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Abstract 

 The overarching goal of this research is to derive innovative methodologies for analyzing 
diverse sensing streams to yield actionable information that directly support post-earthquake 
response, emergency management, and disaster recovery. As a step towards this goal, the 
objective of this study is to use data collected from the California Strong Motion Instrumentation 
Program (CSMIP) to demonstrate that a particular class of system identification (SI) techniques 
– namely, subspace identification (SI) or recursive subspace identification (RSI) – is especially 
suitable for rapid, post-disaster, structural health assessment. The advantage of SI/RSI is that it is 
an input-output and data-driven method, where only structural response records (e.g., 
acceleration records) are needed for extracting dynamic properties of the structure. In this paper, 
both SI and RSI were be applied to assess CSMIP-instrumented buildings with acceleration 
records from past ground motion events. The result verified that building dynamic characteristics 
(i.e., natural frequencies and mode shapes) could be clearly identified using all the recorded data 
simultaneously. In addition, the RSI algorithm was also employed for analyzing data recorded 
from the Northridge earthquake event. Time-varying modal properties of the building were also 
examined.  

Introduction 

 Strong motion data acquired from structures during seismic events can play a vital role in 
gaining insights into the behavior of these systems if a systematic procedure is adopted in 
analyzing the acquired data. This process, known as system identification (ID), is an inverse 
problem in structural dynamics that involves the determination of mathematical models and the 
estimation of structural parameters based on measured responses under known excitations. 
Several methods, from the simple transfer function to the more sophisticated output error 
methods, have been devised [1]. In general, two different approaches have been used to assess 
the behavior of structures (i.e., most commonly bridges) from their recorded data. The first 
approach is to develop a finite element model (FEM) and to modify the FEM parameters to 
match the measured response. This approach looks very attractive but has a major pitfall, since 
the FEM parameters have to be updated by a trial-and-error process. The second approach is to 
identify the modal parameters of the system and to study the changes in the structural dynamic 
characteristics. In this study, the inverse problem (i.e., identification of the system state) will be 
used.  
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Many offline system identification algorithms that can be implemented for time-invariant 
systems with constant modal parameters were developed in the past (e.g., the Kalman filter 
technique, Eigensystem realization algorithm (ERA) [2], and autoregressive exogenous (ARX) 
model [3]). Over the past few years, various system ID algorithms have been successfully 
applied, many of which uses both input and output data [4-7]. Several well-known offline system 
ID algorithms, including canonical variable analysis (CVA), numerical algorithms for subspace 
state space system identification (N4SID), multivariable output-error state space algorithm 
(MOESP), and Instrumental Variable-subspace state space system identification (IV-4SID) [8-
10], have been developed.  

 Traditional system ID algorithms for analyzing building seismic response data and 
extracting system dynamic characteristics have predominantly been based on multi-input multi-
output (MIMO) ARX models. However, they do suffer from several disadvantages: 

• It is difficult to determine the model order of multivariate ARX model, and further 
optimization of parameters needs to be performed.

• There are too many unknown parameters to be estimated, where convergence in 
optimization may take time and require significant computational effort.

• While it is easy to estimate the frequency response function (FRF) between each pair of 
response measurements, but it is difficult to estimate the system mode shapes and natural 
frequencies.

Therefore, in this study, the subspace identification (SI) algorithm was used to analyze 
the seismic response data of two buildings, namely, the seven-story Van Nuys building and the 
13-story Sherman Oaks building. The objective was to examine the dynamic characteristics of 
these buildings when they were subjected to different earthquake excitations. Furthermore, the 
recursive subspace identification (RSI) algorithm was also applied to the data collected from 
these two buildings during the Northridge earthquake. Unlike conventional system ID, SI has the 
following advantages: 

• A good initial model can be quickly obtained with subspace methods, since the linear 
state space model is employed.

• SI provides simple parametrization for MIMO systems as well as robust noniterative 
numerical solutions.

• The reliable numerical tool-based methods, such as LQ decomposotion and singular 
value decomposition (SVD), are employed in the algorithm.

• SI provides rapid adoption in application through the use of stabilization diagrams to 
reliably estimate system dynamic characteristics.

