-30	Same as present	30 18N 1W	MD	7,703		Dobbins Late Cretaceous

POOL DATA FIELD OR AREA DATA ITEM KIONE Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir December 1953 2,850 940 3/8 1,015 610-650 Kione Late Cretaceous 2,170 320 RESERVOIR ROCK PROPERTIES 27-29*** 30* 70* 125-320 RESERVOIR FLUID PROPERTIES Oil: Oil gravity (*API) Sulfur content (% by wt.).... Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB)... Bubble point press. (psia)... Viscosity (cp) @ *F... Specific gravity (air = 1.0)..... Heating value (Btu/cu. ft.)..... .572 980 Water Salinity, NaCl (ppm) ... T.D.S. (ppm) R_w (ohm/m) (77*F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects. Date started...... Date discontinued Peak oil production (bbl) 881,744 1956

Base of fresh water (ft.): 1,800


Remarks: Commercial gas deliveries began in August 1955.


Selected References: Bruce, Donald D., 1959. Princeton Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 45, No. 1.

PUTAH SINK GAS FIELD

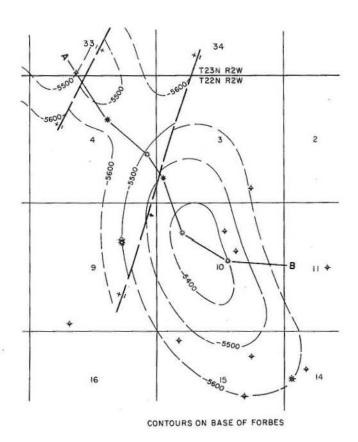
SERIES	ME	MATION MBER ONE	EL	POSITE ECTRIC LOG
MIDCENE TO HOLOCENE	UNDII NOMM STRA	ARINE		Millian San Jan Jan Jan Jan Jan Jan Jan Jan Jan J
MIOCENE >	MARK FILL	CLEY CANY	on .	3000
EOCENE	process.	ONVILLE NGINE		}
	RIVE		Survivor	4000
	нат	SHALE S-I	7	
		S-2	- Survey	
Eous		S-3	YMA	5000
UPPER CRETACEOUS	STARKEY	S-4	\ 	
UPP		S-5	- man	6000
		DUNN SA	ND {	>
	WINTERS	COWELL SA	IND.	300

DECEMBER 1979

COUNTY: YOLO

PUTAH SINK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


CITAL	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Shoshone-Cowell" 1	Same as present	34 8N 3E	MD	6,975	Cowell	
Deepest well	Occidental Petroleum Corp. "Glide" 1	Same as present	34 8N 3E	MD	8,123		Winters Late Cretaceou

_			POOL DATA			
ITEM	S-4	DUNN	COWELL		FIELD OR AREA DATA	
Discovery date	November 1973	April 1974	June 1973			
Oil (bbl/day)	2,080	1,600	970	1	4	
Flow pressure (psi)	2,050	2,050	2,550		4.	
Bean size (in.)		1/2	28/64		T	
nitial reservoir		1		1	- 1	
pressure (psi)	2,420	2,710	2,995		1	
leservoir temperature (°F)	110	118	122	1		
nitial oil content (STB/acft.)				1	1	
nitial gas content (MSCF/acft.).	1,500-1,900	1,100-1,600	1,200-1,700		1	
ormation	Starkey	Winters	Winters		1	
Geologic age	Late Cretaceous	Late Cretaceous	Late Cretaceous		1	
Average depth (ft.)	5,550	6,210	6,500		1	
verage net thickness (ft.)	50	20	60		1	
Aaximum productive				1 1	720	
area (acres)						
		RES	ERVOIR ROCK PROPER	TIES		
Porosity (%)	29-331	25-28†	25-281		l.	
5o; (%)	22-301	30-45†	30-451			
Sgi (%)	70-781	55-701	55-701		i i	
Permeability to air (md)	10.70		1000 3000			
emeanity to air (ind)						
		RES	ERVOIR FLUID PROPER	TIES		
Dilt:						
Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ "F		,				
Specific gravity (air = 1.0)	.607	.610	.605 910			
Heating value (Btu/cu. ft.)	900	890	910			
Water:						
Salinity, NaCl (ppm)	1				1	
1.D.3. (ppm)					1	
R _W (ohm/m) (77°F)				1		
	ENHANCED RECOVERY PROJECTS					
Enhanced recovery projects						
Date started					l l	
Date started				1		
				1	1	
				1		
		1		1	1	
1						
-					1	
2						
Peak oil production (bbl) Year Year Year					3,875,386	

Base of fresh water (ft.): 2,000-2,500

Remarks: Commercial gas deliveries began in December 1974.

RANCHO CAPAY GAS FIELD

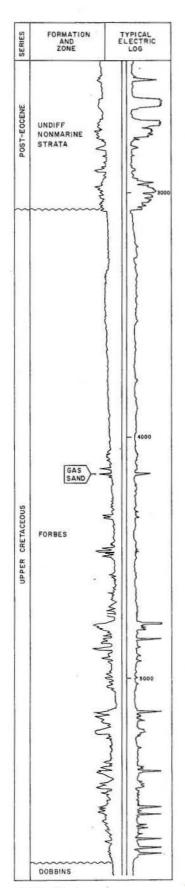
DECEMBER 1979

COUNTY: GLENN

RANCHO CAPAY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	G.E. Kadane & Sons "Moda A" 54-10	General Petroleum Corp. "Moda A" 54-10	10 22N 2W	MD	5,898	Moda	
Deepest well	The Termo Co. "Rancho Capay Unit 1" 1	Trico Oil & Gas Co. "Rancho Capay Unit" 1	4 22N 2W	MD	6,035		Dobbins Late Cretaceous


			POOL DATA		
ITEM	MODA	KIONE	UNNAMED		FIELD OR AREA DATA
Discovery date	August 1959	June 1966	August 1962		
nitial production rates Oil (bbl/day)					ľ
Gas (Mcf/day)	5,800	730	4,000	1 1	
Flow pressure (psi)	390	1,000	1,400	1	
Bean size (in.)	56/64	12/64	1/4	1	1
nitial reservoir	660	1 120	2 405 2 705	1	1
pressure (psi)	96	1,120 115	2,405-2,705 156-166	1	1
eservoir temperature (*F) litial oil content (STB/acft.)	20	113	130-100	1	1 :
itial gas content (MSCF/acft.)	400-490	520-650	800-1,000		1
ormation	undiff. nonmarine	Kione	Forbes	1	1
eologic age	Post-Eocene	Late Cretaceous	Late Cretaceous		
verage depth (ft.)	1,710	2,580	4,540-5,000		i
verage net thickness (ft.)	20	10	1-30	1	1
aximum productive				1	490
area (acres)					490
		RE	ESERVOIR ROCK PROPER	RTIES	
prosity (%)	30-34***	24-28†	18-24		
oj (%)	25-30***	30-35 †	35-40	1	
wi (%)	70-75***	65-701	60-65		
gi (%)ermeability to air (md)	70-75	03-701	60-63		
ermeability to air (ind)					
		RE	ESERVOIR FLUID PROPER	RTIES	
it	1				
Oil gravity (*API)	- 1		1	1	
Sulfur content (% by wt.) Initial solution			į.	1	1
GOR (SCF/STB)	- I				
Initial oil FVF (RB/STB)					
Bubble point press. (psia)					
Viscosity (cp) @ *F	1				
0.000000				1	
ias:					1
Specific gravity (air = 1.0)	200	***	.562		
Heating value (Btu/cu. ft.)	860	950	1,000	All I	
				T I	
			1		1
Vater:				1	
Salinity, NaCl (ppm)				8	Ī
T.D.S. (ppm)					
Salinity, NaCl (ppm)		-201			
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	IANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	IANCED RECOVERY PRO	DJECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DJECTS	
Salinity, NaCl (ppm)		ENP	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENI	HANCED RECOVERY PRO	DJECTS	
Salinity, NaCl (ppm)		ENP	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		EN	HANCED RECOVERY PRO	DJECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DJECTS	
Salinity, NaCl (ppm)		ENF	HANCED RECOVERY PRO	DIECTS	246,336

Base of fresh water (ft.): 1,200

Remarks: Commercial gas deliveries began in March 1961.

Selected References: Land, P. E., 1970, Rancho Capay Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

RED BANK CREEK GAS FIELD (Abandoned)

32	33	
+	T27N R3W T26N R3W	
5	4	
ļ	*	
 8 	9	
17	16	

DEFINITIVE DATA UNAVAILABLE

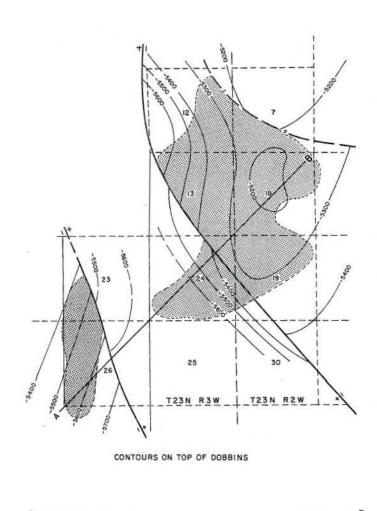
COUNTY: TEHAMA

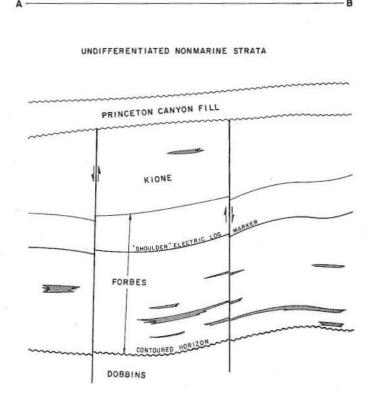
RED BANK CREEK GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Red Bluff Associates "Goff" 1	Kenyon C. Sills, Oper., Inc. "Goff" 1	4 26N 3W	MD	4,196 <u>a</u> /	unnamed	
Deepest well	Same as above	Humble Oil & Refining Co. "Henry James Goff, et ux" 1	4 26N 3W	MD	5,800		Dobbins Late Cretaceou

		POOL DATA	12	
ITEM	UNNAMED		FIELD OR AREA DATA	
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir	August 1964 1,040 1,227 3/16			
pressure (psi) Reservoir temperature (°F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	2,040 121 460-680 Forbes Late Cretaceous 4,158			
area (acres)	40	RESERVOIR ROCK PROPERTIES		
Porosity (%)	15-20*** 45-50*** 50-55***	ALDER ON ROCK PROFERENCE		
		RESERVOIR FLUID PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB). Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ "F. Gas: Specific gravity (air = 1.0) Healing value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)	.60311 900			
	1.015000	ENHANCED RECOVERY PROJECTS		
Enhanced recovery projects Date started Date discontinued				
*				
Peak oil production (bbl) Year	9,767 1965			


Base of fresh water (ft.): 2,650


Remarks: Commercial gas deliveries began in December 1965. The field was abandoned in March 1972. Only one well was completed and cumulative gas production was 19,076 Mcf.

a/ The well was originally drilled and abandoned by Humble Oil and Refining Co. (now Exxon Corp.), then reentered and completed by Kenyon C. Sills.

RICE CREEK GAS FIELD

SERIES	FORMATION	COMPOSITE ELECTRIC LOG
POST-EOCENE	UNDIFF. NON MARINE STRATA	Manual Who was a start of the
EOCENE	PRINCETON CANYON FILL	Mara
	KIONE	Washing Washington Tolker Tolker
UPPER CRETACEOUS	FORBES	
	DOBBINS	5000
	GUINDA	

DECEMBER 1979

COUNTY: TEHAMA

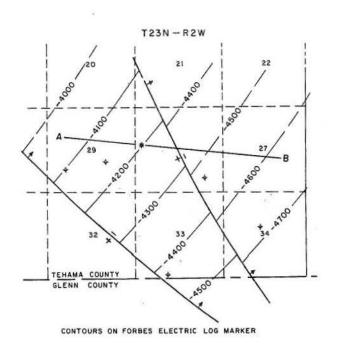
RICE CREEK GAS FIELD

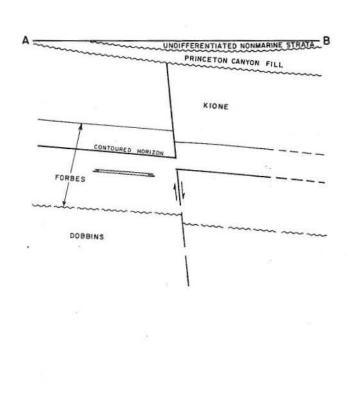
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&N	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Sun Oil Co. "George S. Reid Unit" 1	Sunray DX Oil Co. "George S. Reid Unit" 1	13 23N 3V	MD	5,793	Forbes	
Deepest well	Sun Oil Co. "Victor Ranch" 4	Sunray DX Oil Co. "Victor Ranch" 4	7 23N 21	MD MD	12,175		Venado Late Cretaceous

-			OOL DATA	FIELD OR
ITEM	UNNAMED	UNNAMED		FIELD OR AREA DATA
Discovery date	May 1964 6,115 a/ 835-970 3/8-1/4 970-1,270 87-95 550-610 Kione Late Cretaceous 2,000-2,660 5-40	May 1963 3,230 1,290 5/16 2,260-3,140 114-129 810-1,000 Forbes Late Cretaceous 4,250-5,500 5-30		2,800
		RESERV	DIR ROCK PROPERTIES	
Porosity (%)	25-28*** 35-40*** 60-65***	17-23 [†] 40-50 [†] 50-60 [†]		
		RESERV	DIR FLUID PROPERTIES	
Oil: Oil gravity ('API)	.577615 ^{††} 870-965	.558570 ^{††} 988-1,016 16,600-23,800		.560 1,005
R _W (ohm/m) (77*F)		FNHANC	D RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued		ENTANC	D RECOVERT PROJECTS	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year			1	2,637,249 1967

Base of fresh water (ft.): 1,450-1,700


Remarks: Commercial gas deliveries began in May 1964.


 $\underline{\underline{a}}/$ Combined rate, triple-string completion (three strings of 2 7/8" tubing cemented in hole).

Selected References: Hill, F. L., 1970, Rice Creek Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

EAST RICE CREEK GAS FIELD

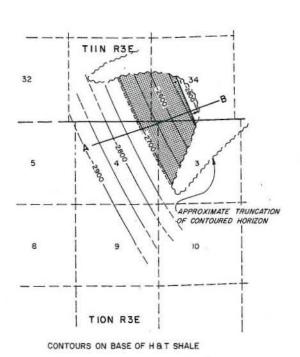
SERIES	FORMATION	COMPOSITE ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	W 1000
EOCENE {	PRINCETON CANYON FILL	2000
	KIONE	2000 27 2000 27 2000 27 27 27 27 27 27 27 27 27 27 27 27 27
UPPER CRETACEOUS	CONTOURED HORIZON FORBES	
	DOBBINS	- 6000

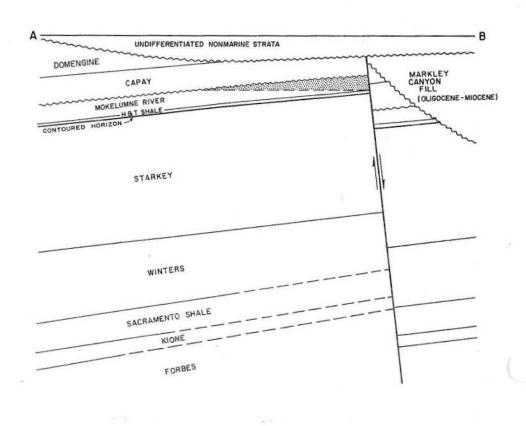
COUNTY: TEHAMA

RICE CREEK, EAST, GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Oxy Petroleum, Inc. "NRC-Bettencourt" 1	McFarland Energy, Inc. " NRC-Bettencourt"	28 23N 2W	MD	5,450	Forbes	Forbes Late Cretaceous
Deepest well	Same as above			"			"


2		POOL DATA		_
ITEM	FORBES			FIELD OR AREA DATA
Discovery date	1,695 1,115 1/4 1,270 111 300-450 Forbes			
Average depth (ft.)	4,950 16 60			
		RESERVOIR ROCK PROPERTIES		
Porosity (%)	17-21† 45-55† 45-55†	3		
		RESERVOIR FLUID PROPERTIES		
Oil: Oil gravity ('API) Oil gravity ('API) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F	.577 970			
		ENHANCED RECOVERY PROJECTS		
Enhanced recovery projects				
			ε.	
Yeak oil production (bbl) Year				


Base of fresh water (ft.): 1,600

Remarks: Commercial gas deliveries have not yet begun.

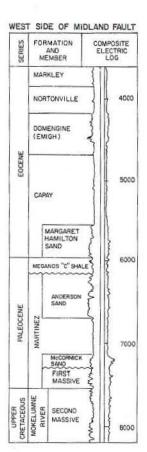
RIO JESUS GAS FIELD

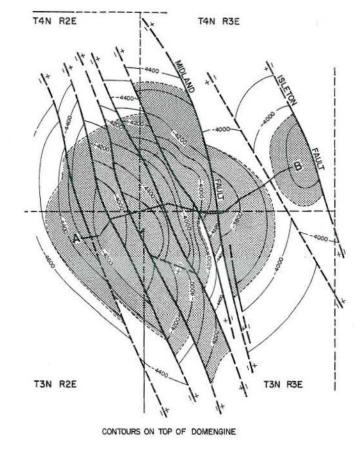
SERIES	FORMATION	COMPOSITE ELECTRIC LOG
MIOCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	Trum My Mary My 2000
NE	DOMENGINE	13 To 10 To
EOCENE	CAPAY	
~	MOKELUMNE RIVER	J. J. J.
	H & T SHALE	-3000
UPPER CRETACEOUS	STARKEY \$	MONTH AND THE PARTY OF THE PART
	WINTERS	man grayman
	SACRAMENT SHALE	
	KIONE	7-5000
	FORBES	

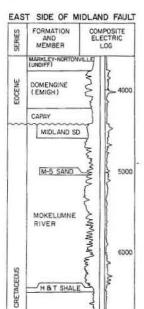
COUNTY: YOLO

RIO JESUS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

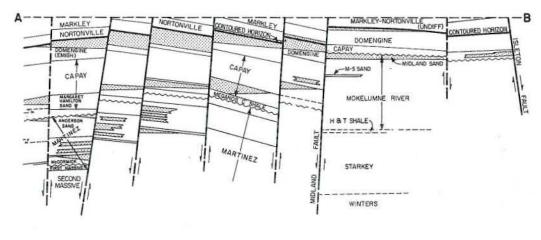

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Jesus-Maria" 1	Same as present	4 10N 3E	MD	4,504	Mokelumne River	Sacramento shale
Deepest well	Same as above		"	"			.0.


		POC	DL DATA	
ITEM	MOKELUMNE RIVER			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day)	July 1972 3,394 915 24/64 1,275 114 820-1,000 Mokelumne River Late Cretaceous 2,470 50 160			
		RESERVOIR	ROCK PROPERTIES	
Porosity (%)	32-34† 23-35† 67-77†			
		RESERVOIR	FLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.)	.60762311 864-884			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)				
		ENHANCED R	ECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
				4
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	357,312 1979			


Base of fresh water (ft.): 1,000

Remarks: Commercial gas deliveries began in January 1977.

RIO VISTA GAS FIELD


STARKEY

WINTERS

DECEMBER 1979

7000

8000

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec	. т.	& R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Unit Opr. "RVGU" 55	Amerada Petroleum Corp. of Calif. "Emigh"	26	4N	2E	MD	4,485	Emigh	
Deepest well	Chevron U.S.A. Inc. "Peter Cook" 15	Standard Oil Co. of Calif. "Peter Cook" 15	8	4N	3E	MD	15,050		Forbes Late Cretaceous

			POOL DATA			
ITEM	SIDNEY	. MARKLEY	NORTONVILLE	EMIGH (Domengine)	CAPAY	FIELD OR AREA DATA
Discovery date	September 1977	September 1977	September 1950	June 1936	May 1948	
Initial production rates Oil (bbl/day)						
Gas (Mcf/day)	1,490	1,274	190	8,750	3,010	
flow pressure (psi)	731	918	-	1,375	1,670	
Bean size (in.)				1/2	1/4	
pressure (psi)	1,110	1,190	1,230	1,715-1,915	1,930	
Reservoir temperature (°F)	116	116	135	141-149	150	
nitial oil content (STB/acft.)	500-690	560-740	700	1,200-1,300	800	1
nitial gas content (MSCF/acft.).	Markley	Markley	Nortonville	Domengine	Capay	
Geologic age	Eocene	Eocene	Eocene	Eocène	Eocene	
Average depth (ft.)	2,450	2,630	3,700-4,200	3,800-4,300	4,500-5,100	1
Average net thickness (ft.)	50	24	25	40-315	20-40	1
Maximum productive area (acres)						25,000
arca (acres)						
			ESERVOIR ROCK PROPERT			T
Porosity (%)	25-32	26-32	30*	34	26*	
Soj (%)	35-40 ***	35-40***	35*	30	45*	
Sgi (%)	60-65***	60-65***	65*	70	55*	
Sgi (%) Permeability to air (md)	5-10	400-1,800	*	•	1352	
		R	ESERVOIR FLUID PROPERT	TIES	19111	L
Oil:						
Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F						
Gas:			100	1200/90		
Specific gravity (air = 1.0)	.580	.580	.59511	.580604 † †	.59911	
Heating value (Btu/cu. ft.)	1,009	1,009	1,010	1,000-1,050	1,060	
Water		P. 100 (100 (100 (100 (100 (100 (100 (100				
Salinity, NaCl (ppm)		4,590	-	6,100-9,500	8,600-15,600	
T.D.S. (ppm) R _w (ohm/m) (77°F)		4,703 1.36	1 1	-	-	
			HANCED RECOVERY PROJ	ECTS		
			I ROYERI PROJ			1
Enhanced recovery projects Date started Date discontinued						
reak oil production (bbl) Year reak gas production, net (Mcf)				110000		159,577,428

Base of fresh water (ft.): 1,900-2,900

Remarks: Commercial gas deliveries began in September 1937. Cumulative condensate production is 1,341,463 barrels. Effective January 1965, most of the field was unitized, with Amerada Petroleum Corp., Opr. (now Amerada Hess Corp., Unit Opr.) acting as unit operator.

Selected References: Burroughs, Ernest, 1967, Rio Vista Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 53, No. 2 - Part 2.

Burroughs, Ernest, Beecroft, G. W., and Barger, R. M., 1968, Rio Vista Gas Field: Am. Assoc. Petroleum Geologists, Memoir No. 9, p. 93-101.

COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

RIO VISTA GAS FIELD Cont.....

FIELD OR

22-28

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в,&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well							

POOL DATA

HEM	MARGARET HAMILTON	MIDLAND	W-3	ANDERSON	No. 17 Table	AKEA DATA
Discovery date	November 1936	June 1943	August 1943	August 1944	October 1966	
Oil (bbl/day)	4,160 ª/ 290 3/4	5,700≜/	13,340 1,635 5/8	11,700 2,145 1/2	4,250 1,810 3/8	
Initial reservoir pressure (psi)	2,415 167	2,060 153	2,210 153	2,550 177	2,550-3,000 177-187	
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	1,100 Capay Eccene 5,300 90	1,300 Mokelumne River Late Cretaceous 4,500 40-140	1,100 Mokelumne River Late Cretaceous 5,050 10	1,600 Martinez Paleocene 5,750 43	920-1,400 Martinez Paleocene 5,800-6,900 30-120	
area (acres)		R	ESERVOIR ROCK PROPERT	TIES		

Soj (%)	40 60	35 65	30 70	25 75	35-40 60-65 15-180
		- Ri	SERVOIR FLUID PROPER	TIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution					

GOR (SCF/STB)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.599†† 1,060	.616†† 1,025	.583ff 990	.601†† 1,070	.596†† 1,065	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	15,400-18,800	11,000-14,000	11,300	10,100-24,000	15,400	
R _W (ohm/m) (77°F)						

	ENHANCED RECOVERY PROJECTS							
Enhanced recovery projects Date started Date discontinued								
Peak oil production (bbl) Year								

Base of fresh water (ft.):

Remarks:

a/ Open hole formation test.

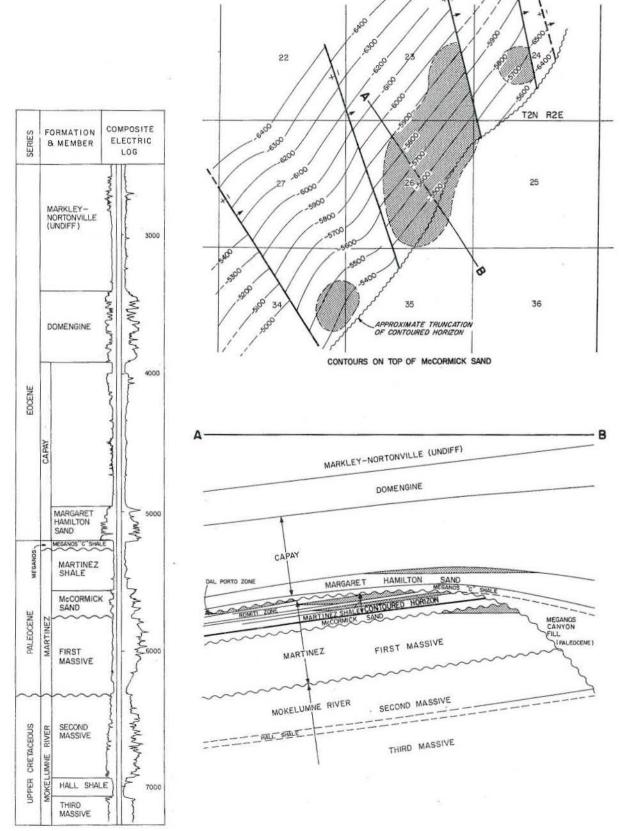
Selected References: Corwin, C. H., 1953, Rio Vista Gas Field, Isleton Area: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 1.
Frame, R. G., 1944, Rio Vista Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 30, No. 1.

COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

RIO VISTA GAS FIELD Cont.....

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well				7			
Deepest well							


4_		Po	OOL DATA	
ITEM	McCORMICK	PETERSEN		FIELD OR AREA DATA
Discovery date	0ctober 1966 5,330 1,925 3/8 2,930 185-190 1,100-1,400 Martine: Paleocene 6,500-7,600 50	April 1966 400 125 3/8 4.860 195 800-1,300 Starkey Late Cretaceous 9,650 55		
		RESERVO	IR ROCK PROPERTIES	
Porosity (%)	24-28 35-40 60-65 120	14-20† 45-50† 50-55†		
		RESERVO	IR FLUID PROPERTIES	
Oil: Oil gravity ('API)	e	(A		
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.599†† 1,060	.608f† 1,080	4	
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	10,500-15,200	7,700		
		ENHANCE	RECOVERY PROJECTS	
Enhanced recovery projects				
Peak oil production (bbl) Year Peak gas production, net (Mcf)				

Base of fresh water (ft.):

Remarks:

Selected References:
Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, 1942, Rio Vista Gas Field in Estimate of Natural Gas Reserves of the State of Calif.: Case No. 4591, Special Study No. S-258, p. 245-251.
Soper, E. K., 1943, Rio Vista Gas Field in Geologic Formations and Economic Development of the Oil and Gas Fields of Calif.: Calif. Div. of Mines Bull. 118, p. 591-594.

RIVER BREAK GAS FIELD

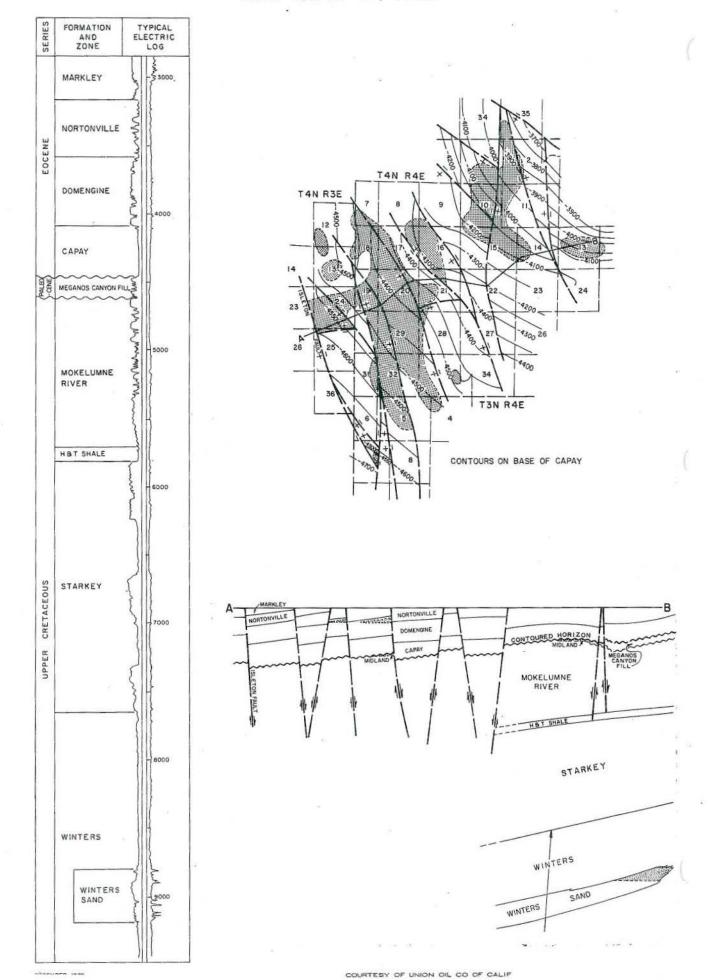
COUNTY: CONTRA COSTA

RIVER BREAK GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Gulf Oil Corp. "Sesnon-Gulf" 1	Helm Co. & Robt. Sumpf "Sesnon-Gulf" 1	24 2N 2E	MD	6,924	Dal Porto	
Deepest well	Western Continental Operating Co. "Audrey Smith" 1	Same as present	35 2N 2E	MD	11,643		Confidential

DC	100	n	4 7	
ru	OL	· v	AI	IΑ


Discovery date Initial production rates Oil (bb/day) Gas (Mcf/day) Flow pressure (psi)	June 1968 1,645 1,470 15/64	DAL PORTO December 1964 17,000 1,830	ROMITI January 1968	FIRST MASSIVE June 1968	FIELD OR AREA DATA
Initial production rates Oil (bbl/day)	1,645 1,470 15/64	17,000		June 1968	
Initial production rates Oil (bbl/day)	1,470 15/64				
Gas (Mcf/day)	1,470 15/64		120,100,00		
Gas (WCI/day)	1,470 15/64		3,590	3,190	
	15/64		1,750	1,910	
Bean size (in.)		5/8	20/64	18/64	
nitial reservoir		7 500	2 500	2,520	L
pressure (psi)	2,220 125	2,500 126	2,500 126	126	1
Reservoir temperature (*F) nitial oil content (STB/acft.)	14.5	120	1.55	1.0	10
initial gas content (MSCF/acft.).	900	1,000	1,000	940	
Formation	Capay	Meganos	Martinez	Martinez	
Geologic age Average depth (ft.)	Eocene	Paleocene	Paleocene	Paleocene	
Average depth (ft.)	5,015 30	5,450	5,540 25	5,660	1
Average net thickness (ft.)	30	40	25	60	
area (acres)					
area (acres)					770
And the same		RE	ESERVOIR ROCK PROPER	RTIES	
Porosity (%)	24	23*	23	22	
Soj (%)		104		44	l l
Swi (%)	42 58	42* 58*	42 58	56	1
Sgi (%) Permeability to air (md)	20	36"	30	50	
rermeability to air (md)					
		RI	ESERVOIR FLUID PROPER	RTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F					· ·
Gas:	18/20			rae .	
Specific gravity (air = 1.0)	.586 1,060	1,020	1,020	.586 1,100	
Heating value (Btu/cu, ft.)	1,000	1,010	1,000	1,100	1
Water:	-			7,000	
Salinity, NaCl (ppm)		7,026		7,000	1
T.D.S. (ppm) Rw(ohm/m) (77°F)	-	1.05	2"		1
		10.0000		11	
		ENF	HANCED RECOVERY PRO	DIECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl)		4.			
YearPeak gas production, net (Mcf)				1	1,648,021
Year			1		1971
		1			

Base of fresh water (ft.): 250

Remarks: Commercial gas deliveries began in December 1966.

Selected References: Williams, P. A., 1972, River Break Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 58, No. 1.

RIVER ISLAND GAS FIELD

RIVER ISLAND GAS FIELD

COUNTY: SACRAMENTO and SAN JOAQUIN

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Company of California "River Islands Land Co." 1	Brazos Oil and Gas Co. "River Islands Land Co." 1	29 4N 4E	MD	5,158	Domengine	0907
Deepest well	Union Oil Company of California "S.R. Unit 1" 1	Brazos Oil and Gas Co. "S.R. Unit 1" 1	17 4N 4E	MD	10,902	unnamed	Winters Late Cretaceou

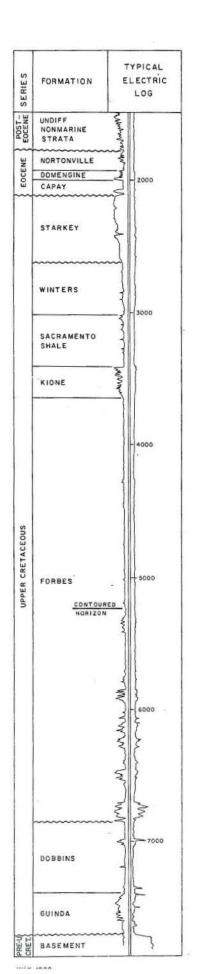
POOL	DATA

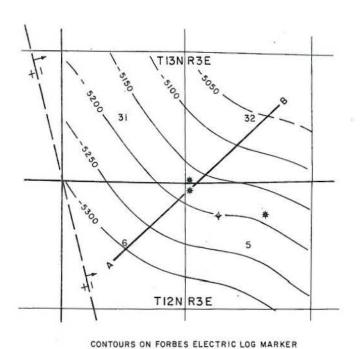
26-31 35-40	June 1950 4,100 1,050 3/8 1,860 107 1,000-1,300 Domengine Eocene 3,730 20 RESERVOIR ROCK PROPER 28-32	1	1,770 1,705 3/8 1,940 114 1,10-1,400 Mokelumne River Late Cretaceous 4,350	4,910
1,000 20/64 1,780 106 900-1,200 Nortonville Eocene 3,600 5	1,050 3/8 1,860 107 1,000-1,500 Domengine Eocene 3,730 20	1,230 1/4 1,760 113 900-1,300 Capay Eocene 4,230 20	1,705 3/8 1,940 114 1,100-1,400 Mokelumne River Late Cretaceous 4,550	4,910
1,000 20/64 1,780 106 900-1,200 Nortonville Eocene 3,600 5	1,050 3/8 1,860 107 1,000-1,500 Domengine Eocene 3,730 20	1,230 1/4 1,760 113 900-1,300 Capay Eocene 4,230 20	1,705 3/8 1,940 114 1,100-1,400 Mokelumne River Late Cretaceous 4,550	4,910
20/64 1,780 106 900-1,200 Nortonville Eccene 3,600 5	3/8 1,860 107 1,000-1,300 Domengline Eocene 3,730 20 RESERVOIR ROCK PROPER	1,230 1/4 1,760 113 900-1,300 Capay Eocene 4,230 20	1,705 3/8 1,940 114 1,100-1,400 Mokelumne River Late Cretaceous 4,550	4,910
1,780 106 900-1,200 Nortonville Eccene 3,600 5	1,860 107 1,000-1,300 Domengine Eocene 3,730 20	1,760 113 900-1,300 Capay Eocene 4,230 20	1,940 114 1,100-1,400 Mokelumne River Late Cretaceous 4,550	4,910
900-1,200 Nortonville Eccene 3,600 5	1,000-1,300 Domengine Eocene 3,730 20	900-1,300 Capay Eocene 4,230 20	114 1,100-1,400 Mokelumne River Late Cretaceous 4,350	4,910
900-1,200 Nortonville Eccene 3,600 5	1,000-1,300 Domengine Eocene 3,730 20	900-1,300 Capay Eocene 4,230 20	114 1,100-1,400 Mokelumne River Late Cretaceous 4,350	4,910
900-1,200 Nortonville Eccene 3,600 5	1,000-1,300 Domengine Eocene 3,730 20	900-1,300 Capay Eocene 4,230 20	1,100-1,400 Mokelumne River Late Cretaceous 4,350	4,910
Nortonville Eocene 3,600 5	Domengine Eocene 3,730 20	Capay Eocene 4,230 20	Mokelumne River Late Cretaceous 4,350	4,910
Eocene 3,600 5	Eocene 3,730 20 EESERVOIR ROCK PROPER	Eocene 4,230 20	Mokelumne River Late Cretaceous 4,350	4,910
3,600 5 26-31 35-40	3,730 20 RESERVOIR ROCK PROPER	4,230 20	4,350	4,910
26-31 35-40	20 RESERVOIR ROCK PROPER	20 ETIES	4,350	4,910
26-31 35-40	RESERVOIR ROCK PROPER	RTIES	40	4,910
26-31 35-40		1		4,910
26-31 35-40		1		4,910
26-31 35-40		1		
35-40	28-32	\$25,000 M		
		27-33	29-34	
	30-40	30-40	35-40	
60-65	60-70	60-70	60-65	
340		-	-	
	RESERVOIR FLUID PROPER	TIES		
	1.005		.576	
	.,,,,,,	1,010	370	
1,700-6,800	1,700-7,000	4,500-7,700	9,400	
	HANCED RECOVERY PRO	MECTS		
EN	TIMITED RECOVERT PRO	7.0.0		
	.574 1,010 1,700-6,800	.574 .565†† 1,010 1,005 1,700-6,800 1,700-7,000	1,010 1,005 1,010 1,700-6,800 1,700-7,000 4,500-7,700	.574

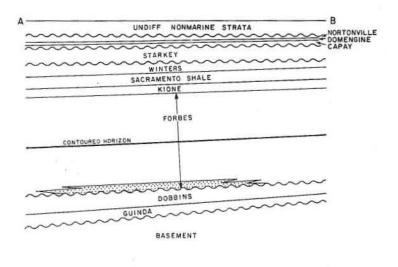
Base of fresh water (ft.): 100-2,000

Remarks: Commercial gas deliveries began in October 1950. Several of the gas-sand stringers within the producing zones have been given local names by operators.

Selected References: Corwin, C. H., 1953, River Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 39, No. 1.


COUNTY: SACRAMENTO and SAN JOAQUIN


RIVER ISLAND GAS FIELD Cont.....


DISCOVERY WELL AND DEEPEST WELL

	Present of	perator and well designa	ation	Original operator a	and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depti
Discovery well Deepest well										
		9		PO	OL DATA					
ITEM		UNNAMED	WINTE	RS						FIELD OR AREA DATA
Discovery date	re ('F)	2,800 1,850 1/4 2,060-2,400 119-128 1,200-1,400 Mokelumne River Late Cretaceous 4,700-5,500 5-40	7,00 2,55 20/6 3,95 16 1,600-1 Winte Late Cret 8,45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
				RESERVOIR	ROCK PROPERTIES					
Porosity (%)		26-32 35-40 60-65	35-4 60-6			-				
				RESERVOIR	FLUID PROPERTIES					
Oil: Oil gravity (*API) Sulfur content (% Initial solution GOR (SCF/STB Initial oil FVF (RB Bubble point presi Viscosity (cp) @ * Gas: Specific gravity (a Heating value (Bt)	3)	.570†† 985	.57 97							a .
Water: Salinity, NaCl (pp T.D.S. (ppm) R _W (ohm/m) (77		4.800	-							
				ENHANCED	RECOVERY PROJECTS		_		-	10 V
Enhanced recovery p Date started Date discontinue										
Peak oil production YearPeak gas production Year										

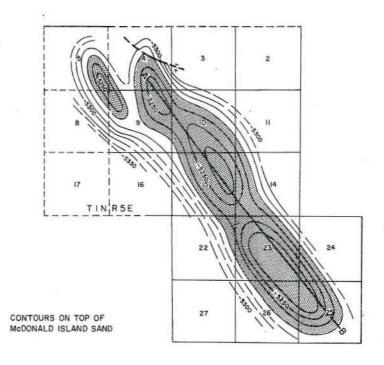
ROBBINS GAS FIELD

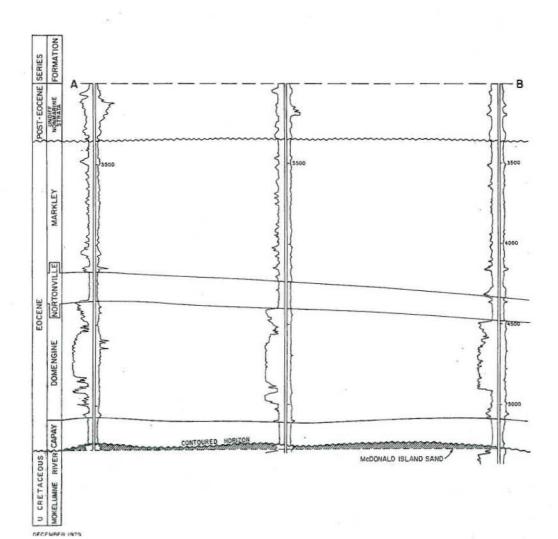
COUNTY: SUTTER

ROBBINS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Sutter Gas Co. "Sutter Gas Company" 1	Same as present	32 13N 3E	MD	7,405	Forbes	
Deepest well	Drilling and Exploration Co., Inc. "Magoon Estate, Ltd." 1	Same as present	5 12N 3E	MD	7,631		basement pre-Lt. Cret.


		POC	L DATA	
ITEM	FORBES			FIELD OR AREA DATA
Discovery date	January 1979 5,000			
Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F)	2,200 2,964 167			
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation	590-890 Forbes Late Cretaceous			
Average depth (ft.)	7,100 75 40			
		RESERVOIR F	OCK PROPERTIES	
Porosity (%)	17-23† 45-50† 50-55†			
	770	RESERVOIR F	LUID PROPERTIES	
Qil: Oil gravity (*API)	.913 141			
T.D.S. (ppm) R _W (ohm/m) (77°F)			Jan 2000	
		ENHANCED RE	COVERY PROJECTS	F - 122-111-1
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				


Base of fresh water (ft.): 500-700

Remarks: Commercial gas deliveries have not yet begun. In March 1961, Drilling and Exploration Co., Inc. "Magoon Estate, Ltd." 1 was tested over the interval 6,659 - 6,687 feet; initial daily production was 3,000 Mcf, flow pressure 1950 psi, 7/16-inch bean.

The gas would not burn; a sample was analyzed and found to contain 88% nitrogen.

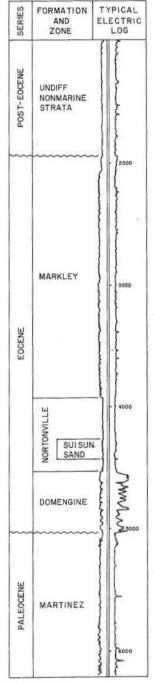
ROBERTS ISLAND GAS FIELD

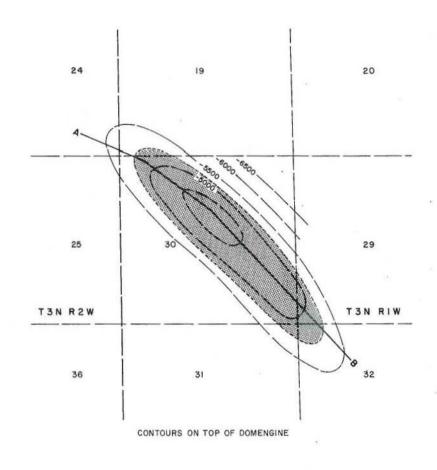
COUNTY: SAN JOAQUIN

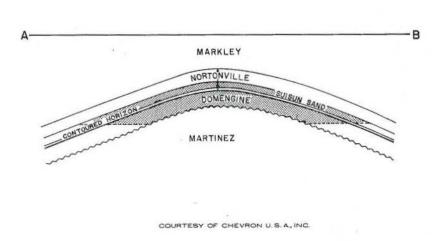
ROBERTS ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Arcady Oil Co. "Woods Community 2" 1	Standard Oil Co. of Calif. "Woods Community 2" 1	23 11	5 E	MD	5,254	McDonald Island sand	
Deepest well	Chevron U.S.A. Inc. "Woods Community"	Standard Oil Co. of Calif. "Woods Community" 2-5	26 18	5E	MD	11,426		Panoche Late Cretaceou


			OOL DATA	
ITEM	McDONALD ISLAND SAND	UNNAMED		FIELD OR AREA DATA
Discovery date	August 1942	May 1974		
Flow pressure (psi) Bean size (in.)	5,610 1,765 3/8	2,030 2,317 3/16	7	
pressure (psi)eservoir	2,340 127	2,750 139		
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.). romation reologic age verage depth (ft.) tverage net thickness (ft.) daximum productive	1,500-1,800 Mokelumme River Late Cretaceous 5,250 10	1,600-1,900 Mokelumne River Late Cretaceous 6,301 3		1,730
		RESER	DIR ROCK PROPERTIES	
Porosity (%)	29-33*** 25-30*** 70-75***	29-33*** 25-30*** 70-75***		
		RESER	DIR FLUID PROPERTIES	
Dil: Oil gravity (*API)	.578†† 955	.620ft 861		
Heating value (Btu/cu. ft.)	5,000-12,000	301		
		ENHAN	ED RECOVERY PROJECTS	
Enhanced recovery projects	×			
Peak oil production (bbl)				_
Year				3,237,588 1960


Base of fresh water (ft.): 75


Remarks: The northwest portion of the field was formerly known as the Whiskey Slough area. Commercial gas deliveries began in October 1942.

Selected References: Husey, W. F., 1958, Roberts Island Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 44, No. 1.

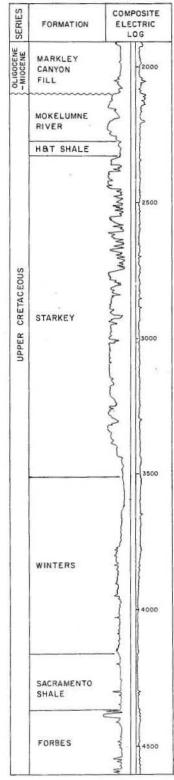
RYER ISLAND GAS FIELD

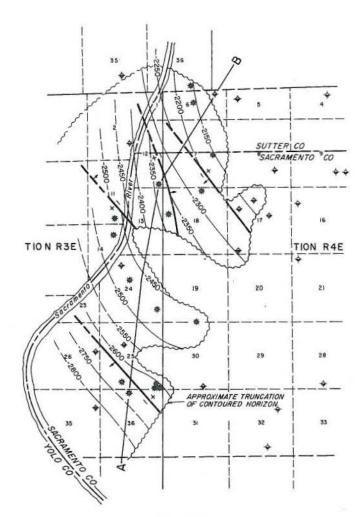
DECEMBER 1979

COUNTY: SOLANO

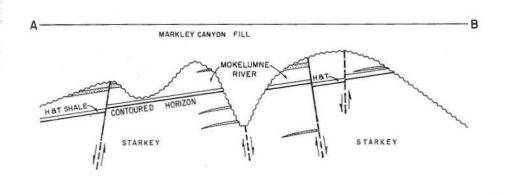
RYER ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Ryer" 1	Standard Oil Co. of Calif. "S.O. Oper Ryer" 1	30 3N 1W	MD	8,942	Suisun and Domeneine	Martiner Paleocene
Deepest well	Same as above					"	"


			POOL DATA	
ITEM	SU1.5UN	DOMENGINE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial go content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1967 5,875 1,505 1/2 2,410 150 970 Nortonville Bocene 4,470 60	July 1967 11,545 1,725 1/2 2,405 133 1,500 Domengine Focene 1,750 200		400
		RESEI	VOIR ROCK PROPERTIES	
Porosity (%)	20 35 65	24 30 70		
		RESE	VOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.)	.60011 1,070	.61aff 1,100		
		EN.IAN	CED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				13,437,832

Base of fresh water (ft.): 1,100


Remarks: There are seven wells in the field of which five are classified as onshore wells and two as offshore wells. The offshore wells and one onshore well were drilled from platforms. Cumulative condensate production is 118,139 barrels.

SACRAMENTO AIRPORT GAS FIELD

CONTOURS ON TOP OF STARKEY

DECEMBER 1979

COUNTY: SACRAMENTO, SUTTER and YOLO

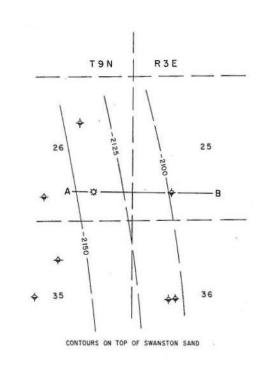
SACRAMENTO AIRPORT GAS FIELD

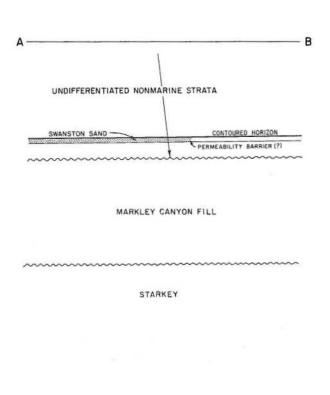
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & I	t. 8.8	M. (fee		Strata & age at total depth
Discovery well	Shell Oil Co. "Silva-Betts" 1-25	Same as present	25 10N 3	E M	3,06	2 m/ Mokelumne River	
Deepest well	Buttes Resources Co. "Natomas" 3	Buttes Gas and Oil Co. "Natomas" 3	6 10N 4	E M	4,50	0	Forbes Late Cretaceous

POO	n	ΔΤΔ
. 00	-	***

		POOL	DATA	
ITEM	MOKELUMNE RIVER	STARKEY		FIELD OR AREA DATA
Discovery date	November 1973	January 1974		
Flow pressure (psi) Bean size (in.)	235 1,000	170-210 1,080-1,250		
nitial reservoir pressure (psi) eservoir temperature (*F)	1,080 96	1,200-1,330 101-104		
nitial oil content (STB/acft.) nitial gas content (MSCF/acft.). ormation	460-850 Mokelumne River Late Cretaceous	600-910 Starkey Late Cretaceous		
eologic age	2,200	2,600-2,900 12-15		1,620
		RESERVOIR RO	CK PROPERTIES	
Porosity (%)	29-35 t	28-33†		
owi (%) gj (%) Permeability to air (md)	26-50 t 50-74 f	24-45 † 55-76 † 50-100		
		RESERVOIR FLU	JID PROPERTIES	
Oil: Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F				
ias: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.617717 619-863	.632720 611-827		
Vater: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77*F)				
		ENHANCED REC	OVERY PROJECTS	
Enhanced recovery projects				
				*
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year				1,808,396 1978


Base of fresh water (ft.): 1,400-1,700


Remarks: Commercial gas deliveries began in January 1977. a/ Directional well; true vertical depth is 2,998 feet.

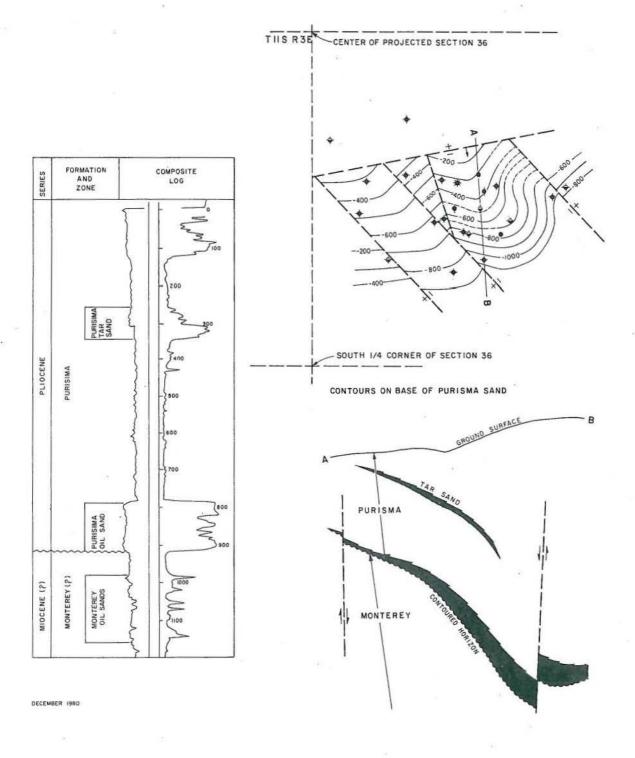
SACRAMENTO BYPASS GAS FIELD

(Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
HOLOGENE	UNDIFF NONHARING STRATA SWANSTON SAND	2000
OLIGOCENE - MIOCENE	MARKLEY CANYON FILL	3000
~	STARKEY	
	WINTERS	
	SACRAMENTO SHALE	
UPPER CRETACEOUS		7000
	FORBES	-9000
	DOBBINS	11000

COUNTY: YOLO

SACRAMENTO BYPASS GAS FIELD (ABD)


DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Supreme Oil and Gas Corp. "Swanston" 1	Phillips Petroleum Co. "Swanston" 1	26 9N 3E	MD	11,194	Swanston	Dobbins Late Cretaceous
Deepest well	Same as above	"	11	"		9	"

3		POOL DATA	
ITEM	SWANSTON		FIELD OR AREA DATA
Discovery date	November 1961		
Gas (Mcf/day)	1,150		
	760		
Bean size (in.)	1/4		
nitial reservoir	0.05	1	
pressure (psi) Reservoir temperature (°F)	925 86	1 1	
nitial oil content (STB/acft.)			
nitial gas content (MSCF/acft.).	600		
Formation	undiff. nonmarine		
Geologic age	Miocene to Holocene 2,160	1 1	
Average depth (ft.)	2,160	1 1	
Average net thickness (ft.)	8		
Maximum productive	40		
area (acres)	40		
		RESERVOIR ROCK PROPERTIES	11 1942
Porosity (%)	30**		
5o; (%)	30**		1
Swi (%)	70**		
Sgi (%)Permeability to air (md)			1 1
remeability to air (mo)			
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F.			*
Gas:			1 1
Specific gravity (air = 1.0)	.621††		
Heating value (Btu/cu. ft.)	850		
			1 1
Water: Salinity, NaCl (ppm)	1,000	1	
T.D.S. (ppm)	2,000	1	
R _W (ohm/m) (77°F)			
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Date started			
Date discontinued imminimum.			
			1
			1
		1	
Peak oil production (bbl)			
		1	
Peak gas production, net (Mcf)	1,201	1	
Year	1967	1	

Base of fresh water (ft.): 2,100

Remarks: The well produced gas from December 1967 to April 1968. The field was abandoned in June 1974. Only one well was completed and cumulative gas production was 2,179 Mcf.

COUNTY: SANTA CLARA

SARGENT OIL FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Sargent Oil Co. No. 1	Watsonville Oil Co. No. 1	36 11S 3E	MD	1,620	Tar, Purisima, and Monterey	
Deepest well	Occidental Petroleum Corp. "Sargent" 1	Same as present	36 11S 3E	MD	6,972	and 100,000,00	Monterey Miocene

			POOL DATA		
ITEM	TAR	PURISIMA	MONTEREY		FIELD OR AREA DATA
Discovery date	1906	1906	1906		
nitial reservoir pressure (psi)	-	*	Hydrostatic		
Geologic age	Purisima Pliocene 300 75	Purisima Pliocene 600 130	Monterey Miocene 850-1,100 30-50		70
•		RE	SERVOIR ROCK PROPERTIES		
Porosity (%)		35	,		
Sgi (%) Permeability to air (md)		217			
		RE	SERVOIR FLUID PROPERTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCE/STB) Initial oil FVF (RB/STB)	10	16-25 .62	17		
Bubble point press. (psia) Viscosity (cp) @ *F	20	215	-		
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)					
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	1	20,600 22.977 0.29	<u>:</u>	(4)	
	STERNAL STEEL	ENI	IANCED RECOVERY PROJECTS		
Enhanced recovery projects		cyclic steam October 1967 November 1967			
		-			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					63,780 1909

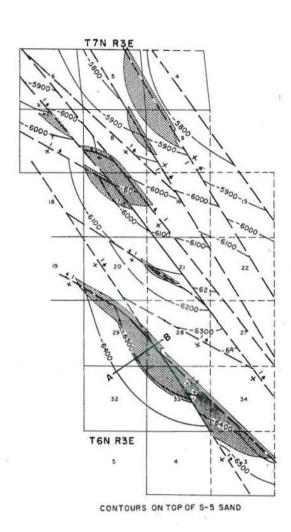
Base of fresh water (ft.): 200

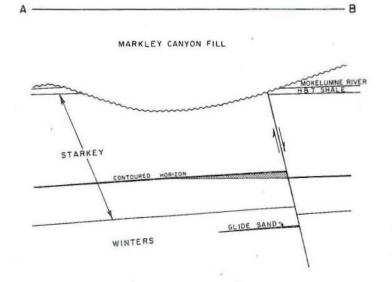
Remarks: As early as 1861, oil was refined from asphaltum taken from "tar springs" in the vicinity of the field. Exploratory wells were drilled as early as 1886. Artesian salt water flow was reported at 1,615. A blowout was reported in one well at 1,082.

Selected References:

Allen, J. E., 1946, Geology of the San Juan Bautista Quadrangle, Calif.: Calif. Div. of Mines Bull. 133, p. 73-74.

Armstrong, Charles F., 1980, Environmental Geologic Analysis of the Tar Creek South Study Area, Santa Clara County, Calif.: Calif. Div. of Mines and Geology, p. 10-11.


Calif. State Mining Bureau Bull. 69, 1914, p. 470 and 506.


Davis, F. F., 1954, Mines and Mineral Resources of Santa Clara County, Calif.: Calif. Div. of Mines, Calif. Journal of Mines and Geology, Vol. 50, No. 2, p. 383-385.

Michelin, James, 1943, Sargent Oil Field: Calif. Div. of Mines Bull. 118, p. 23, 77, 79, and 475.

SAXON GAS FIELD

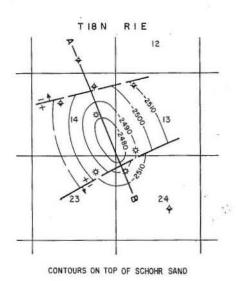
SERIES	FORMATION & MEMBER	COMPOSITE ELECTRIC LOG
MIDCENE TO HOLOCENE	UNDIFF NONMARINE STRATA	2000
OLIG- MIQ.	MARKLEY CANYON F	
EOCENE	MARKLEY NORTONVILLE DOMENGINE CAPAY	3000
	MOKELUMNE RIVER	4000
	STARKEY CONTOURED HOR	5000
	GLIDE	
	WINTERS	7000
1		5
UPPER CRETACEOUS	SACRAMENTO SHAL	9000
UPPER		10000
	FORBES	11000
		12000
	UNDIFF DOBSINS SHALE, GUINDA, AND FUNKS EQUIVALENTS	-13000
PRE-U.CRET.	SITES	14000
1	BASEMENT COMPL	EX (15000

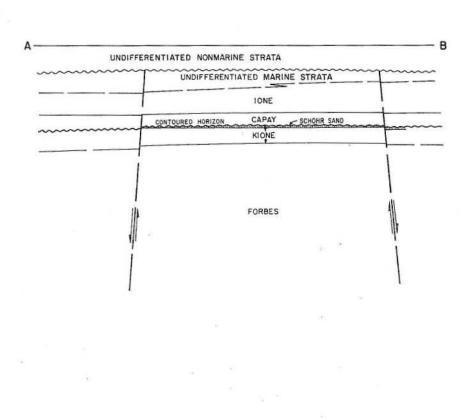
COUNTY: YOLO

SAXON GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	. т. г	k R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc. "H & C-Glide Colby" 1	Hunnicutt & Camp Drilling Co. "Glide- Colby" 1	29	7N	3E	MD	8,907	Glide	
Deepest well	Exxon Corp. "John C. Maxwell" 1	Humble Oil & Refining Co. "John C. Maxwell"	7	7N	3E	MD	13,060		Dobbins Late Cretaceou


			POOL DATA		
ITEM	K-4 SAND	UNNAMED	GLIDE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	A,850 2,414 20/64 2,865 124 1,400-1,800 Starkey Late Cretaceous 6,280 30	April 1973 5,000 2,150 5/16 3,100 125 770-1,200 Winters Late Cretaceous 6,820 8	4,950 2,225 20/64 3,355 134 790-1,300 Winters Late Cretaceous 7,050		1,530
		R	ESERVOIR ROCK PROPERTI	ES	
Porosity (%)	26-31 [†] 30-35 [†] 65-70 [†]	19-25 [†] 45-55 [†] 45-55 [†]	19-25 † 45-55 † 45-55 †		
011		R	ESERVOIR FLUID PROPERTI	IES	
Oil: Oil gravity (*API)	.600 860	.608 900	.600 840 11,370		
		EN	HANCED RECOVERY PROJE	ECTS	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year		4			2,825,891 1979


Base of fresh water (ft.): 2,500

Remarks: Commercial gas deliveries began in January 1970.

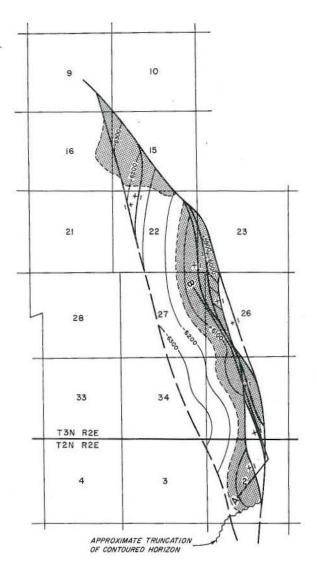
SCHOHR RANCH GAS FIELD (Abandoned)

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF NONMARINE STRATA	
	UNDIFF MARINE STRATA	MAN MAN
EOCENE	IONE E	> = {2000
	CAPAY	
~	SCHOHR SD	
The same	KIONE E	١
UPPER CRETACEOUS	FORBES	
ORET.	DOBBINS	75000
63		HILL

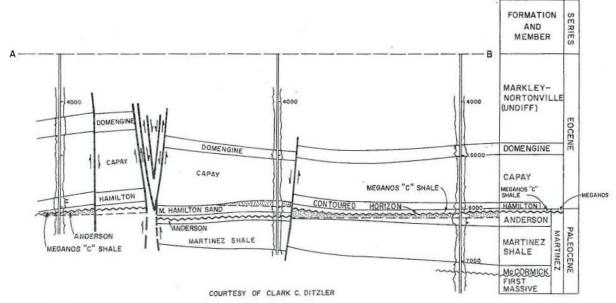
COUNTY: BUTTE

SCHOHR RANCH GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Elna B. Schohr" 1	Humble Oil & Refining Co. "Elna B. Schohr" 1	23 18N 1E	MD	4,775	Schohr	
Deepest well	Exxon Corp. "Elna B. Schohr" 2	Humble Gil & Refining Co. "Elna B. Schohr" 2	14 18N 1E	MD	5,830		basement pre-Late Cret.

		POOL DATA	
ITEM	SCHOHR		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	March 1957 5,073 800 1/2 1,220 95 850 Kione Late Cretaceous 2,570 15 360		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	30* 25* 75*		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ "F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.623 ^{††} 840 4,300		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	754,974 1960		


Base of fresh water (ft.): 1,200

Remarks: Commercial gas deliveries began in December 1959. The field was abandoned in March 1970. Four wells were completed and cumulative gas production was 2,112,993 Mcf.

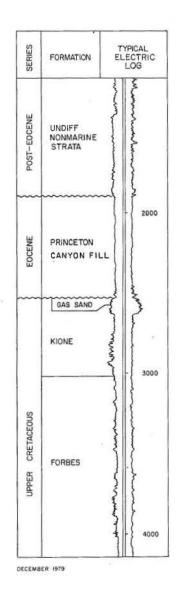
SHERMAN ISLAND GAS FIELD

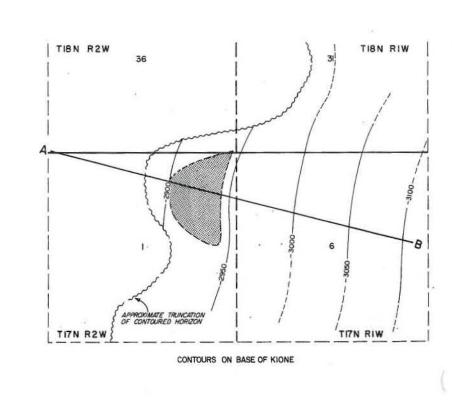
CONTOURS ON TOP OF ANDERSON SAND

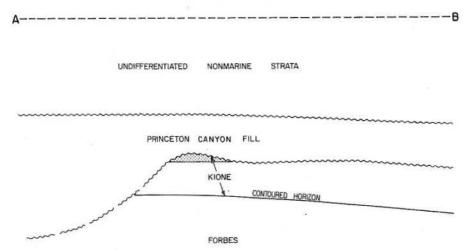
COUNTY: CONTRA COSTA, SACRAMENTO and SOLANO

SHERMAN ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec	. т.	& R.	B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc. "Upham" I	Signal Oil & Gas Co. "Upham" 1	26	38	2E	MD	7,500	Anderson	
Deepest well	Occidental Petroleum Corp. "Uphan" 1	Same as present	34	3N	2E	MD	12,067		D-zone Late Cretaceou


			POOL DATA		
ITEM	NORTONVILLE	HAMILTON	ANDERSON		FIELD OR AREA DATA
Discovery date	July 1970	April 1966	September 1965		
Gas (Mcf/day)	1,248 1,540 3/16	2,297 1,835 1/4	5,770 2,163 21/64		
Initial reservoir pressure (psi)	1,874 143	2,591 149	3,112 152		
Initial oil content (STB/acft.) Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	890 Nortonville Eocene 4,770 10	1,000-1,300 Capay Eocene 5,750 75	1,700-2,000 Martinez Paleocene 6,100 50		1,660
			RESERVOIR ROCK PROPERT	IES	
Porosity (%)	25**	25-29***	29-32***		
Sgi (%) Permeability to air (md)	35** 65**	40-45*** 55-60***	30~35*** 65~70***		
			RESERVOIR FLUID PROPERT	TES .	
Oil: Oil gravity (*API)				4	
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.570 985	.593 1,016	.593 1,028		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)	٠	1,810	10,000		
		E	NHANCED RECOVERY PROJ	ECTS	
Enhanced recovery projects Date started Date discontinued			* * *		
Peak oil production (bbl) Year					
Peak gas production, net (Mcf) Year					5,629,045 1971


Base of fresh water (ft.): 800

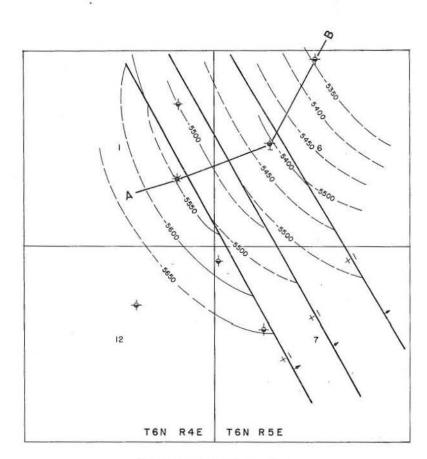
Remarks: Commercial gas deliveries began in October 1967. Condensate production in 1979 was 930 barrels; cumulative condensate production was 95,945 barrels.