Subspace Identification using Both Input and Output Measurements 

In this section, data-driven subspace identification (SI-DATA) was used to extract the 
system dynamic characteristics seismic response data of the structure. First, consider a discrete 
time, state-space, dynamic system with n degree-of-freedoms (DOF). The system equation can 
be represented as [9]:

𝐗k+1 = 𝐀d𝐗k + 𝐁d𝐮k + 𝐰k (1a)
𝐲k = 𝐂c𝐗k + 𝐃c𝐮k + 𝐯k  (1b)
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with 𝐀d = expm(𝐀c∆t) ∈ ℝ2n×2n ,  𝐁d = (𝐀d − 𝐈2n)𝐀c
−1𝐁c ∈ ℝ2n×m. 𝐀d is called the 

discrete-time state matrix, 𝐁d is the discrete-time input matrix, 𝐗k = 𝐗(k∆t) is the discrete-time 
state vector, ∆t is the sample time, and k ∈ ℕ. Here, 𝐰k ∈ ℝ2n×1 is the process noise due to 
disturbances or modeling error, and 𝐯k ∈ ℝl×1 is the measurement noise due to disturbances or 
malfunction of the sensing nodes. Equation 1 is also known as a discrete-time combined 
deterministic-stochastic system, because it is a combination of a deterministic system and a 
stochastic system by combining the state 𝐗k and output 𝐲k individually. For subspace 
identification, the input and output measurements should be arranged into the format of a “data 
Hankel matrix”. If the modal properties (i.e., natural frequency, damping ratio, and mode shape) 
of the structure are needed, the Multivariable Output-Error State Space algorithm (MOESP) can 
be employed to extract the column space of the extended observability matrix from the LQ 
decomposition of the Hankel matrix [10]. 

Implementation of the Stabilization Diagram for SI 

When applying SI-DATA for structural system identification, the method does not yield 
exact values for the parameters but only estimates with uncertainties. These uncertainties are 
responsible for the appearance of spurious modes. One of the important challenges is to remove 
these spurious modes. For this purpose, the stabilization diagram is used. The stabilization 
diagram has frequencies plotted in the horizontal axis and model orders plotted in the vertical 
axis. The quality of the stabilization diagram depends on the values of the input parameters of 
the algorithm and the noise ratio of the time series under analysis. In order to present a better 
visualization using stabilization diagram, certain criteria to remove the spurious modes need to 
be defined. In this study, four criteria were used and are described next. 

First, the duration of the recorded data was selected. Since the seismic response data 
collected from the structure may contain pre-event memory data as well as the coda wave, 
therefore, the criterion to select the duration of data for SI must be defined. The initial time from 
the recorded data can be determined from the concept of a P-wave picker by using the following 
equation for calculating the Arias Intensity Criterion (AIC) [12]:  

( ) log(var( [1: ])) ( 1) log(var( [ 1: ]))AIC t t a t N t a t N= + − + +  (2) 
where t is the time moving window length, and N is entire time length. In addition, var(a[1:t]) is 
the variance of the data a(t). The initial starting time can be determined from the time when the 
rate of slope of AIC values change dramatically, as is shown in Figure 1 and corresponding to 
when t is 15.0 s. Besides, the end point of the data can be determined from the plot of Arias 
Intensity when it reaches 99.5% (also shown in Figure 1 and when t is 56.5 s).  

Second, depending on the quality of the data, a low-pass filter may be applied. Here, a 
Butterworth filter with order 10 was employed to filter out the high frequency signals so as to 
enhance the quality of the stabilization diagram. Third, for each model order, the identified mode 
shapes of the structure was identified. To ensure that these were the correct mode shapes, the 
modal assurance criterion (MAC) was applied between two different model orders: 
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The value of 𝑀𝐴𝐶(𝛷∗

𝑗 ∙ 𝛷𝑖) is a user-defined value (e.g., by setting the threshold to 95%). 
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Figure 1. Plot of AIC and normalized Arias intensity to identify the strong motion duration  

Last, the modal phase collinearity (MPC) could be calculated. For each particular 
identified mode, it was necessary to check the phase collinearity among each measurement node. 
The phase vector 𝛹𝑘 of a kth mode from l measurement nodes is shown as: 

(4) 
To ensure that it is the correctly identified mode, the phase difference among each measurement 
node should be either in-phase or out-of-phase: 

(5)
Figure 2 shows an example of a stabilization diagram that compares different criteria applied. 
For all cases, a low-pass filter with a cutoff frequency of 50 Hz was implemented. In general, it 
can be observed that the consideration of both criteria (i.e., MAC of 0.95 and MPC of 0.90) 
resulted in clear modes being identified (i.e., green circles in Figure 2). Besides, with increasing 
model order, more noise modes can be observed.    