Selected References: Ditzler, C. C., 1972, Sherman Island Gas Field in Selected Papers to San Joaquin Geological Society, Vol. 4, p. 21-25.

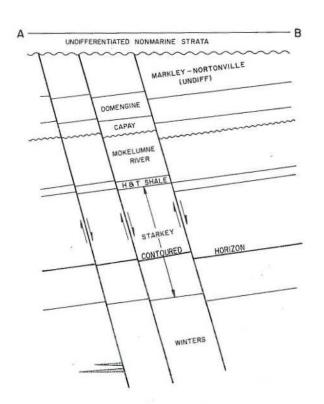
COUNTY: COLUSA

STEGEMAN GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Thousand Acre Ranch 1" 1	Same as present	1 17N 2W	MD	4,085	Kione	Forbes Late Cretaceous
Deepest well	Same as above	w	**	10	"	77.	"

-		POOL DATA	The second secon
ITEM	KIONE		FIELD OR AREA DATA
Discovery date	July 1976 13,000		
Bean size (in.) mitial reservoir pressure (psi) Reservoir temperature (*F) mitial oil content (STB/ac-ft.)	1,110 110		
nitial gas content (MSCF/acft.). comation Geologic age Average depth (ft.) Average net thickness (ft.)	620-670 Kione Late Cretaceous 2,490 25		*
Maximum productive area (acres)	40		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	27-29*** 30* 70*		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) (77°F)	928		
	•	ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl)			
Year Peak gas production, net (Mcf)	497,528 1979		


Base of fresh water (ft.): 1,900

STONE LAKE GAS FIELD

SERIES	AND ELE		TYPIC ELECT LO	RIC		
POST-EOCENE	NO	UNDIFF DIMARINE STRATA	ALLAN CONTRACTOR MANAGEMENT CONTRACTOR	2000		
EOCENE	NOF	ARKLEY- RTONVILL UNDIFF)	3	3000		
EO	DO	DOMENGINE		7		
		CAPAY				
~~		KELUMNE RIVER	What however housement have been the	4000		
	на	T SHALE	5			
				5-1	3	
"	ΕY	S-3	3			
TACEOUS	STARKEY	5-4	3			
UPPER CRETA		S-5	lymun, when	6000		
		VINTERS GAS SAND	8 2	7000		

CONTOURS ON TOP OF S-5 SAND

DECEMBER 1979

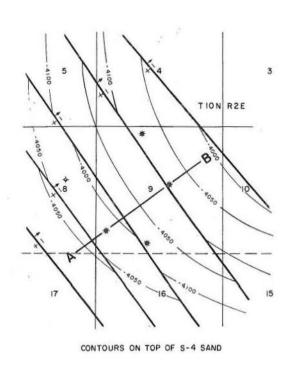
COUNTY: SACRAMENTO

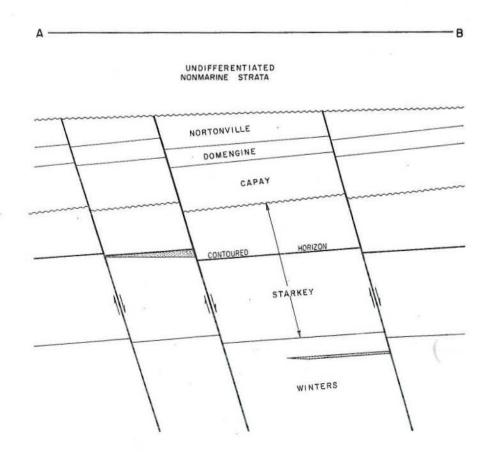
STONE LAKE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Elliott Ranch" 3	Same as present	1 6N 4F	MD	7,430	Winters	
Deepest well	Cities Service Oil Co. "McKeon Const." 1	Cities Service Oil Co. "Costello" 1	6 6N 5E	MD	8,590	C 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-	Forbes Late Cretaceou

		POOL D	ATA	
ITEM	WINTERS			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) How pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	7,700 2,680 3/8 3,246 128 1,700-2,100 Winters Late Cretaceous 7,072 20			
		RESERVOIR ROCK	PROPERTIES	
Porosity (%)	30-35*** 65-70***		Tag.	
		RESERVOIR FLUID	PROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ *F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.605 900	34		
		ENHANCED RECOVI	ERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	183,361 1979			


Base of fresh water (ft.): 800


Remarks: Commercial gas deliveries began in May 1978.

SUGARFIELD GAS FIELD

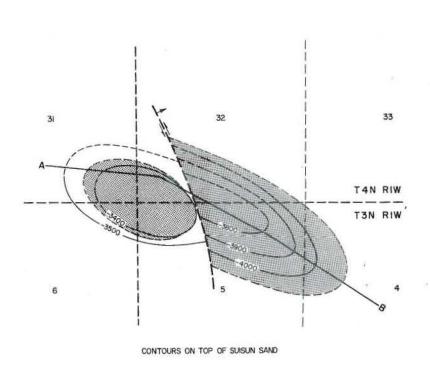
SERIES		RMATION AND MEMBER	COMPOSITE ELECTRIC LOG
POST - EOCENE	NON	HFF MARINE ATA	2500
~~	NOF	TONVILLE	1 M
EOCENE	DOM	IENGINE	W.M.
EOC	САР	А	3500
~~		S-1 SAND	3
		S-2 SAND	4000
		S-3 SAND	
	STARKEY	S-4 SANDS	
UPPER CRETACEOUS	w	S-5 SAND	4 500
	WIN	TERS Co.	\$ 5000

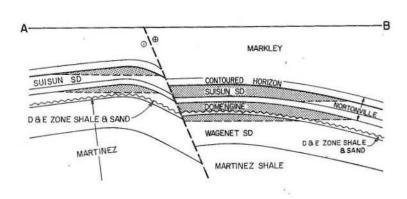
JANUARY 1980

COUNTY: YOLO

SUGARFIELD GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Dow Chemical Co. "Wauhab" 1	Same as present	9 10N 2E	MD	6,271	Winters	
Deepest well	The Dow Chemical Co. "Robinson Well" 1	Same as present	16 10N 2E	MD	6,729		Confidential


STARKEY	F	OOL DATA			
CTABPER					
STARKET	WINTERS				FIELD OR AREA DATA
1,380 1,550 3/16 1,780 108 880-1,200 Starkey Late Cretaceous 4,080 30	July 1976 4,020 1,750 20/64 2,240 112 850-1,200 Winters Late Cretaceous 4,930 15		ä		240
	RESERV	DIR ROCK PROPERTIES			
28-34† 40-45† 55-60†	22-28† 40-45† 55-60†				
	RESERV	DIR FLUID PROPERTIES			-
.579 956	.592 930				
	ENHANC	D RECOVERY PROJECTS			
	1,380 1,550 3/16 1,780 108 880-1,200 Starkey Late Cretaceous 4,080 30 28-34† 40-45† 55-60†	1,380 1,550 1,550 3/16 1,750 20/64 1,780 108 112 880-1,200 Starkey Late Cretaceous 4,080 30 RESERVE 28-34† 40-45† 55-60† RESERVE 28-56† 3579 956 .592 930	1,380 1,550 1,550 3/16 20/64 1,780 108 112 880-1,200 Starkey Late Cretaceous 4,080 30 RESERVOIR ROCK PROPERTIES 28-34† 40-45† 55-60† RESERVOIR FLUID PROPERTIES RESERVOIR FLUID PROPERTIES	1,380 1,550 1,750 3/16 20/64 1,780 108 2,240 112 880-1,200 Starkey Late Cretaceous 4,080 30 RESERVOIR ROCK PROPERTIES 28-34† 22-28† 40-45† 55-60† RESERVOIR FLUID PROPERTIES	1,380

Base of fresh water (ft.): 2,400

Remarks: Commercial gas deliveries began in February 1980.

CENE SERIES	FO 8	RMATION ZONE	COMPOSITE ELECTRIC LOG
OCENE	1	SONOMA /OLCANICS	1 21000
POST-E		GAS ZONE	
EOCENE		MARKLEY	3000
	NORTONVILLE	SUISUN SAN	D 4000
	ı	DOMENGINE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
~~	~~	D & E Z	
PALEOCENE	MARTINEZ	WAGENET	SAND SAND
		MARTINE SHALE	Z { -{7000
UPPER CRETACEOUS		G-2 ZONE	
UPPE			8500

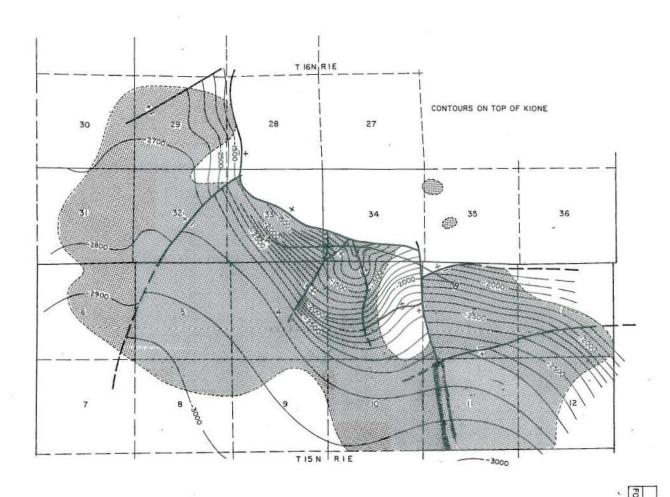
STRUCTURAL INTERPRETATION COURTESY OF CHEVRON U.S. A, INC.

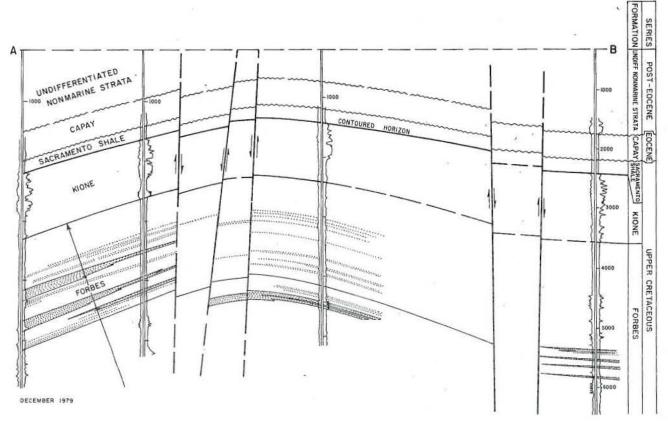
COUNTY: SOLANO

SUISUN BAY GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "Suisun Community" 3	Standard Oil Co. of Calif. "Suisun Community" 3	5 3N 1W	2874	5,645	Suisun	
Deepest well	Chevron U.S.A. Inc. "Suisun Community" 16	Standard Oil Co. of Calif. "Suisun Community" 16	4 3N 1W	MD	8,898		G-zone Late Cretaceous


			TΑ


POOL DATA						
ITEM	UNNAMED	SUISUN	DOMENGINE	WAGENET	FIELD OR AREA DATA	
Discovery date	August 1959	September 1944	January 1946	October 1961		
Oil (bbl/day)		2 770	5,675	2,620		
Gas (Mcf/day) Flow pressure (psi)	835 225	7,350 1,320	1,025	760	1	
Bean size (in.)	3/8	1/2	1/2	3/8	1	
nitial reservoir	. ATP BO	187.65	200000	1. ACT.		
pressure (psi)	420	1,610	1,800	2,070		
eservoir temperature (*F)	94	127	137	143	1	
nitial oil content (STB/ac,-ft.)		910	950-1,300	790-1,000	1	
nitial gas content (MSCF/acft.).	Sonoma Volcanics	Nortonville	Domengine	Martinez	1	
ormation	Pliocene	Eocene	Eocene	Paleocene	1	
Average depth (ft.)	975	3,650	4,150	4,650	1	
verage net thickness (ft.)	25	175	65	80	1	
Maximum productive	7.70	2000	1.50		100	
area (acres)					720	
		RE	SERVOIR ROCK PROPER	TIES		
Porosity (%)	4	24	24-30	20-24***		
ioj (%)		134	22920	** *****		
wi (%)	•	22	20-26	30-35*** 65-70***		
igi (%)		78	74-80 290-350	65=70	1	
Permeability to air (md)	-	210	290-350			
		RE	SERVOIR FLUID PROPER	TIES		
Oil gravity (*API) Sulfur content (% by wt.)						
Gas:	.570ft	.585††	.585††	.59011		
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,020	1,040	1,040	1,048	1	
neating value (Btu/cu. It.)	1,020	1,040	1,010	.,,,,,,	1	
Water:					1	
Salinity, NaCl (ppm)	770	4,300-16,400	6,700-16,900	13,000		
T.D.S. (ppm) R _w (ohm/m) (77°F)				T T	1	
R _W (ohm/m) (77°F)						
		ENH	IANCED RECOVERY PRO	JECTS		
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl)						
Year					6.466.333	
YearPeak gas production, net (Mcf)					6,166,271 1966	

Base of fresh water (ft.): None

Remarks: Commercial gas deliveries began in February 1947. In June 1959, G. E. Kadane & Sons "Suisun Community" 10 (now Mobil Oil Corporation "Standard Suisun" 10), while drilling at 1,024 feet, blew out of control. The substructure, drawworks, and most of the drilling mast were lost in the resulting crater.

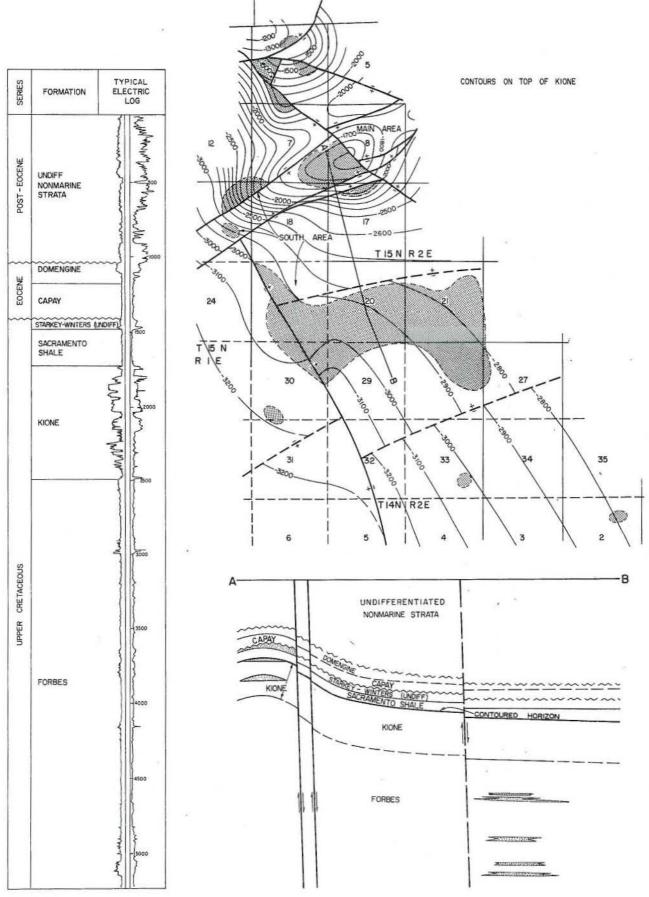
SUTTER BUTTES GAS FIELD

COUNTY: SUTTER

SUTTER BUTTES GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	В.&М.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Buttes" 1	The Buttes Oilfields, Inc. "Buttes" 1	35 16N 1E	MD	2,727	Forbes	
Deepest well	Buttes Resources Co. "Buttes" 14	Buttes Gas & Oil Co. "Buttes" 14	12 15N 1E	MD	7,868		basement pre-Late Cret.


POOL DATA FIELD OR AREA DATA UNNAMED SAND STRINGERS ITEM February 1933 Discovery date .. 3,060 1,500-4,300 94-136 600-980 Forbes Late Cretaceous 2,100-6,000 1-60 9,010 area (acres) ... RESERVOIR ROCK PROPERTIES 15-28 45-55 45-55 108 RESERVOIR FLUID PROPERTIES Oil: Oil gravity (*API) Sulfur content (% by wt.)..... Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB).... Bubble point press. (psia).... Viscosity (cp) @ *F..... Specific gravity (air = 1.0)...... Heating value (Btu/cu. ft.)...... 560-.636 835-1,020 Water: Salinity, NaCl (ppm) T.D.S. (ppm) R_W (ohm/m) (77*F) 3,600-31,300 4,500-23,000 .35-1.6 ENHANCED RECOVERY PROJECTS Enhanced recovery projects... Date started...... Date discontinued Peak oil production (bbl) 15,201,294 Peak gas production, net (Mcf) Year 1965

Base of fresh water (ft.): 2,000

Remarks: Formerly known as Marysville Buttes Gas field. Commercial gas deliveries began in November 1938.

Selected References: Hunter, G. W., 1955, Marysville Buttes Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1. Railroad Commission of the State of Calif. and Calif. Div. of Oil and Gas, Marysville Buttes Gas Field in Estimate of the Natural Gas Reserves of the State of Calif. as of Jan. 1, 1946: Case No. 4591, Special Study No. S-525, p. 34-39, 1946.

SUTTER CITY GAS FIELD

COUNTY: SUTTER

SUTTER CITY GAS FIELD MAIN AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "Sutter Community A" 1	Richfield Oil Corp. "Sutter Community A" 1	2004020277 2016	Toller!	3,104	Kione	
Deepest well	Buttes Resources Co. "Butte Community B"	Richfield Oil Corp. "Butte Community B" 6	7 15N 2E	MD	5,084		rhyolite a/ Plio. or Pleis,

			POOL DATA		management of the second	
ITEM	UNNAMED	KIONE				FIELD OR AREA DATA
Discovery date	June 1964 <u>b/</u> 655 190 25/64 650 95	August 1952 280 900 1/8 800 99				
nitial gas content (MSCF/acft.). formation	230-310 Starkey-Winters Late Cretaceous 1,440 30	380-500 Kione Late Cretaceous 1,700 140	,			490
		R	ESERVOIR ROCK PROP	ERTIES		1
Porosity (%)	20-25*** 35-40*** 60-65***	25-30*** 30-35*** 65-70***				
		R	ESERVOIR FLUID PROP	ERTIES		· · · · · · · · · · · · · · · · · · ·
Oii: Oil gravity ('AP!)		.593†† 920				.59711 913
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)	-	2,200				
		EN	HANCED RECOVERY P	ROJECTS		·
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year						2,062,265 1958

Base of fresh water (ft.): 1,200-1,700

Remarks: Commercial gas deliveries began in June 1953.

a/ Intruded into the Forbes Formation (Late Cretaceous).

Date of recompletion, originally completed in the Kione formation.

COUNTY: SUTTER

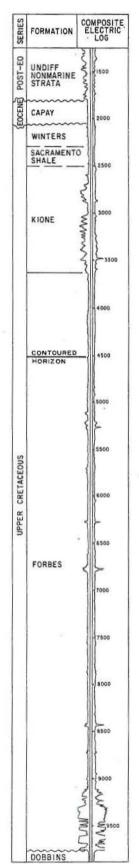
SUTTER CITY GAS FIELD SOUTH AREA

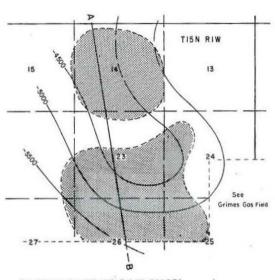
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Epperson" 1	Same as present	19 15N 2E	MD	7,150	unnamed sand	
Deepest well	Atlantic Oil Co. "Sutter Unit K" 1	Same as present	30 15N 2E	MD	7,925 <u>a</u>	stringers	Guinda Late Cretaceous

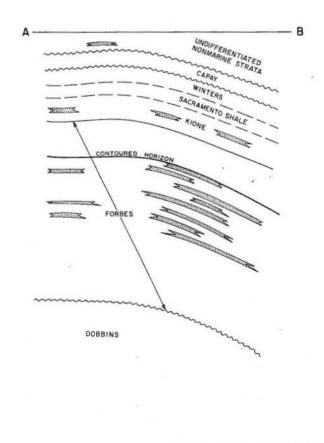
<u> </u>		151	POOL DAT	Α		
ITEM	UNNAMED SAND STRINGERS	G-ZONE				FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	August 1961 2,000-8,000 b/ 1,600-2,000 15/64-27/64 2,040-3,500 111-139 830-1,300 Forbes Late Cretaceous 3,950-6,830 3-50	September 1961 6,000 \(\frac{9}{1},800 \) 25/64 3,210 124-128 660-1,100 Dobbins Late Cretaceous 6,160-6,620 5-20				3,080
		R	ESERVOIR ROCK PRO	OPERTIES		
Porosity (%)	18-30† 35-50† 50-65†	15-20*** 45-55*** 45-55***		3.		
		R	ESERVOIR FLUID PRO	OPERTIES		
Oil: Oil gravity (*API)	.563691 684-1,019 2,200-22,000		. 9			
		EN	HANCED RECOVERY	PROJECTS		
Enhanced recovery projects Date started Date discontinued					7	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						5,787,788 1966

Base of fresh water (ft.): Above 1,000


- Remarks: Commercial gas deliveries began in June 1962.


 a/ Directional well, true vertical depth is unknown.

 b/ Completed from two intervals in the Forbes Formation.


 c/ Commingled Forbes Formation and G-Zone production.