Figure 2. Example of a stabilization diagram with different criteria applied to remove spurious 
modes. 
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Figure 3. Layout of strong motion instrumentation in the 7-story Van Nuys building. 

Table 1: List of earthquake event from Van Nuys building for analysis.  

Building Seismic Response Analysis using SI-DATA 

Analysis of the 7-Story Van Nuys Building 

 The Van Nuys building was instrumented with 16 accelerometers in 1980 and by CSMIP. 
Figure 3 shows the instrument layout in the building with 16 accelerometers distributed across 
five levels. The building was repaired and strengthened with concrete shear walls after the 1994 
Northridge earthquake. Among all the seismic event recorded from the building, four seismic 
events (as shown in Table 1) were selected for the analysis conducted in this study. Prior to SI 
analysis, the time-frequency analysis on the roof response data of the building was generated. 
The modified complex Morlet wavelet with variable central frequency was used to generate the 
spectrogram [14].  Figure 4a shows the spectrograms calculated using Channels 9 and 3 of the 
Northridge earthquake data, while Figure 4b shows the spectrograms for the Encino earthquake 
data; all these channels corresponded to the roof response data. A comparison between these two 
sets of event data shows a significant change in the fundamental dominant frequency from about 
0.5 Hz to 2.0 Hz. This result is expected and is consistent with the retrofit performed after the 
Nothridge earthquake, which would increase the stiffness of the structure and hence its dominant 
frequency. 
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Figure 4. Spectrograms of Channels 3 and 9 of the Van Nuys building corresponding to two 
seismic events: (top) Northridge earthquake and (bottom) Encino earthquake 

 Before using SI to determine the dynamic characteristics of the Van Nuys building, the 
sensitivity of model order according to the stabilization diagrams was examined. Figure 5 shows 
two stabilization diagrams computed using two different model orders (i.e., based on cl values 
120 and 160) corresponding to the Northridge earthquake data. Since a larger model order would 
include more data in each column of the data Hankel matrix, more noisy modes would appear. 
However, at the same time, a larger model order also means that some extra modes could be 
identified. For the case of the Northridge earthquake dataset, one could identify the torsional 
mode at frequency of 0.697 Hz. This mode can not be observed for the case when the cl value 
was set to 120. Using the spectrogram corresponding to a cl value of 160, three fundamental 
modes from the Northridge earthquake record was constructed, as is shown in Figure 6. The first 
mode is the longitudinal mode, the second mode is a combination of longitudinal and transverse 
modes, and the third mode is the torsional mode.  

Figure 5. Comparison of stabilization diagrams using two different cl values. 
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Figure 6. The three fundamental modes of the Van Nuys building was identified using SI 
(corresponding to data from the Northridge earthquake). 

A similar approach was also employed for the other three earthquake events selected for 
this study. Figure 7 shows the stabilization diagrams from the other three small earthquake event 
datasets. It can be observed that the identified dominant frequencies are quite consistent among 
these events. Table 2 shows the comparison of the three identified fundamental frequencies of 
the building. Furthermore, the differences of these modal frequencies with respect to the result 
from Northridge earthquake is significant. As mentioned earlier, this result is expected and is due 
to the influence of retrofitting the building after the Northridge earthquake. The identified mode 
shapes from the Chino Hills earthquake is shown in Figure 8. The major difference observed 
between the Northridge and Chino Hills event is the second mode. For the small earthquake 
event, one can identify the transverse mode, while, for the larger Northridge earthquake, the 
second mode appears to be a combination of longitudinal and transverse motions.     

Figure 7. Stabilization diagrams from three earthquake events, namely, the  
Borrego Spring, Chino Hills, and Encino earthquakes  

Table 2. Identified modal frequencies of the Van Nuys building 
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Figure 8. The identified three fundamental modes using data from the Chino Hills earthquake 

Analysis of the 13-Story Sherman Oaks Building 

In 1977, the 13-story Sherman Oaks building was instrumented with 15 accelerometers 
across five different levels. This building was also retrofitted with friction dampers after the 
1994 Northridge Earthquake. Figure 9 shows the instrument layout in the building. Among all 
the recorded earthquake events from this building, five event datasets were selected for this 
study. SI analysis was performed using the same procedure as was described in the previous 
section and, specifically, for identifying the system natural frequencies.  

Figure 10 shows the comparison of the stabilization diagrams corresponding to three 
different seismic events. It can be observed that the differences among these three stabilization 
diagrams are quite significant. First, the change in modal frequencies among these three dataset 
are obvious. One reason is because both the Whittier and Northridge earthquakes induced 
significant structural response, and this could have caused the structural system to undergo 
inelastic deformation. Second, the other reason is because the building was retrofitted with 
friction dampers after the 1994 Northridge earthquake. 

Figure 9. Strong motion instrumentation layout in the 13-story Sherman Oaks building 
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Figure 10. Stabilization diagrams corresponding to three different seismic events (i.e., the 
Whittier, Northridge, and Chino Hills earthquakes). 

Table 3 summarizes the identified natural frequencies of the Sherman Oaks building 
when SI was performed using five different earthquake datasets. In addition, the identified mode 
shapes from Whittier, Northridge, and Chino Hills earthquakes are shown in Figure 11. The 
mode shapes extracted from the two large earthquake excitations are significantly different than 
the mode shapes identified from the other smaller event datasets. 

Table 3. Identified modal frequencies of the Sherman Oaks 13-story building. 



SMIP19 Seminar Proceedings 

113 
 

Figure 11. The identified modes shapes of the 13-story Sherman Oaks building using three 
earthquake event datasets (i.e., Whittier, Northridge, and Chino Hills earthquakes).  
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Figure 12. Concept of the moving window used in recursive subspace identification  

Recursive Subspace Identification (RSI) with BonaFide LQ Renewing Algorithm 

Despite the advantages of the SI-DATA algorithm, a disadvantage is that it is an offline 
identification technique and that it can only estimate the time-varying state of a structure. In 
order to track the time-varying modal properties of the system during strong earthquake 
excitations, recursive (or online) subspace identification needs to be used. The concept of 
recursive subspace identification is similar to moving time window system ID, as is illustrated in 
Figure 12. The analysis of the initial time window is the same as that of the SI-DATA algorithm 
(as was described in the previous section). When a new set of input and output data are 
appended, the RSI-BonaFide is applied. Furthermore, the RSI-BonaFide-Oblique algorithm is a 
projection matrix renewing method based on an oblique projection accomplished by LQ 
decomposition performed on the data Hankel matrix. One of the most significant points about the 
RSI-BonaFide-Oblique method is that it utilizes a fixed-length moving window technique that 
keeps the analyzed length of input and output data as a constant; therefore, there is no forgetting 
factor used in this particular algorithm [15]. 

Building Response Seismic Analysis using RSI 

Since the peak ground acceleration and the peak acceleration response recorded from the 
7-story Van Nuys building during Northridge earthquake excitation were 0.47 g and 0.59 g, 
respectively, it was believed that the building was most likely experienced inelastic response. 
Thus, the RSI-BonaFide method was used to investigate the time-varying modal parameters of 
the building. In order to simplify the analysis, instead of using all of the recorded data from the 
building, only the basement and roof acceleration records in longitudinal and transverse 
directions were used. The window length was selected and fixed as 4 s, and the duration of the 
window shift was set as 0.5 s. Figure 13 shows the identified time-varying modal frequencies in 
the longitudinal and transverse directions. It should be clarified that the result only provides the 
natural frequencies and their change with respect to time, and there it is not possible to detect the 
change of stiffness in the structure.  
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Figure 13. The identified time-varying modal frequencies of the Van Nuys building during the 
Northridge earthquake as determined using RSI-BonaFide algorithm  

According to Caicedo et al. [16], a least squares optimization was developed to estimate 
the inter-story stiffness of each DOF using the identified modal parameters, such as by using the 
modal frequencies and mode shapes. Consider an n-story shear-type structure with one 
translational DOF on each floor (i.e., 1 DOF per floor). The method was derived from the eigen-
equation of this n-DOF system (where n = 1xN). At each time instant t = k s, one can define the 
eigen-equation of the rth mode according to Equation 6: 

K𝑆𝑦𝑠𝑡𝑒𝑚Φ𝑟,(𝑡=𝑘) = 𝜔𝑟,(𝑡=𝑘)
2 M𝑆𝑦𝑠𝑡𝑒𝑚Φ𝑟,(𝑡=𝑘)  (6) 

where r = 1, 2, 3, …, s, and s is the number of the identified modes (s ≤ n) from RSI. By 
assuming that the structural model is a lumped-mass system, the mass and stiffness matrices can 
be expressed as: 