SYCAMORE GAS FIELD

CONTOURS ON TOP OF FIRST FORBES PRODUCING SAND & EQUIVALENT

DECEMBER 1979

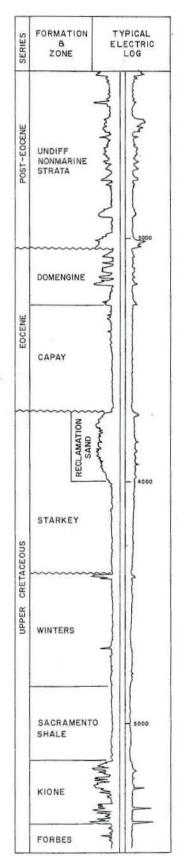
COUNTY: COLUSA and SUTTER

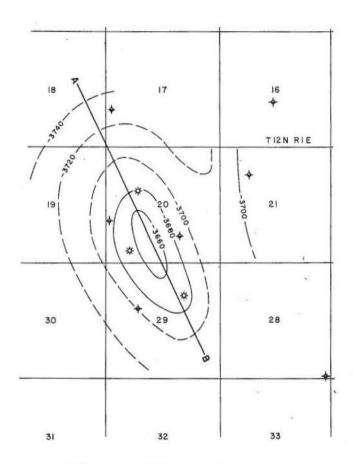
SYCAMORE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

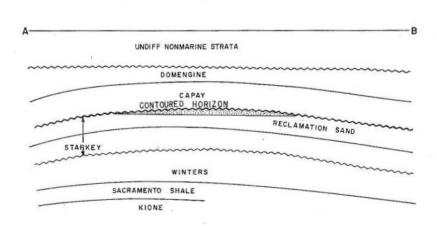
	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Buttes Resources Co. "O. P. Davis" B-1	Humble Oil & Rfg. Co. "O. P. Davis" B-1	14 15N 1W	MD	3,600	undiff. non-	William State
Deepest well	Buttes Resources Co. "O, P. Davis" B-6	Humble Oil & Rfg. Co. "O. P. Davis" B-6	22 15N 1W	MD	10,104	marine strata	Dobbins Late Cretaceou

			POOL DATA		
ITEM	UNDIFFERENTIATED NONMARINE STRATA	KIONE	FORBES		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	September 1956 2/ 1,810 560 1/4	7,800 600 1/2	April 1962 3,680 1,975 19/64		
pressure (psi)	642 90	1,195 96	2,860-5,720 103-135		
Initial gas content (MSCF/acft.). Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	300-390 undiff. nonmarine Post-Eocene 1,480 25	670-850 Kione Late Cretaceous 2,750 40	1,800-2,100 Forbes Late Cretaceous 4,734-7,370 4-40		1910
			RESERVOIR ROCK PROPE	RTIES	
Porosity (%)	25-30*** 35-40*** 60-65***	28-33*** 30-35*** 65-70***	25-30 35-40 60-65		
			RESERVOIR FLUID PROPE	RTIES	
Oil: Oil gravity (*API) Sulfur content (% by wt.)	.645 810	.605 906	.565 980-1,010		
		EN	HANCED RECOVERY PRO	DIECTS	
Enhanced recovery projects					
Peak oil production (bbl)					
Peak gas production, net (Mcf) Year					3,235,564 1979


Base of fresh water (ft.): 750


Remarks: Commercial gas deliveries began in January 1963.
Several wells were completed with multiple strings of 2 7/8" tubing.

a/ This was the discovery well for Meridian Gas field, which was merged with Sycamore Gas field on January 1, 1966.


SYCAMORE SLOUGH GAS FIELD

(Abandoned)

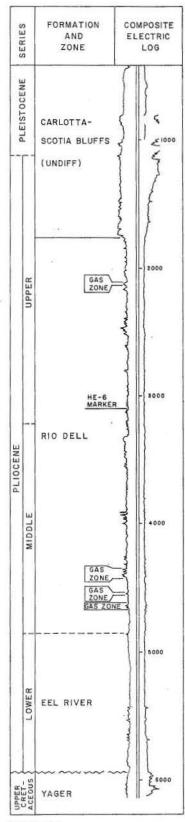
CONTOURS ON TOP OF RECLAMATION SAND

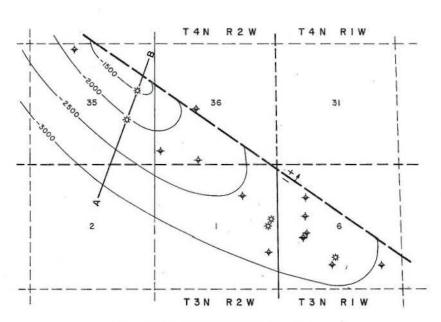
DECEMBER 1979

COUNTY: YOLO

SYCAMORE SLOUGH GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Aminoil USA, Inc. "Signal-Monterey- Reclamation" 1	Signal Oil and Gas Co. "Signal-Monterey- Reclamation" 1	20 12N 1E	MD	5,500	Reclamation	
Deepest well	Natural Gas Corp, of California "Big Valley Recl. Dist." 108-2		20 12N 1E	MD	5,525		Kione Late Cretaceous


		POOL DATA	
ITEM	RECLAMATION		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in,) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	0ctober 1953 4,200 1,100 1/2 1,650 113 950 Starkey Late Cretaceous 3,720 25 160		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	30 † 40 † 60 †		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API)	.558ff 1,010 3,900		*
		ENHANCED RECOVERY PROJECT	5
Enhanced recovery projects			
Peak oil production (bbl) Year Year Peak gas production, net (Mcf) Year	181,114 1957		

Base of fresh water (ft.): 2,100

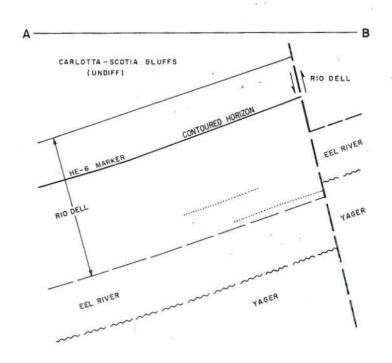

Remarks: Commercial gas deliveries began in August 1956. The field was abandoned in March 1966. Three wells were completed and cumulative gas production was 714,277 Mcf.

TABLE BLUFF GAS FIELD (Abandoned)

CONTOURS ON HE-6 ELECTRIC LOG MARKER

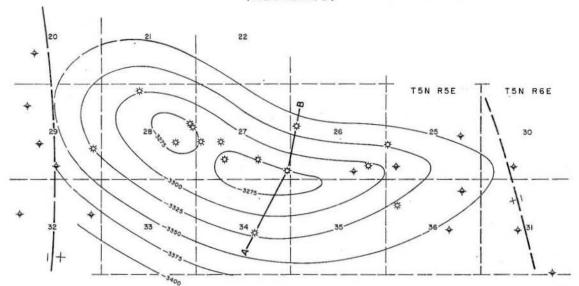
DECEMBER 1979

COUNTY: HUMBOLDT

TABLE BLUFF GAS FIELD (ABD)

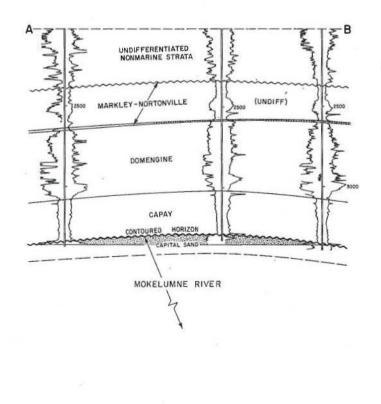
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Zephyr Oil Co. "Leon Oro Blanco" T-2	Same as present	6 3N	110	Н	4,925	unnamed sand stringers	1
Deepest well	Texaco Inc. "Eureka" 1	The Texas Co. "Eureka" 1	1 3N	2W	н	6,133		Yager Early Cretaceous


		POOL DA	TA	
ITEM	UNNAMED SAND STRINGERS			FIELD OR AREA DATA
Discovery date	July 1960 1,500 650 13/32 550-1,500 88-109 230-500 Rio Dell Pliocene 2,100-4,775 1-40 320			
		RESERVOIR ROCK P	ROPERTIES	
Porosity (%)	22-27*** 48-53*** 47-52***		e .	
		 RESERVOIR FLUID P	ROPERTIES	
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press (psia) Viscosity (cp) @ 'F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77"F)	.566ff 1,035			
		ENHANCED RECOVER	Y PROJECTS	
Enhanced recovery projects Date started				
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	43,219 1962			

Base of fresh water (ft.): 700-1,000

Remarks: Commercial gas deliveries began in August 1962. The field was abandoned in December 1968. Five wells were completed and cumulative gas production was 108,924 Mcf.


THORNTON GAS FIELD

(Abandoned)

UNDIFF NONMARINE STRATA MARKLEY— NORTONVILLE DOMENGINE CAPAY CAPITAL SD MOKELUMNE RIVER MOKELUMNE RIVER TOOO TOO TOOO TOO TOOO TOOO TOO	SERIES	FORMATION & ZONE	TYPICAL ELECTRIC LOG
DOMENGINE CAPATY CAPATY CAPATAL SD JOOO CAPATY MOKELUMNE PARTIE STOOM A0000 STARKEY ST	POST - EOCENE	UNDIFF NONMARINE STRATA	MANY
MOKELUMNE NOW A4000 HET SHALE STARKEY SOOO SOOO STARKEY SOOO SOOO STARKEY SOOO SOOO STARKEY SOOO SOOO	~ =	MARKLEY- NORTONVILLE (UNDIFF.)	- Land
MOKELUMNE RIVER MOKELUMNE A 4000 HEAT SHALE STARKEY SOOO	EOCE	DOMENGINE	\$ 3000
MOKELLACEOUS WASHINGTON STARKEY STAR		CAPAY	111
HET SHALE HET SHALE STARKEY SOOO SOOO STARKEY SOOO SOOO STARKEY SOOO SOO SOOO		CAPITAL SD Z	5
UPPER CRETACEOUS AMAZONIA MANAGEMENTA MAN			4000
UPPER CRETACEOUS		HET SHALE	5
7000	UPPER CRETACEOUS	STARKEY	\$ Z
UNDIFF MARINE STRATA		UNDIFF MARINE STRATA	7000

CONTOURS ON TOP OF CAPITAL SAND

DECEMBER 1979

COUNTY: SACRAMENTO and SAN JOAQUIN

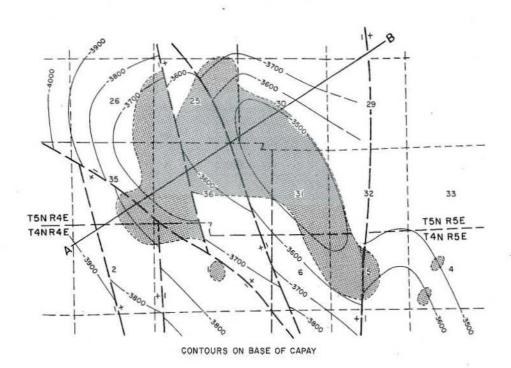
THORNTON GAS FIELD (ABD)

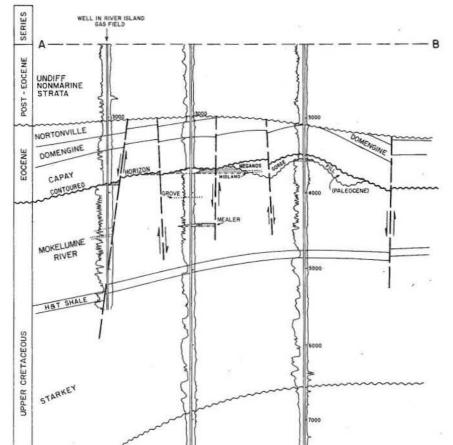
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp., Opr. "Capital Co." 1	Amerada Petroleum Co. "Capital Co." 1	36 5N 5E	MD	8,387	Capital	-
Deepest well	Chevron U.S.A. Inc. "Dinelli-Blossom- McGillivray" 1	Standard Oil Company of California "Dinelli-Blossom-McGillivray" 1	29 5N 5E	MD	11,000		Forbes Late Cretaceous

			POOL DATA		
ITEM	UNNAMED 8/	UNNAMED 3/	CAPITAL		FIELD OR AREA DATA
Discovery datenitial production rates	May 1961 <u>b</u> /	May 1970 b/	July 1943		
Oil (bbl/day)	000	1	6,900		N .
Gas (Mcf/day)	900 1,000	810 640	805		
Flow pressure (psi)	5/16	1/4	3/8	i i	4
Bean size (in.)	3/10	1/4	5,0		1
pressure (psi)	750	1,130	1,500	2 A	
eservoir temperature (*F)	104	108	118	1	
itial oil content (STB/acft.)		100	2877		. 1
itial gas content (MSCF/acft.).	270-380	420-590	780-970		
ermation	Markley-Nortonville	Markley-Nortonville	Mokelumne River		
eologic age	Eocene	Eocene	Late Cretaceous		1
verage depth (ft.)	2,315	2,580	3,300		1
verage net thickness (ft.)	15	25	50	1	1
verage net thickness (ft.) aximum productive			X		
area (acres)				4	3,160
		RE	SERVOIR ROCK PROPERTI	IES	
prosity (%)	27~31	27-31	31-35		
oi (%)		1920 Feb.	100 000		
wi (%)	45-55	45-55	40-45		1
gi (%)	45~55	45-55	55-60	1	
ermeability to air (md)				E X.	¥
		RE	SERVOIR FLUID PROPERT	IES	
Dilicolor ("API) Sulfur content (% by wt.) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ "F. Las: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Vater: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77"F)	.571†† 985	,571†† 985	.575†† 960 14,379 HANCED RECOVERY PROJ	ects.	
		I	TANCED RECOVERT PROJE	icis	
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl)					
	DC	4	1		
Year Peak gas production, net (Mcf)	i	1		l l	4,063,765

Base of fresh water (ft.): 600


Remarks: Commercial gas deliveries began in December 1946. Abandoned September 1975. Reactivated June 1976. Abandoned October 1979. Cumulative gas production 53,641,219 Mef. No condensate production. There were 14 completed wells.


a/ Locally referred to as Deadhorse sand stringers.

b/ Date of recompletion; originally completed in the Capital zone.

Selected References: Loken, K. P., 1957, Thornton Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

WEST THORNTON-WALNUT GROVE GAS FIELD

WINTERS

DECEMBER 1979

UNDIFF MARINE STRATA

THORNTON, WEST-WALNUT GROVE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron U.S.A. Inc. "McCormack-Williamson"	E. L. Doheny, Oper. "McCormack-Williamson"				8,808	Midland	
Deepest well	Chevron U.S.A. Inc. "McCormack-William- son" 9	Standard Oil Co. of Calif. "McCormack- Williamson" 9	25	SN SE	MD	12,628		basement pre-Lt. Cret.

,			POOL DATA NORTONVILLE			FIELD OP
ITEM	BURCHELL	DEADHORSE	STRINGERS	DOMENGINE	CAPAY STRINGERS	FIELD OR AREA DATA
Discovery date	August 1961	August 1959	May 1960	June 1964	March 1961	
nitial production rates Oil (bbl/day)	2		l		10477927061	
Gas (Mcf/day)	700	6,140	1,550	2,170	1,100	
Flow pressure (psi)	825	1,025	1,025	605	1,230	
Bean size (in.)	12/64	1/2	1/4	3/8	3/16	
nitial reservoir pressure (psi)	- 1	1,285	1,400	1,390	1,420	
eservoir temperature (°F)	106	110	120	120	124	Ĝ.
nitial oil content (STB/acft.)		2000		ATT.		
nitial gas content (MSCF/acft.).		500-670	680-840	660-880	1	
ormation	undiff, nonmarine	Markley	Nortonville	Domengine	Capay	+
Geologic age	post-Eocene	Eocene	Eocene	Eocene	Eocene	
verage depth (ft.)	2,410	2,810	2,980	2,880	3,280	
verage net thickness (ft.)	6	30	3-6	2-5	3	
faximum productive area (acres)					1	3,130
area (acres)				<u> </u>	1	3,130
		R	ESERVOIR ROCK PROPER	TIES	T	
Porosity (%)	-	28-31	26-30***	26-30		
Swi (%)		45-55	35-40***	30-40		
Sg; (%)	-	45-55	60-65***	60-70	4	
Permeability to air (md)					1	
			ESERVOIR FLUID PROPER	TIEC		
			BERTOIR FEOID FROFER	lies		
Oil gravity ('API) Sulfur content (% by wt.)	16					
Gast Constitution (1)		.563 ^{††}	.563 ^{††}	.575 ^{††}	.563 11	.575
Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1	1,000	1,000	970	1,000	964
Water:			1		11	
Salinity, NaCl (ppm)	1		1			
T.D.S. (ppm)	1		i			
R _w (ohm/m) (77°F)						
		EN	HANCED RECOVERY PRO	JECTS		
Enhanced recovery projects						
		Diff.				E Ini
Peak oil production (bbl)						
Year Peak gas production, net (Mcf) Year						15,486,111 1964

Base of fresh water (ft.): 800-1,300

Remarks: Commercial gas deliveries began in June 1958. Some of the gas-sand stringers in the Winters formation have been given local names by the operators.

Selected References: Silcox, J. H., 1962, West Thornton and Walnut Grove Gas Fields, Calif. in Geologic Guide to the Gas and Oil Fields of Northern Calif.: Calif. Div. of Mines and Geology Bull. 181, p. 140-148.

COUNTY: SACRAMENTO and SAN JOAQUIN

THORNTON, WEST-WALNUT GROVE GAS FIELD Cont.....

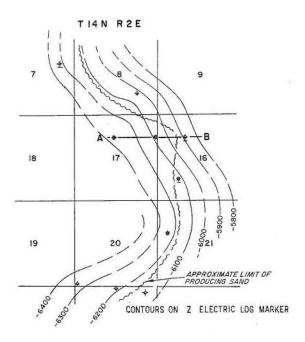
	Present o	perator and well designa	tion	Original	operator and well design	ation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age
Discovery well									(reet)	_233 9723	
Deepest well					# # # # # # # # # # # # # # # # # # #						
	9				POOL DATA						FIFTE OR
ITEM		MEGANOS CANYON	MIDLA	ND	GROVE		FONG				FIELD OR AREA DATA
Discovery date Initial production ra Oil (bbl/day) Gas (Mcf/day) Flow pressure (Bean size (in.). Initial reservoir pressure (psi) Reservoir temperatu Initial oil content (5) Initial gas content (6) Formation Geologic age Average depth (ft.) Average net thickne	re ("F)	May 1959 2,125 1,600 1/4 1,540 125 Meganos Canyon fill Paleocene 3,680 15	July 1 1,75 1,13 1/ 1,60 12 82-9 Mokelumne Late Cret 3,56	0 5 4 5 5 5 90 River	May 1966 2,350 1,410 16/64 1,790 130 740-900 Mokelumne River Late Cretaceous 4,060 10	7 Mokel Late	3,065 1,450 12/64 1,815 130 50-920 umme River Cretaceous 4,240 35				
area (acres)					ESERVOIR ROCK PROPE	DTIEC				(I	
- al-			26-2		25-28 †	T	25-28 †	T			
Porosity (%) Soj (%) Swj (%) Sgj (%) Permeability to air (30-3 65-7	55	40-45 † 55-60 †		10-45 † 55-60 †				
				R	ESERVOIR FLUID PROPI	RTIES					
Oil: Oil gravity (*API) Sulfur content (% Initial solution COR (SCF/STI Initial oil FVF (RI Bubble point pres Viscosity (cp) @ Gas: Specific gravity (i Heating value (Bt Water: Salinity, NaCl (p T.D.S. (ppm) Rw (ohm/m) (77	8)		.58 96	₃₀ †† 58	.575 ^{††} 970		.582 ^{††} 955		2		
				EN	HANCED RECOVERY PR	OJECTS		-			
Enhanced recovery Date started Date discontinue			×								*
Peak oil production Year Peak gas production Year	, net (Mcf)								19		~
Peak gas production	, net (Mcf)										

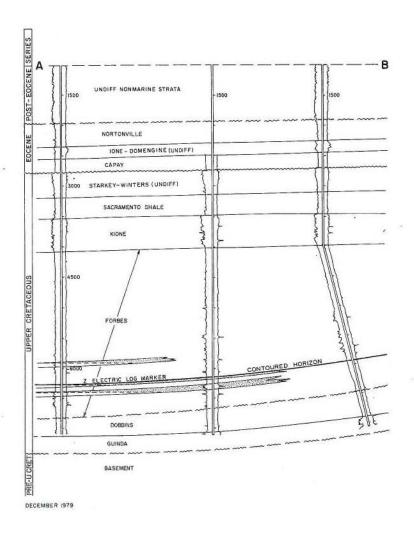
DATE:

COUNTY: SACRAMENTO and SAN JOAQUIN

THORNTON, WEST-WALNUT GROVE GAS FIELD Cont.....

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well							
Deepest well			1947-00				


ITEM	MEALER	UNNAMED		FIELD OR AREA DATA
Discovery date	July 1958 2,400 1,580 1/4 2,010 119 650-1,000 Mokelumme River Late Cretaceous 4,420 25	July 1959 2,100 2,465 12/64 3,550-3,900 152-154 1,400-1,700 Winters Late Cretaceous 7,460-8,300 10-30		
		RESERVOIR R	OCK PROPERTIES	
Porosity (%)	21-27 [†] 40-50 [†] 50-60 [†]	24-28 35-45 55-65		
		RESERVOIR FI	UID PROPERTIES	
Oil: Oil gravity (*API)	.585566 ^{††} 940-980	.600 †† 920		
		ENHANCED RE	COVERY PROJECTS	
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbl) Year				

Base of fresh water (ft.):

Remarks:

TISDALE GAS FIELD

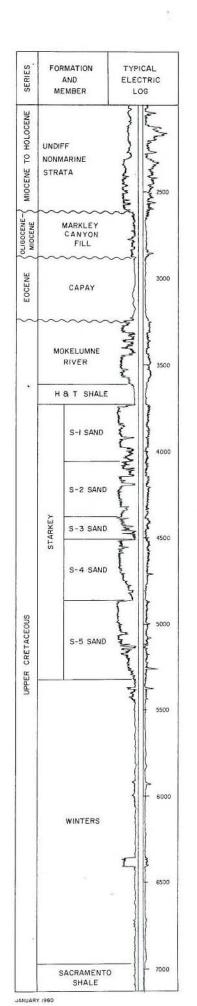
COUNTY: SUTTER

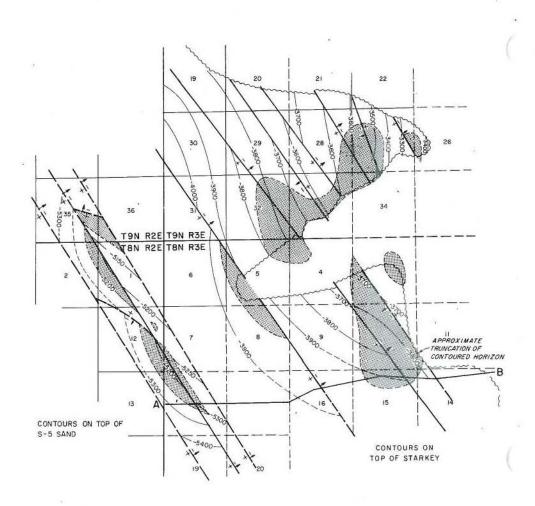
TISDALE GAS FIELD

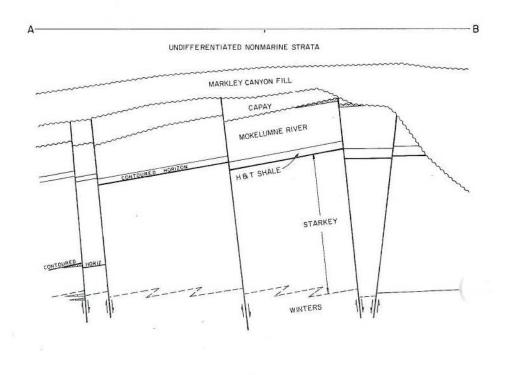
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	T. A. Atkinson "Atlantic-Giusti" 1	Same as present	17 14N 2E	MD	7,115	Forbes	
Deepest well	Atlantic Oil Co. "Lamb" 2	Same as present	17 14N 2E	MD	7,542		Guinda Late Cretaceou

-		POOL DATA	TIPLE OF
ITEM	FORBES		FIELD OR AREA DATA
Discovery date	August 1961 150-8,580 a/2,540-2,480 a/21/64 a/ 3,350 122 1,700-1,900 Forbes Late Cretaceous 6,200 2-20 640		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	24-32 48-55 45-52		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ('API) Oil gravity ('API) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ 'F. Specific gravity (air = 1.0) Heating value (Btu/cu, ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77'F)	925-1,000 16,400-18,100		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	1,006,041 1968		


Base of fresh water (ft.): 600


Remarks: Commercial gas deliveries began in April 1963.


a/ Well dually completed from two intervals within the Forbes formation.

Selected References: Weddle, J. R., 1969, Tisdale Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 54, No. 2.

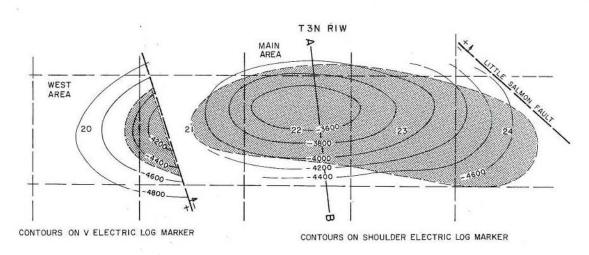
TODHUNTERS LAKE GAS FIELD

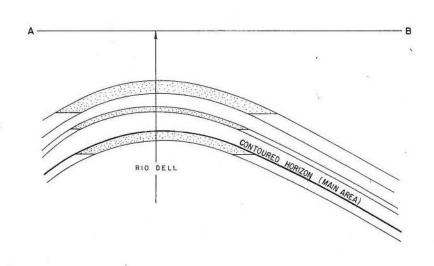
COUNTY: YOLO

TODHUNTERS LAKE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. & R	. B.&	Total depth (feet)		Strata & age at total depth
Discovery well	Getty Oil Co. "Reavis and Baker" 1	Tidewater Oil Co. "Reavis and Baker" 1	33	9N 3	E MI	5,000	Starkey	
Deepest well	Getty Oil Co. "I.O.C." 2	Same as present	33	9N 3	Е МІ	7,000		Sacramento shale


1	. 4:				
ITEM	MOKELUMNE RIVER	STARKEY	WINTERS		FIELD OR AREA DATA
Discovery datenitial production rates Oil (bbl/day)	October 1968	May 1967	July 1972		
Gas (Mcf/day)	4,100	5,360	4,420	E	
Flow pressure (psi)	840	1,110	1,850		
Bean size (in.)	30/64	1/2	5/16		1
pressure (psi)	1,420	1,580-2,332,	2,180-2,276	Y I	1
eservoir temperature (*F)	118 a/	122-126 a/	147 4/		ł
itial oil content (STR/ac-ft.)			1		1
itial gas content (MSCF/acft.). ormation	560-1,000	750-1,800	750-1,200		T .
ormation	Mokelumne River	Starkey	Winters		1
eologic age	Late Cretaceous	Late Cretaceous	Late Cretaceous		1
verage depth (ft.)	3,150	4,000-5,850	5,440-6,440	1	1
verage net thickness (ft.)	30-60	5-55	20-40		1
laximum productive area (acres)				1	3,015
area (acres)					
			RESERVOIR ROCK PROPE	RTIES	
Porosity (%)	22-35†	27-35 t	22-28***		
oj (%)	30-40 t	25-40	35-45***		
wi (%)	60-70†	60-75	60-75***		
gi (%)ermeability to air (md)	00-701	00-75	00-12		1
ermeability to air (md)					
			RESERVOIR FLUID PROPE	RTIES	
Dil:					
Oil gravity ("API)		1	1		
Sulfur content (% by wt.)			i		
Initial solution		ľ	1		
GOR (SCF/STB)				I T	
Initial oil FVF (RB/STB)			1		.
Bubble point press. (psia)				= 1	
Viscosity (cp) @ *F				1	
as:		***			
Specific gravity (air = 1.0)	.606	.606	.603680	1	
Heating value (Btu/cu. ft.)	890	900	695-909	I I	
Vater:					
Salinity, NaCl (ppm)	-	6,160			
T.D.S. (ppm) R _W (ohm/m) (77°F)					
		E	NHANCED RECOVERY PR	OIECTS	
Shared manager and set					
Inhanced recovery projects Date started			34		
Date discontinued				1	
					1
i					
			1	1 1	
Peak oil production (bbl)	-				
Year					
eak gas production, net (Mcf)					11,912,060
Year			1	1	19/2


Base of fresh water (ft.): 2,100-2,500

Selected References: Williams, P. A., 1970, Todhunters Lake Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 56, No. 1.

TOMPKINS HILL GAS FIELD

SERIES	FORMATION AND ZONE	TYPICAL ELECTRIC LOG
μJ	SCOTIA BLUFFS	
UPPER PLIOCENE		2000
MIDDLE PLIOCENE	RIO DELL	CONTOURED HORIZON (MAIN AREA
		CONTOURED HORIZON (WEST AREA
	- 100	
LOWER PLIOCENE	EEL RIVER	7000
RETACEOUS	YAGER	-} -

COUNTY: HUMBOLDT

TOMPKINS HILL GAS FIELD MAIN AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Texaco Inc. "Tompkins Hill Unit Plan" 2	The Texas Co. "Eureka" 2	22 3N	1W	Н	7,708	Rio Dell	
Deepest well	Texaco Inc. "Holmes-Eureka" 3	The Texas Co. "Holmes-Eureka" 3	22 3N	1W	Н	7,852		Yager Early Cretaceon

		POO	L DATA		
ITEM	RIO DELL			v	FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial go content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,400 1,100 13/64 890-2,450 116-131 400-1,100 Rio Dell Pliocene 2,100-5,800 1-50 1,400				
		RESERVOIR RO	OCK PROPERTIES		
Porosity (%)	26 40 60				
		RESERVOIR FL	UID PROPERTIES		
Oil: Oil gravity ('API)	1,035 10,785-22,598				
	was in	ENHANCED REC	COVERY PROJECTS		
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	3,668,947 1972				

Base of fresh water (ft.): 1,400-1,900

Remarks: Formerly known as Eureka Gas field. Commercial gas deliveries began in November 1938.

Selected References: Eureka Cas Field in Estimate of the Natural Gas Reserves of the State of Calif. as of January 1, 1941; Railroad Commission of the State of Calif. and Dept. of Natural Resources, Div. of Oil and Gas, Case No. 4591, Special Study No. S-258, p. 233-235 (1942). Ogle, B. A., 1953, Geology of Eel River Area, Humboldt County, Calif.: Calif. Div. of Mines Bull. 164, p. 79.

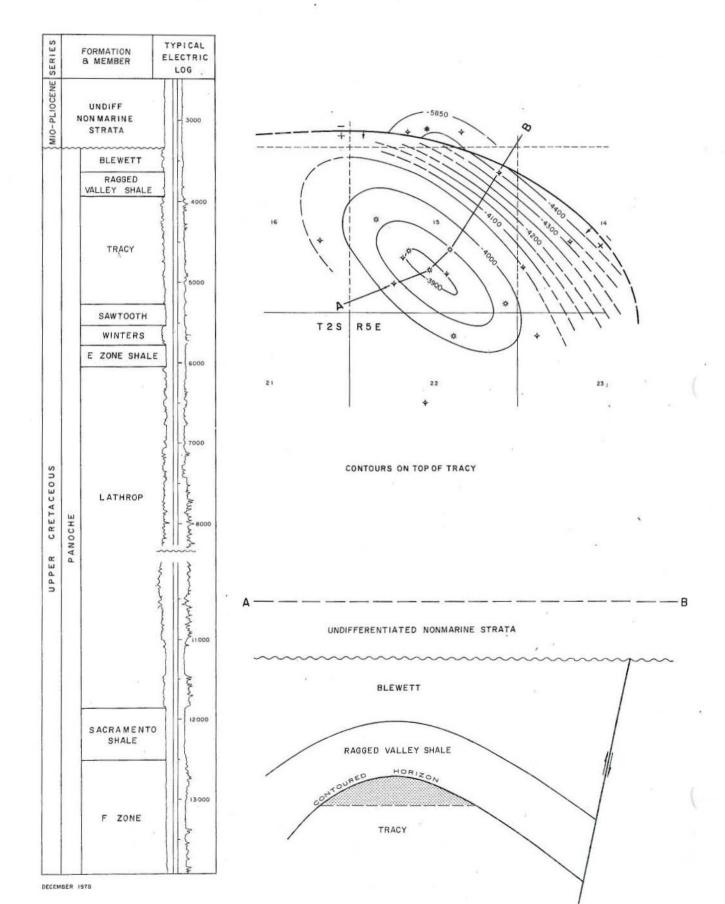
COUNTY: HUMBOLDT

TOMPKINS HILL GAS FIELD WEST AREA

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	в,&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Argo Petroleum Corp. "Edwards-Vicenus" 1	King Resources Co. "Edwards Vicenus" 1	20 3N 1W	н	6,046 a/	Rio Dell	7
Deepest well	Argo Petroleum Corp. "Edwards-Vicenus" 3	Same as present	20 3N 1W	н	8,127b/		Rio Dell Pliocene

		POOL DATA	
ITEM	RIO DELL		FIELD OR AREA DATA
Discovery date	December 1977		
Gas (Mcf/day)	2,349		
Flow pressure (psi)	2,512		
Bean size (in.)	3/16	1 8 1	
Initial reservoir pressure (psi)	3,575		
Reservoir temperature (*F)	122	1 1 1	
Initial oil content (STB/acft.)		1 1 1	
Initial gas content (MSCF/acft.). Formation	1,500 Rio Dell	1 1 1	
Geologic age	Pliocene		
Average depth (ft.)	5,920		
Average net thickness (ft.) Maximum productive	20		1
area (acres)	40		1
area (acres)	40		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	27		
Soj (%)	122		1
Swi (%)	48 52		
Sgi (%) Permeability to air (md)	12	1	
TO A CONTROL OF THE PROPERTY O		RESERVOIR FLUID PROPERTIES	
Oil:			
Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F			
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	1,029		
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			a
24. 3 1.8 1	EN	HANCED RECOVERY PROJECTS	
CONTRACTOR PROPERTY AND ADDRESS OF A		The second of th	
Enhanced recovery projects Date started Date discontinued			
Peak oil production (bbl)			
YearPeak gas production, net (Mcf)	15 370		
reak gas production, net (Mcf)	15,370		


Base of fresh water (ft.): 1,900-2,100

Remarks: Commercial production began in February 1979.

a/ Directional well, true vertical depth is 5,994 feet.

D/ Directional well, true vertical depth is 7,712 feet.

TRACY GAS FIELD

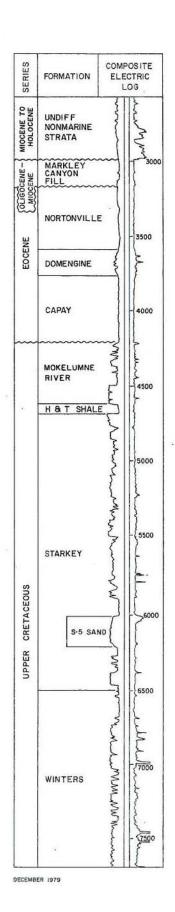
COUNTY: SAN JOAQUIN

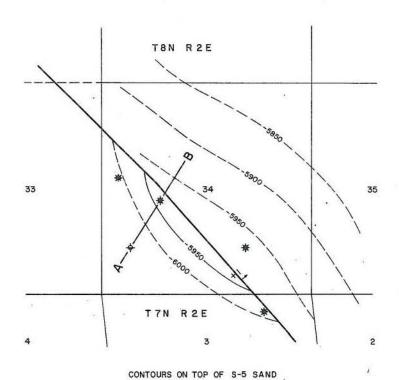
TRACY GAS FIELD

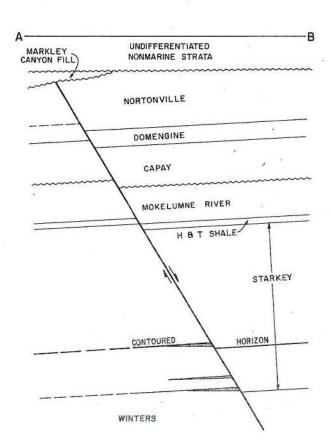
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. & R,	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Amerada Hess Corp. "F.D.L." 2	Amerada Petroleum Corp. "F.D.L." 2	15	2S 5E	MD	3,994	Tracy	
Deepest well	Amerada Hess Corp. "Tracy Community 1" 1	Amerada Petroleum Corp. "Tracy Community 1" 1	15	2S 5E	MD	13,832		Panoche Late Cretaceous

<i></i>		РО	OL DATA	
ITEM	TRACY	BLEWETT 3/		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (5TB/acft.) Initial gas content (MSCF/acft.) Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	August 1935 35,000 1,400 1 1/2 1,854 1,34 1,050 Panoche Late Cretaceous 3,900 40	898 500 1/4 1,850 138 580 Panoche Late Cretaceous 5,200 10		390
		RESERVOIR	ROCK PROPERTIES	
Porosity (%)	28 30 70	20 45 55		v
		RESERVOIR	FLUID PROPERTIES	CARRY CO.
Oil: Oil gravity ("API)	.593 930 6,350- 8,560	.649 808 19,200		
		ENHANCED	RECOVERY PROJECTS	T
Enhanced recovery projects Date started Date discontinued				
Peak oil production (bbi) Year Peak gas production, net (Mcf)				3,012,083


Base of fresh water (ft.): 1,200


Remarks: First commercial gas field in Northern California and first field in California to produce gas commercially from a Cretaceous zone. Commercial gas deliveries began in September 1935. The field was abandoned November 1964 and reactivated in November 1977.


a/ Production began in February 1980:

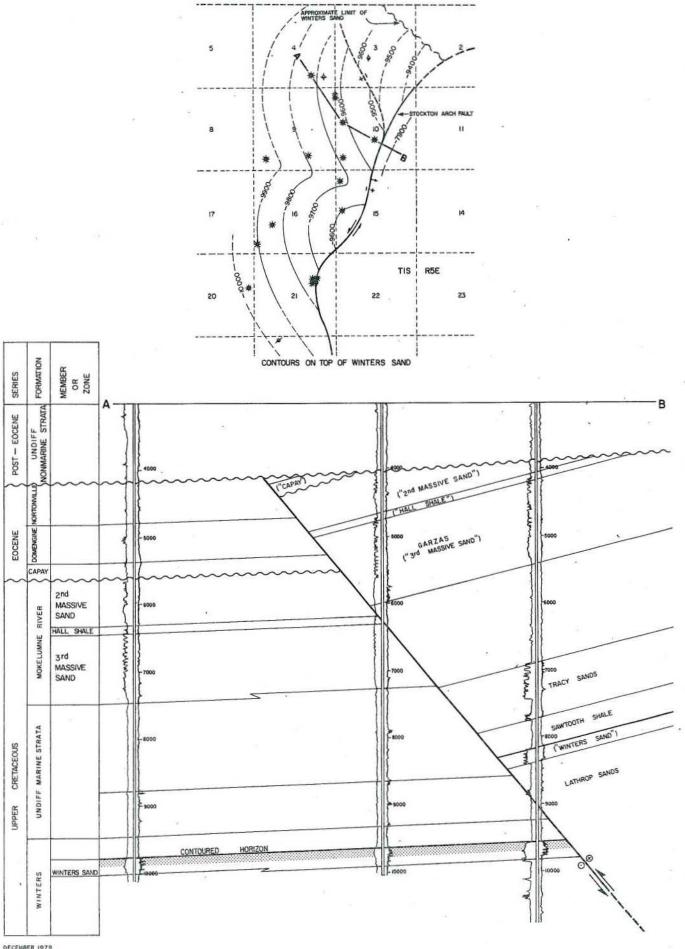
Selected References: Hunter, G. W., 1957, Tracy Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 43, No. 1.

TREMONT GAS FIELD

COUNTY: SOLANO

TREMONT GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Capitol Oil Corp. "Hamel-Thomas" 1	Same as present	34 8N 2E	MD	8,051	Starkey	Winters
Deepest well	Same as above	"	"	"	"	"	Late Cretaceous

4	POOL DATA					
ITEM	STARKEY	WINTERS			FIELD OR AREA DATA	
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	3,267 2,130 1/4 2,550 126 1,400-1,700 Starkey Late Cretaceous 6,050 20	March 1974 3,161 2,070 1/4 2,810 140 1,000-1,300 Winters Late Cretaceous 6,560 7			230	
		RESERV	DIR ROCK PROPERTIES			
Porosity (%)	28-32*** 30-35*** 65-70***	24-28*** 40-45*** 55-60***	4			
		RESERV	DIR FLUID PROPERTIES			
Oil: Oil gravity ('API)	.630 873	.630 852		3"		
T.D.S. (ppm)						
		ENHANC	D RECOVERY PROJECTS		1	
Enhanced recovery projects Date started Date discontinued						
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					1,437,548 1976	

Base of fresh water (ft.): 3,000

Remarks: Commercial gas deliveries began in January 1976.

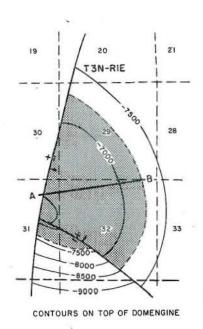
UNION ISLAND GAS FIELD

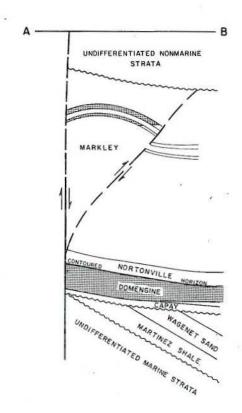
COUNTY: SAN JOAQUIN

UNION ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B. 8:M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Union Oil Co. of Calif. "Sonol Securities" 1-A	Same as present	10 1S 5E	MD	10,000	Winters	
Deepest well	Union Oil Co. of Calif. "Sonol Securities" 7	Same as present	10 1S SE	MD	12,527		E-zone Late Cretaceous


_			OOL DATA		Carrier Tarring
ITEM	WINTERS				FIELD OR AREA DATA
Discovery date	4,450 3,300 1/4 5,040				
pressure (ps): Reservoir temperature (*F)	218 1,100-1,300 Winters Late Cretaceous 9,700 150 1,680			4	
		RESERV	OIR ROCK PROPERTIES		
Porosity (%)	18-20 38-40 60-62 70-200			1	
		RESERV	OIR FLUID PROPERTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ 'F Gas: Specific gravity (air = 1.8) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77'F)	.616 870 39,900				
		ENHANC	ED RECOVERY PROJECTS		
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year	22,795,470 1977				


Base of fresh water (ft.): 300

Remarks: Small amounts (4 bbl/day) of 29° API gravity condensate are also produced.

VAN SICKLE ISLAND GAS FIELD

SERIES		ORMATION 8 MEMBER	COMPOSITE ELECTRIC LOG
POST-EDCENE	S	NDIFF ONMARINE TRATA	- 2000
			3000
4			4000
EOCENE	MARKLEY		-5000
The state of the s			-(6000
	N	ORTONVILL	E
2000	- D	OMENGINE	7000 2000 2000 2000 2000 2000 2000 2000
~	~°	D&E ZONI	E 8000
		WAGENET SAND	
CENE	INEZ		9000
PALEOCENE	MARTINEZ	MARTINEZ SHALE	-10,000
CRET	~~ M	SHALE NDIFF ARINE TRATA	W

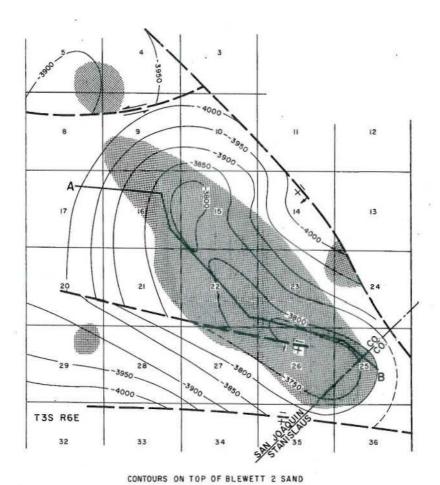
DECEMBER 1979 COURTESY OF CHEVRON U.S.A. INC.

COUNTY: SOLANO

VAN SICKLE ISLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	в.&м.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA Inc. "Feykert" 1	Standard Oil of Calif. "Feykert" 1	32 3N	1E	MD	11,040	Nortonville	Starkey Late Cretaceous
Deepest well	Same as above				"		and Domengine	"


	ATA

			POOL DATA			
ITEM	MARKLEY	NORTONVILLE a/	DOMENGINE a/			FIELD OR AREA DATA
Discovery date	September 1973 1,700 750 5/16	June 1968	June 1968 1,665 1,110 1/4			
pressure (psi)	1,450 124	2,980 153	3,000			
nitial oil content (STB/acft.)	480-650 Markley Eccene 3,250 45	720 Nortonville Eocene 6,760	940 Domengine Eccene 6,800 150			350
		RE	SERVOIR ROCK PROPERTIE	es	****	
Porosity (%)	20-25***	15	18			
ioj (%)gj (%)gj (%)	40-45*** 55-60***	45 55	40 60	41		DE:
		RE	SERVOIR FLUID PROPERTIE	ES		
Oil: Oil gravity ('API)						
Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.602 1,030	.602 1,032	.602 1,030			
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77°F)			10,272			
		ENH	ANCED RECOVERY PROJE	стѕ		
Enhanced recovery projects Date started Date discontinued						
				541	7.0	
Peak oil production (bbl)						
Peak gas production, net (Mcf) Year						1,731,445 1972

Base of fresh water (ft.): Above 250

Remarks: Commercial gas deliveries began in April 1964. Cumulative condensate production through 1979 was 22,830 barrels.

VERNALIS GAS FIELD

Thacy Business Mentrer (undire) Formation (notice) 1960 (196

COUNTY: SAN JOAQUIN and STANISLAUS

VERNALIS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

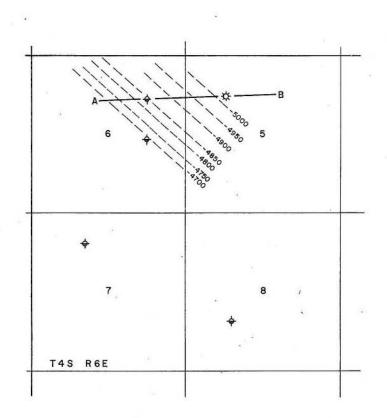
	Present operator and well designation	Original operator and well designation	Sec. T.	& R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Chevron USA, Inc. "Blewett Comm." 1	Standard Oil Co. of Calif. "Blewett Comm."	14 35	6E	MD	3,872	Blewett	1
Deepest well	W. E. Strangman "Navarra" 1	Inter-American Resources Dev. Co. "Navarra" 1	29 35	6E	MD	11,602		F-zone Late Cretaceous

POOL DATA

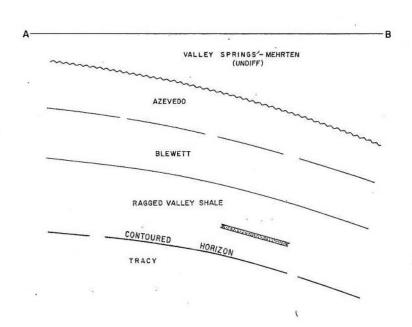
			POOL DATA			
ITEM	BANTA	AZEVEDO	BLEWETT	"RAGGED VALLEY SILT"	TRACY	FIELD OR AREA DATA
Discovery date	September 1959	January 1959	January 1941	May 1960	July 1959	
Initial production rates		10	W. 55.55	75	10000 10000	
Oil (bbl/day)	1	THE STREET	73,10,827	0.97700000	20000970	
Gas (Mcf/day)	4,900	795/370 4/	9,700	1,110	5,500	
Flow pressure (psi)	850 1/2	1,440/1,020 a/ 1/8 / 5/8 a/	1,140 5/8	1,000	950	
Bean size (in.)	1/2	1/0 / 5/0=	3/6	1/4	1/2	
pressure (psi)	1,425	1,680	1,765	2,110	2,220	
eservoir temperature (*F)	107	118	120	129	130	
nitial oil content (STB/acft.)		10000170100	115200050054	Warner.	Vantage 19555	1
nitial gas content (MSCF/acft.).	910 Valley SprsMehrten	710-860 Moreno	800-970	870	920-1,100	
ormation	Miocene-Pliocene	Late Cretaceous	Panoche Late Cretaceous	Panoche Late Cretaceous	Panoche Late Cretaceous	
eologic age	3,000	3,600	3,800	4,650	4,925	1
verage net thickness (ft.)	25	40	80	40	10	
faximum productive					1	
area (acres)						4,030
		RI	ESERVOIR ROCK PROPE	RTIES		
orosity (%)	30*	25-28	27-30	25*	25-28	
oj (%)	30*	40-45	40.45	464	40.45	1
wi (%)	70*	55-60	40-45 55-60	45* 55*	40-45 55-60	
gi (%) ermeability to air (md)		33-00	70-320	33	33-60	
emeability to all (ma)			F (1909-049)			
		Ri	ESERVOIR FLUID PROPEI	RTIES		T
Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ "F			=			
ias:			1000		- 100	
Specific gravity (air = 1.0)	.593†† 930	.597ff 920	.597†† 920	.597ff 920	.599 t1 915	
Heating value (Btu/cu. ft.)	930	920	920	920	912	
Vater	2.700	500 7 100	700 7 400			1
Salinity, NaCl (ppm)	2,100	500-3,400	500-3,400	500-3,400	500-3,400	
T.D.S. (ppm) R _W (ohm/m) (77°F)						
		ENI	HANCED RECOVERY PRO	DIECTS	1	
nhanced recovery projects				Ī		
Date discontinued					30	
9						
						ľ
Peak oil production (bbl) Year		0				8,273,021

Base of fresh water (ft.): 800-1,050

Remarks


 $\underline{\underline{a}}/$ Former Blewett zone well, recompleted in January 1979 as a dual producer from two intervals in the Azevedo.

Selected References: Hill, F. L., 1962, Vernalis Gas Field: Calif. Div. of Oll and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.


SOUTHWEST VERNALIS GAS FIELD

(Abandoned)

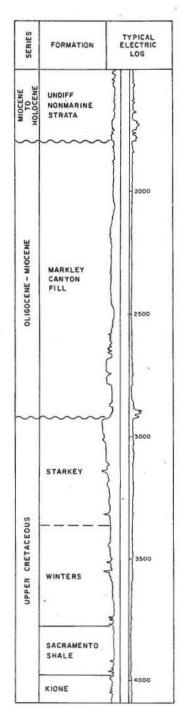
SERIES	FORMATION	MEMBER AND ZONE	TYPICAL ELECTRIC LOG
	VALLEY SPRINGS - MEHRTEN (UNDIFF)	*	MMMM AMM March Mar
~	MORENO	AZEVEDO	3500
Comment of the commen		BLEWETT	And the same of th
OFFER ONE PROPOS	PANOCHE	RAGGED VALLEY SHALE GAS SANG	
		TRACY	Monum

CONTOURS ON TOP OF TRACY

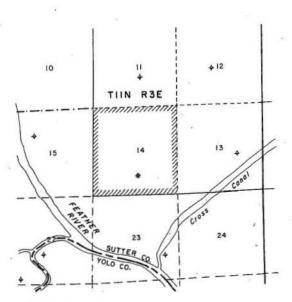
DECEMBER 1979

COUNTY: SAN JOAQUIN

VERNALIS, SOUTHWEST, GAS FIELD (ABD)


DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Porter Sesnon, et al "Sesnon - Vernalis"	Same as present	5	45	6E	MD	5,450	"Ragged Valley"	
Deepest well	Occidental Petroleum Cor. "Raspo" 1	Same as present	6	45	6E	MD	6,628		lower Tracy san Late Cretaceous


		POOL DATA	
ITEM	RAGGED VALLEY		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (°F) Initial oil content (STB/ac-ft.) Initial gas content (MSCF/ac-ft.) Formation Geologic age Average depth (ft.) Average epth (ft.) Average net thickness (ft.) Maximum productive area (acres)	August 1959 . 530 340 1/4 2,090 126 760 Panoche Late Cretaceous 4,560 4		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	25* 50* 50*		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity ("API)	.616†† 870		
	The state of the s	ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	11,283 1960		

Base of fresh water (ft.): 2,600

Remarks: Commercial gas deliveries began in April 1960. The field was abandoned in March 1961. Only one well was completed and cumulative gas production was 12,063 Mcf.

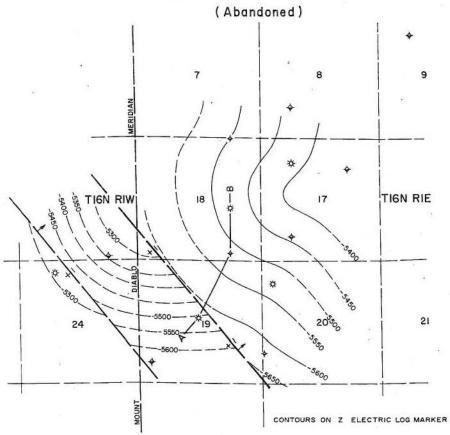
DECEMBER 1980

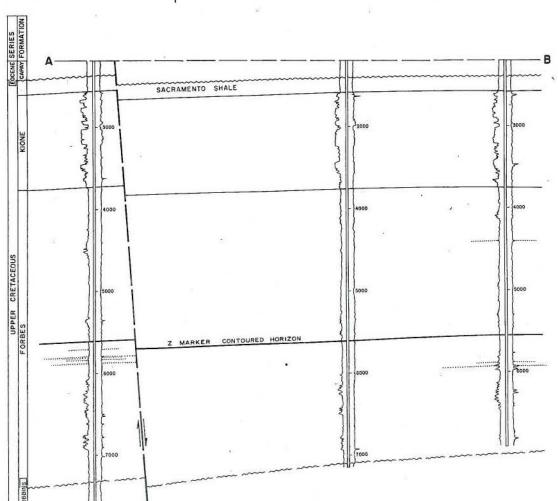
SUBSURFACE DATA NOT AVAILABLE

COUNTY: SUTTER

VERONA GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R	. B.&	M. Total depth (feet)		Strata & age at total depth
Discovery well	Davis Oil Co. "Nicholas" 1	Same as present	14 11N 3	E M	4,088	Markley Canyon fill	Kione Late Cretaceous
Deepest well	Same as above		. "	"	"		"


		POOL DATA	T T		FIELD OR
ITEM	MARKLEY CANYON FILL				AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.)	June 1979 1,185 480 5/16				
pressure (psi) Reservoir temperature (*F) nitial oil content (5TB/acft.) nitial gas content (MSCF/acft.) formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive	Oligocene-Miocene 1,840 15				
area (acres)	40	BESTEWOOD BOOK BROOK	<u> </u>		
		RESERVOIR ROCK PROPE	KITES	Q-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-17-
Porosity (%) So; (%) Sw; (%) Sg; (%) Permeability to air (md)	15-22† 40* 60*		4.	-	
		RESERVOIR FLUID PROPE	RTIES		
Oil: Oil gravity (*API)	.654 771				
Water: Salinity, NaCl (ppm) T.D.S. (ppm) R _W (ohm/m) (77*F)					
		ENHANCED RECOVERY PRO	OJECTS		
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) YearPeak gas production, net (Mcf)					

Base of fresh water (ft.): 800

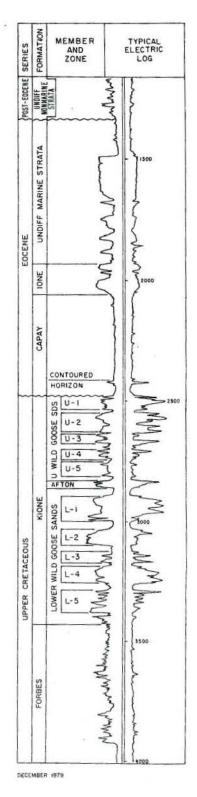
Remarks: Commercial gas deliveries have not yet begun.

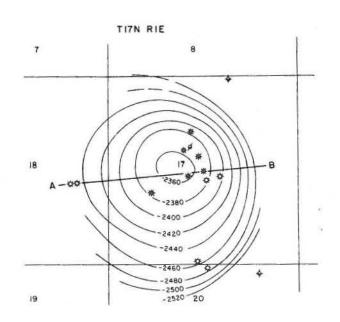
WEST BUTTE GAS FIELD

COUNTY: SUTTER

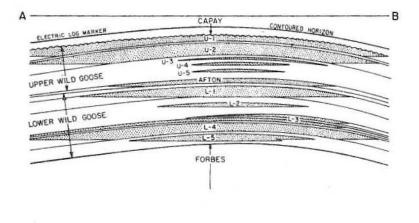
WEST BUTTE GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL


-	Present operator and well designation	Original operator and well designation	Sec. T. & R	. 8.6M	Total depth (feet)	Paol (zone)	Strata & age at total depth
Discovery well	Occidental Pet. Corp. "Standard-Browning"	Occidental Pet. Corp. "Standard" 1	19 16N 1	MD	7,664	unnamed sand	
Deepest well	Occidental Pet. Corp. "Standard-Browning"	Same as present	20 16N 1	MD	8,097	stringers	G-zone Late Cretaceou


		POOL DATA	
ITEM	UNNAMED SAND STRINGERS		FIELD OR AREA DATA
Discovery date nitial production rates Oil (bbl/day) Gas (Mc//day) Flow pressure (psi) Bean size (in.) nitial reservoir pressure (psi) Leservoir temperature ("F) nitial oil content (STB/acft.) nitial pas content (MSCF/acft.) formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	April 1961 2,271 1,275 15/64 1,920-4,380 115-132 1,100-1,900 Forbes Late Cretaceous 4,260-6,500 8-50 960		
		RESERVOIR ROCK PROPERTIES	
Porosity (%)	18-25*** 40-50*** 50-60***		
		RESERVOIR FLUID PROPERTIES	
Oil: Oil gravity (*API) Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (poia) Viscosity (cp) @ *F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77°F)	.572 975-1,005		
		ENHANCED RECOVERY PROJECTS	
Enhanced recovery projects			
*			
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year	351,120 1963		

Base of fresh water (ft.): 2,200


Remarks: Commercial gas deliveries began in August 1962. The field was abandoned in May 1970. Five wells were completed and cumulative gas production was 659,960 Mcf.

Selected References: Hluza, A. G., 1962, West Butte Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 48, No. 2.

CONTOURS ON ELECTRIC LOG MARKER IN CAPAY

COUNTY: BUTTE and COLUSA

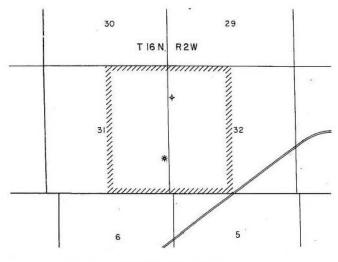
WILD GOOSE GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R	. B.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Exxon Corp. "Wild Goose Unit 1" 1	Honolulu Oil Corp, "Honolulu-Humble Wild Goose" 1				Lower Wild Goose	
Deepest well	Exxon Corp. "Howard F. Brady" 1	Humble Oil & Rfg. Co. "Howard F. Brady" 1	20 17N 1	E MD	7,890		Forbes Late Cretaceous

POOL DATA

14			POOL DATA			
ITEM	HANGTOWN	UPPER WILD GOOSE	AFTON	LOWER WILD GOOSE		FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/ac_ft.) Initial gas content (MSCF/ac_ft.).	4,000 940 24/64 1,105 82 770 Kione	July 1953 7,340 880 36/64 1,200-1,310 98 810-888 Kione	September 1963 4,840 ½/ 1,040 24/64 1,335 87 930 Kione	August 1951 4,020 1,370 24/64 1,345-1,500 105 900-1,000 Kione	÷	
Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	Late Cretaceous 2,400 10	Late Cretaceous 2,500 200	Late Cretaceous 2,850 30	Late Cretaceous 2,900 250		360
		RI	ESERVOIR ROCK PROPE	RTIES		
Porosity (%)	30* 25* 75*	30* 25* 75*	30* 25* 75*	30* 25* 75*		
		RI	ESERVOIR FLUID PROPE	RTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.)	.640 800	.640 800 30,473-55,640	2	.640 805 30,473-45,368		
		ENI	HANCED RECOVERY PRO	DJECTS		
Enhanced recovery projects					*	
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					-	8,248,811 1961


Base of fresh water (ft.): 1,050

Remarks: Commercial gas deliveries began in November 1951.

a/ Commingled production from Afton and Upper Wild Goose. Honolulu Oil Corp. tested this zone in open hole at a maximum rate of 2,980 Mcf per day in well "Honolulu-Humble Tule Goose" 1 (now Exxon Corp. "Wild Goose Gas Unit 1" 7) in July 1952.

Selected References: Hunter, G. W., 1955, Wild Goose Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 41, No. 1.

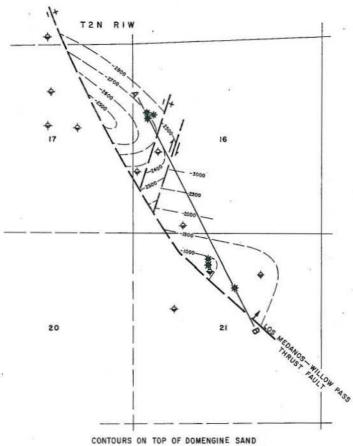
SERIES	FORMATION	TYPICAL ELECTRIC LOG
POST-EOCENE	UNDIFF. NONMARINE STRATA	Mullian
EOCENE	PRINCETON CANYON FILL	Market Market
~~	KIONE	3000
CRETACEOUS	FORBES	4000
UPPER CRETA		2000 Sound Mark Mark Mark
		6000

SUBSURFACE DATA NOT AVAILABLE

COUNTY: COLUSA

WILLIAMS GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&N	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Davis Oil Co. "Zumwalt" 1	Same as present	31 16N 2W	MD	6,275	Forbes	Forbes Late Cretaceous
Deepest well	Same as above		"	***	"	n	"

			POOL DATA		
ITEM	FORBES				FIELD OR AREA DATA
Discovery date	August 1978 710 470	W.			
Bean size (in.)nitial reservoir pressure (psi)	2,760				
Reservoir temperature (°F)	530-750 Forbes Late Cretaceous 5,300 10-20	*			
		RESE	RVOIR ROCK PROPERTIES	The second second	
'orosity (%)	15-19*** 55-60*** 40-45***		,		
		RESE	EVOIR FLUID PROPERTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (R8/STB). Bubble point press. (psia) Viscosity (cp) @ 'F. Specific gravity (air = 1.0) Heating value (Btu/cu. ft.)	.573†† 970				
Vater: Salinity, NaCl (ppm)				**************************************	
		ENHAN	ICED RECOVERY PROJECTS		
Enhanced recovery projects					
			9		
Peak oil production (bbl) Year					
Peak gas production, net (Mcf) Year					

Base of fresh water (ft.): 1,800

Remarks: Commercial gas deliveries have not yet begun.

WILLOW PASS GAS FIELD (Abandoned)

CONTOURS ON TOP OF DOMENGINE SAND

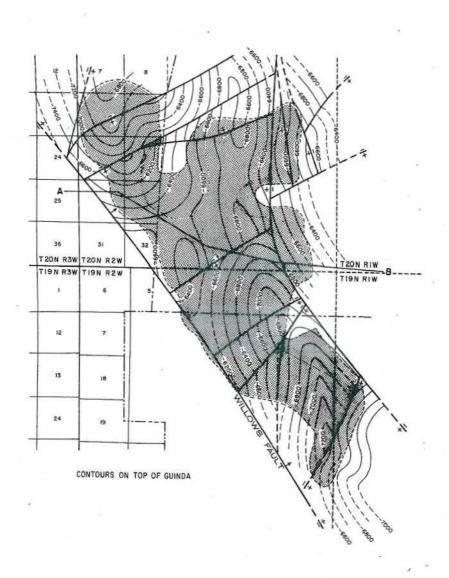
CONTOURS ON TOP OF TOP

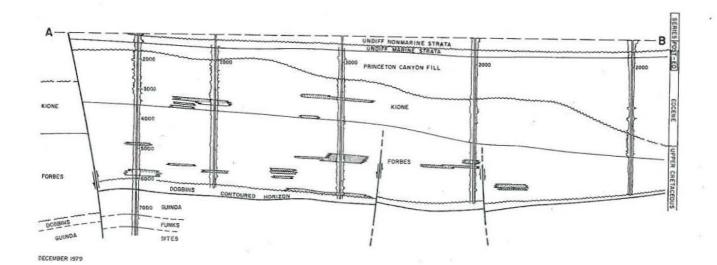
COUNTY: CONTRA COSTA

WILLOW PASS GAS FIELD (ABD)

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	The Termo Co. "Faria Unit" 1	Trico Oil and Gas Co. "Faria Unit"1	21 2N 1W	MD	4,518	Domengine	
Deepest well	The Termo Co. "Neustaedter" 1	Trico Oil and Gas Co. "Neustaedter" 1	16 2N 1W	MD	5,483		undiff. Cret.


7		POO	L DATA		
ITEM	NORTONVILLE	DOMENGINE			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Gas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature (*F) Initial oil content (STB/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	July 1959 1,500 310 3/8 530-1,335 97-106 260-710 Nortonville Eocene 1,500-5,100 35	May 1959 4,300 290 3/4 650 98 320-440 Domengine Eocene 1,800 50		- 10 P	85
		RESERVOIR R	OCK PROPERTIES		
Porosity (%)	26* 35* 65*	25-35*** 65-75***			*
		RESERVOIR FI	LUID PROPERTIES		
Oil: Oil gravity (*API)	.562†† 1,000	.5751† 1,020			*.1
		ENHANCED RE	COVERY PROJECTS		
Enhanced recovery projects Date started Date discontinued					
Peak oil production (bbl) Year Year Peak gas production, net (Mcf) Year					263,347 1967


Base of fresh water (ft.): 150

Remarks: Commercial gas deliveries began in April 1960. The field was abandoned in 1980. Six wells were completed and cumulative gas production was 2,927,805 Mcf.

Selected References: Matthews, J. F., Jr., 1963, Willow Pass Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 49, No. 1.

WILLOWS-BEEHIVE BEND GAS FIELD

COUNTY: GLENN

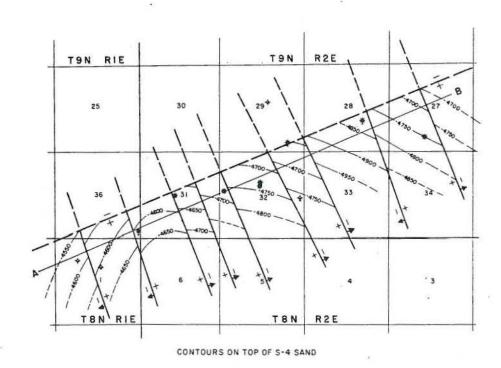
WILLOWS-BEEHIVE BEND GAS FIELD

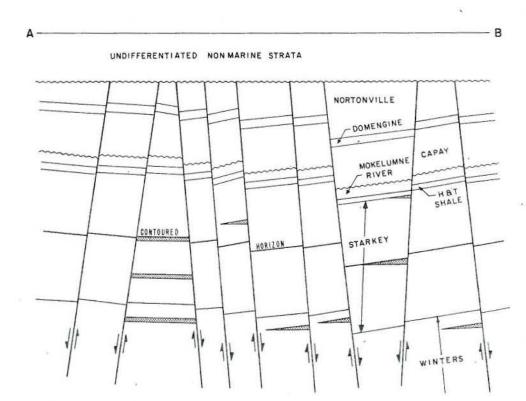
DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Teal Petroleum Co. "Transamerica" 71-18	The Ohio Oil Co. "E. E. Willard" 1-A	18 20N 2W	MD	6,014	Forbes	
Deepest well	Sun Oil Co. "Sunray-General Petroleum Whyler-Wolcott Unit" 1	Sunray Oil Corp. "Sunray- General Petroleum Whyler - Wolcott Unit" 1	11 19N 2W	MD	10,807		basement pre-Late Cret

P	O	O	LI)A	lΤ.	A

			POOL DATA			
ITEM	PRINCETON CANYON FILL	KIONE	FORBES	DOBBINS	GUINDA	FIELD OR AREA DATA
Discovery date	September 1956	August 1938	September 1954	March 1958	March 1955	
Initial production rates	1		E.	1		
Oil (bbl/day) Gas (Mcf/day) Flow pressure (psi)			F 000	1 500	280	1
Gas (Mct/day)	3,037	5,355 515	5,000 2,050	1,500 740	1,080	1
Bean size (in.)	857 19/64	21/32	5/16	48/64	1,080	1
Initial reservoir	19/04	21/32	3/10	48/04		1
pressure (psi)	909	900-1,705	2,200-4,200	4,400		
Reservoir temperature (*F)	100	94-106	110-118	129	135	1
nitial oil content (STB/acft.)						1
nitial gas content (MSCF/acft.).	600	620-1,400	1,600-2,200	1,000	-	1
formation	Princeton Cyn. fill	Kione	Forbes	Dobbins	Guinda	1
Geologic age	Eocene	Late Cretaceous	Late Cretaceous	Late Cretaceous	Late Cretaceous	
Average depth (ft.)	2,045	1,930-3,650	4,420-6,400	6,700	7,350	1
Average net thickness (ft.)	55	10-80	3-60	20	70	1
Maximum productive	12.10					
area (acres)			1			13,380
		P	ESERVOIR ROCK PROPE	PTIES	3	1
(1-1) 1	1			1	1	Γ
Porosity (%)	30*	26-32	24-30	18	4	1
ioi (%)		**	20.00	199	1	
Swi (%)	28*	30-35 70	30-35 70	45 55	1	1
58i (%)	72*	400	300	33		
Permeability to air (md)		400	300			
		R	ESERVOIR FLUID PROPE	RTIES		
Oil: Oil gravity (*API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB) Bubble point press. (psia) Viscosity (cp) @ *F				*		
Gas:	.570	.570	.570	.570*		
Specific gravity (air = 1.0)	990	990	985	985*		
Heating value (Btu/cu. ft.)	990	990	303	963		
Water:	1 710	4 060 18 400	3 200 17 100			
Salinity, NaCl (ppm)	1,710	4,960-18,400	1,200-17,100			
T.D.S. (ppm) R _w (ohm/m) (77°F)			1		4	
Kw (ohm/m) (77°F)					1	
****		ENI	HANCED RECOVERY PRO	DIECTS		
Enhanced recovery projects						
				31		
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year						29,202,019


Base of fresh water (ft.): 850-1,500


Remarks: The Ohio Oil Co. well "E. E. Willard" 1 (now operated by Transamerica Development Co.) blew out in January 1938 while operator was preparing to pull drill pipe from 4,505 feet. A large crater was formed in which the derrick and equipment were lost. The well blew gas and water for 23 days. Commercial gas deliveries began in March 1944. Many of the gas sand stringers in the Kione and Forbes formations have been given local names by operators.

Selected References: Barger, R. M., and Sullivan, J. C., 1966, Willows-Beehive Bend Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 52, No. 2, Part 2.

WILLOW SLOUGH GAS FIELD

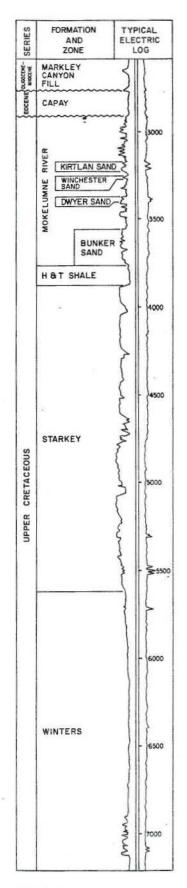
SERIES	90.00	MATION B MBER	TYPICAL ELECTRIC LOG
POST - EOCENE	NON	DIFF IMARINE RATA	M. ~ 2500
~~	NOF	RTONVILLE	
ENE	DOM	ENGINE	3500
EOCENE	CAF	PAY	
~	MOKE HaT	LUMNE RIVER	4000
		S-I SAND	3 3
		S-2 SAND	4500
	KEY	S-3 SAND	* -
S	STARKEY	S-4 SAND	5000
UPPER CRETACEOUS		S-5 SAND	
UPPER			5500
	WIE	ITERS	W. W

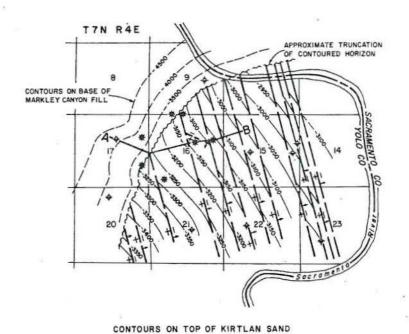
MARCH 1980

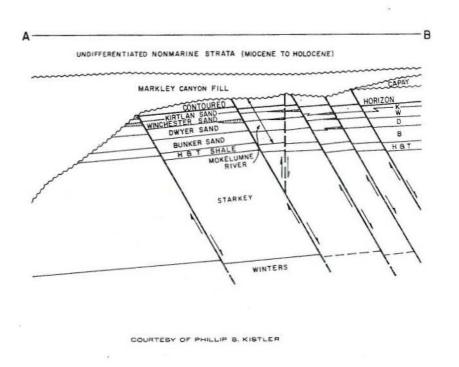
COUNTY: YOLO

WILLOW SLOUGH GAS FIELD

DISCOVERY WELL AND DEEPEST WELL


	Present operator and well designation	Original operator and well designation	Sec. T. & R.	8.4M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "Schuder" 1-32	Same as present	32 9N 2E	MD	6,190	Starkey	
Deepest well	Shell Dil Co. "Stephens" 1-28	Same as present	28 9N 2E	MD	7,504 4		Winters Late Cretaceou


•			POOL DATA		
ITEM	STARKEY	WINTERS			FIELD OR AREA DATA
Discovery date Initial production rates Oil (bbl/day) Cas (Mc/day) Flow pressure (psi) Bean size (in.) Initial reservoir pressure (psi) Reservoir temperature ("F) Initial oil content (STB/acft.) Initial gas content (MSCF/acft.) Formation Geologic age Average depth (ft.) Average net thickness (ft.) Maximum productive area (acres)	1,020 1,750 2,200 113-117 940-1,200 Starkey Late Cretaceous 4,850 25	June 1975 375 1,000 2,530 118 960-1,200 Winters Late Cretaceous 5,990 10			1,600
		RESER	VOIR ROCK PROPERTIES		
Porosity (%)	27-31† 43-48† 52-57†	25-29† 45-50† 50-55†		· v	
		RESER	VOIR FLUID PROPERTIES		
Oil: Oil gravity ('API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Bubble point press. (psia) Viscosity (cp) @ 'F Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCI (ppm) T.D.S. (ppm) Rw (ohm/m) (777F)	.605 900	.605 900 5,040			
		ENHAN	CED RECOVERY PROJECTS	 1	J
Enhanced recovery projects					
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year			100		9.

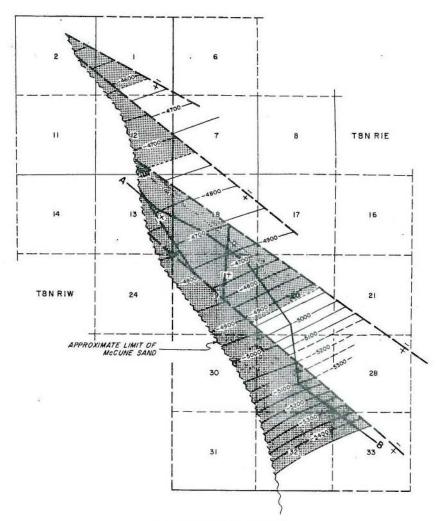

Base of fresh water (ft.): 2,800

Remarks: Commercial gas deliveries began in February 1977. a/ Directional well, true vertical depth is 7,138 feet.

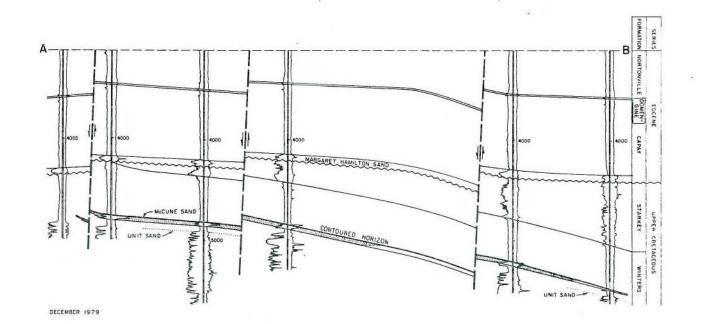
WINCHESTER LAKE GAS FIELD

COUNTY: YOLO

WINCHESTER LAKE GAS FIELD


DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec.	T. &	R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Winchester Lake" 2	Same as present	9	7N	4E	MD	5,599	Winchester	
Deepest well	Atlantic Oil Co. "Deyer" 1	Same as present	9	7N	4E	MD	7,200	Dwyer	Winters Late Cretaceous


22-30*** 35-45*** 55-65***	DWYER December 1974 3,682 1,115 3/8 1,430 121 520-840 Mokelumme River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** ESERVOIR FLUID PROPER	22-30*** 35-45*** 55-65***		FIELD OR AREA DATA
1,070 1,250 3/16 1,460 120 530-860 0kelumne River nte Cretaceous 3,320 15 R 22-30***	3,682 1,115 3/8 1,430 121 520-840 Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	1,108 1,292 3/16 1,500 125 540-870 Mokelumne River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***		480
1,250 3/16 1,460 120 530-860 okelumne River tte Cretaceous 3,320 15 R 22-30***	1,115 3/8 1,430 121 520-840 Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	1,292 3/16 1,500 125 540-870 Mokelumne River Late Cretaceous 3,680 10 TIES 22-30*** 35-45*** 55-65***		486
3/16 1,460 120 530-860 5kelumne River tte Cretaceous 3,320 15 R 22-30***	1,115 3/8 1,430 121 520-840 Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	1,292 3/16 1,500 125 540-870 Mokelumne River Late Cretaceous 3,680 10 TIES 22-30*** 35-45*** 55-65***		480
1,460 120 530-860 okelumne River ate Certaceous 3,320 15 R 22-30***	1,430 121 520-840 Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	3/16 1,500 125 540-870 Mokelumer River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***		480
120 530-860 skelume River tte Cretaceous 3,320 15 R 22-30*** 35-45*** 55-65***	520-840 Mokelumme River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	125 S40-870 Mokelume River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***		486
120 530-860 skelume River tte Cretaceous 3,320 15 R 22-30*** 35-45*** 55-65***	520-840 Mokelumme River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	125 S40-870 Mokelume River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***	THE STATE OF THE S	480
530-860 okelumne River tte Cretaceous 3,320 15 R 22-30***	520-840 Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	540-870 Mokelumme River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***		480
okelume River te Cretaceous 3,320 15 R 22-30*** 35-45*** 55-65***	Mokelume River Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	Mokelumne River Late Cretaceous 3,680 10 THES 22-30*** 35-45*** 55-65***		486
R 22-30*** 35-65***	Late Cretaceous 3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	TIES 22-30*** 35-45*** 55-65***		480
3,320 15 R 22-30*** 35-45*** 55-65***	3,380 10 ESERVOIR ROCK PROPER 22-30*** 35-45*** 55-65***	3,680 10 THES 22-30*** 35-45*** 55-65***		480
22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***	10 TIES 22-30*** 35-45*** 55-65***		480
22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***		480
22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***		
22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***	22-30*** 35-45*** 55-65***		
35-45 *** 55-65 ***	35-45*** 55-65***	35-45*** 55-65***		
35-45 *** 55-65 ***	35-45*** 55-65***	35-45*** 55-65***		
55-65***	55-65***	55-65***		10
R	ESERVOIR FLUID PROPER			
	1	TIFS		4
		Ī		
873	.630 T T 873	920		
	1			
EN	HANCED RECOVERY PRO	JECTS		1
		873 873		873 873 920

Base of fresh water (ft.): 1,800

Remarks: Commercial gas deliveries commenced May 1978.

CONTOURS ON TOP OF MCCUNE SAND

WINTERS GAS FIELD

COUNTY: SOLANO and YOLO

DISCOVERY WELL AND DEEPEST WELL

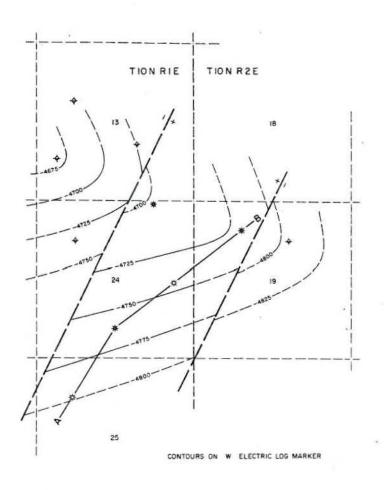
	Present operator and well designation	Original operator and well designation	Sec. 1	r. & R	8.&M	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Shell Oil Co. "McCune" 1	Same as present	29 8	IN H	MD	5,528	McCune	
Deepest well	Albert A. Rembold "Winters Unit 2" 1	Shell Oil Co. "Winters Unit 2" 1	18 8	IN 11	MD	8,493		Forbes Late Cretuceou

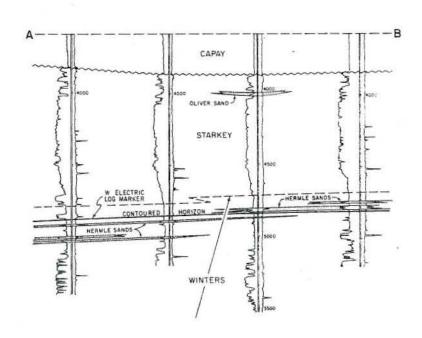
•			POOL DATA		
ITEM	CAPAY (HOOPER)	McCUNE	UNIT	UNIT OIL ZONE	FIELD OR AREA DATA
Discovery date	September 1975	February 1946	September 1946	September 1959	
Oil (bbl/day)				l war I	1
Gas (Mcf/day)	1,339	12,500	3,060 a/	8,321 b/	1
Flow pressure (psi)	1,720	1,626	1,953	1,513	
Bean size (in.)	3/16	1/2	1/4	1/2	1
nitial reservoir		P.M.	46.71	M.76	1
pressure (psi)	1,920	2,107	2,489	2,489	1
eservoir temperature (°F)	112	116	116	125	4
itial oil content (STB/acft.)					1
itial gas content (MSCF/acft.).	1,300	1,100-1,300	1,400-1,700	1	1
ormation	Capay	Winters	Winters	Winters	1
eologic age	Eocene	Late Cretaceous	Late Cretaceous	Late Cretaceous	1
verage depth (ft.)	4,615	4,850	4,920	5,585	1
verage net thickness (ft.)	3	20	5	5	
aximum productive	-		-	1 1	4
area (acres)		1	1		1,000
			1		1,000
		R	ESERVOIR ROCK PROPER	TIES	
orosity (%)	30**	28-32	30-34	-	1
oj (%)	30**	** **	227.20		1
vi (%)		35-40	28-33		1
Çi (%)	70**	60-65	67-72	-	
ermeability to air (md)		340-650			
		R	ESERVOIR FLUID PROPER	TIES	
il:			1		
Oil gravity ("API) Sulfur content (% by wt.)	.579 985	.616 850	865		.578 957
Salinity, NaCl (nnm)				1	
Salinity, NaCl (ppm) T.D.S. (ppm)			1		
Rw (ohm/m) (77°F)			1		4
		EN	HANCED RECOVERY PRO	DIECTS	
nhanced recovery projects			T		
Date started					
			2		
eak oil production (bbl)					
Yeareak gas production, net (Mcf) Year			2		2,235,158 1963

Base of fresh water (ft.): 2,400

Remarks:

Commercial gas deliveries began in January 1949. Texaco Inc. "McCune" 1 was the first commercial oil well in the Sacramento Valley and was the only oil well in the field; it was abandoned in March 1966. Cumulative oil production was 18,560 barrels with a peak production of 9,865 barrels in 1960.


a/ Commingled production from McCune and Unit zones.


5/ Texaco Inc. "McCune" 1 was completed as a gas well but began flowing 29* API gravity oil when connected to salesline. Average daily production during May 1960 was 79 bbl oil and 512 Mcf gas.

Selected References: Hunter, G. W., 1956, Winters Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 42, No. 2.

WOODLAND GAS FIELD

SERIES	FORMATION	TYPICAL ELECTRIC LOG
S EOCENE	CAPAY	
	STARKEY	4000
William Co.	winters winters	5000
THE PARTY AND	SACRAMENTO SHALE	6000
A STANSFORM OF STREET	KIONE Z	
TACEOUS		7000
UPPER CRETACEOUS		- 8000
Comment of the commen	FORBES	
	Y	- 9000 }
Constitution of the Consti		10000

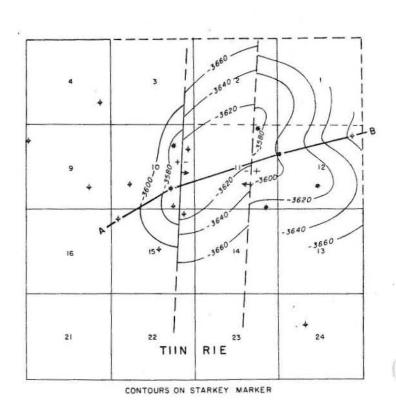
DECEMBER 1979

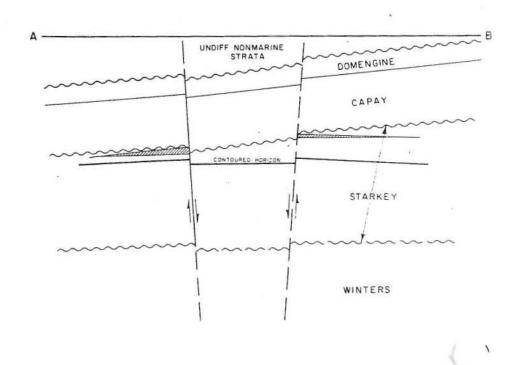
COUNTY: YOLO

WOODLAND GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B.&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	Atlantic Oil Co. "Shell-Oliver" 1	Same as present	24 10N 1E	MD	11,007	Oliver	Forbes Late Cretaceous
Deepest well	Same as above	"		"	"	-0.	


		PO	OL DATA						
ITEM	OLIVER	HERMLE			FIELD OR AREA DATA				
Discovery date	2,296 1,279 18/64 a/ 1,765 88 840-1,100 Starkey Late Cretaceous 3,988 32	0ctober 1962 8,639 1,816 30/64 a/ 2,100 98-113 930-1,200 Winters Late Cretaceous 4,430-5,130 15			700				
		RESERVOI	R ROCK PROPERTIES						
Porosity (%)	25-29 37-42 58-63	25-29 37-42 58-63	et .						
		RESERVOI	R FLUID PROPERTIES						
Oil: Oil gravity ("API) Sulfur content (% by wt.) Initial solution GOR (SCF/STB) Initial oil FVF (RB/STB). Bubble point press. (psia) Viscosity (cp) @ "F. Gas: Specific gravity (air = 1.0) Heating value (Btu/cu. ft.) Water: Salinity, NaCl (ppm) T.D.S. (ppm) Rw (ohm/m) (77"F)	.594 923	.594 923 20,544			-				
	ENHANCED RECOVERY PROJECTS								
Enhanced recovery projects Date started Date discontinued									
Peak oil production (bbl) Year Peak gas production, net (Mcf) Year					461,757 1900				


Base of fresh water (ft.): 3,100

Remarks: $\underline{a}/\ \ \text{Bean sizes were estimated.} \ \ \text{Wells tested through orifice meters.}$

Selected References: Beecroft, G. W., 1966, Moodland Gas Field: Calif. Div. of Oil and Gas, Summary of Operations -- Calif. Oil Fields, Vol. 52, No. 1.

ZONE	TYPICAL ELECTRIC LOG
UNDIFF NONMARINE STRATA	The sharp will be the sharp with the second of the sharp will be the second of the sharp will be the second of the
DOMENGINE	7
CAPAY	3500
LGAS SAND CONTOURED HORIZ	
STARKEY	4000
WINTERS	WWW.WAY
SACRAMENTO SHALE	5500
	DOMENGINE CAPAY CAPAY CONTOURED HORIZ STARKEY WINTERS

DECEMBER 1980

COUNTY: YOLO

ZAMORA GAS FIELD

DISCOVERY WELL AND DEEPEST WELL

	Present operator and well designation	Original operator and well designation	Sec. T. & R.	B,&M.	Total depth (feet)	Pool (zone)	Strata & age at total depth
Discovery well	ARCO Oil and Gas Co. "AROW-Knaggs" 1	Westates Petroleum Co. "AROW-Knaggs" 1	10 11N 1E	MD	3,805 a/	Starkey	
Deepest well	Pexco, Inc. "Knaggs-Wallace" 1	Same as present	12 11N 1E	MD	11,005		Late Cretaceous

POOL DATA FIELD OR AREA DATA STARKEY ITEM Discovery date
Initial production rates
Oil (bbl/day)
Gas (Mcf/day)
How pressure (psi)
Bean size (in.)
Initial reservoir April 1977 3,479 1,353 24/64 Initial reservoir
pressure (psi)
Reservoir temperature (*F)
Initial oil content (5TB/ac.-ft.)
Initial gas content (MSCF/ac.-ft.)
Formation
Geologic age
Average depth (ft.)
Average net thickness (ft.)
Maximum productive
area (acres) 1,474 740-920 Starkey Late Cretaceous 3,580 30 350 RESERVOIR ROCK PROPERTIES 28-32 1 40-45 t 55-60 t RESERVOIR FLUID PROPERTIES Oil: oli gravity (*API)
Sulfur content (% by wt.)
Initial solution
GOR (SCF/STB)
Initial oil FVF (RB/STB)
Bubble point press. (psia)
Viscosity (cp) @ *F as: Specific gravity (air = 1.0).. Heating value (Btu/cu. ft.).. .578 Water:
Salinity, NaCl (ppm) ...
T.D.S. (ppm)
R_w (ohm/m) (77°F) **ENHANCED RECOVERY PROJECTS** Enhanced recovery projects...

Date started

Date discontinued Peak oil production (bbl) Peak gas production, net (Mcf) Year 499,145 1979

Base of fresh water (ft.): 1,900

Remarks: Commercial gas deliveries began in September 1978.

a/ Directional well; true vertical depth is 3,770 feet.