 M𝑆𝑦𝑠𝑡𝑒𝑚 = [ 

𝑚1 0 0 0
0 𝑚2 0 0
0 0 ⋱ 0
0 0 0 𝑚𝑛

 ] (7) 

K𝑆𝑦𝑠𝑡𝑒𝑚 = [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 ⋱ 0
0 ⋱ ⋱ −𝑘𝑛

0 0 −𝑘𝑛 𝑘𝑛

 ] (8)

It is assumed that the system mass matrix is known a priori. Then, the only unknown 
variables become the inter-story stiffness of each floor, namely 𝑘1, 𝑘2, … 𝑘𝑛. At each time 
instant “k”, the equation can be re-organized as shown in Equation (9). 

 [

Δ1

Δ2

⋮
Δs

]

(𝑠×𝑛)×𝑛

×  

[
 
 
 
 

 

𝑘1

𝑘2

𝑘3

 

⋮
𝑘𝑛

 
]
 
 
 
 

(𝑛×1)

= [

Λ1

Λ2

⋮
Λs

]

(𝑠×𝑛)×1

 (9)
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The identified mode shapes can then be allocated into a matrix. Δ(t=k) is allocated with the 
identified mode shapes with a dimension of (s × n) × n. The multiplication of modal frequency, 
mode shape, and floor mass also needs to form a single vector, namely Λ(t=k), with a dimension 
of (s × n) × 1. It should be mentioned that the number of identified modes is usually less than 
the number of exact modes in the structural system (i.e., s ≤ n). Nevertheless, the inter-story 
stiffness can then be estimated. In general, the result can provide a first stage safety assessment 
of the building by using the identified time-varying inter-story stiffnesses. Besides, to update the 
mass and stiffness matrices and make them compatible with both the measured eigenvalues and 
eigenvectors computed at each time instant, a model updating technique called efficient model 
correction method (EMCM), proposed by Yuen [17], can be applied.

For detecting the time-varying stiffness of the 7-story Van Nuys during an earthquake, a 
simplified lumped mass model needs to be assumed. This assumption needs to incorporate the 
distribution of the instrumented earthquake monitoring system. For simplicity, this building was 
assumed to be a 2-DOF system with mass m1 = 4M and m2 = 3M, as is shown in Figure 14. The 
identified time-varying stiffness (stiffness index) of this 2-DOF simplified model is also shown 
in Figure 14. It should be mentioned that the variation of the stiffness index with respect to time 
does not indicate the dramatic change of stiffness at every instant of time during the earthquake 
excitation. As described earlier, this is the result of an equivalent linear stiffness index (secant 
stiffness) within the preselected and designated time window. For safety assessment of the 
structure, one should first apply the same approach to assess the time-varying stiffness of the 
structure using datasets corresponding to smaller seismic events, where the structure performed 
linearly. In doing so, the dynamic characteristics of the system can be acquired in a more stable 
fashion to build up a correct nominal model (i.e., corresponding to the undamaged case). This 
approach was also applied to the 13-story Sherman Oaks building, and the result is shown in 
Figure 15.

Figure 14. The identified time-varying stiffness index from the simplified model of the 7-story 
Van Nuys building 
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Figure 15.  The identified time-varying stiffness index from the simplified model of the 13-story 
Sherman Oaks building 

Conclusions 

In this study, both subspace identification and recursive subspace identification with 
BonaFide LQ renewing algorithm (i.e., incorporating a moving window technique) were utilized 
to identify the modal parameters (namely the natural frequencies and mode shapes) of two 
buildings during strong earthquake excitations. For SI, the stabilization diagram played an 
important role for extracting the real structural modes while removing the spurious modes. For 
RSI, based on strong seismic response datasets collected from the two buildings (i.e., 7-story 
Van Nuys and 13-story Sherman Oaks buildings), one could identify their time-varying modal 
frequencies during these events. The least squares stiffness method was used to estimate the 
system stiffness matrix using simplified models of these structures. In general, the conclusion 
was that SI could provide a convenient and systematic multivariate system identification method 
for estimating the dynamic characteristics of these buildings. By combining the result from RSI 
(corresponding to when the structure was subjected to strong motion) and by developing a 
nominal model (corresponding to the undamaged case), one can potentially conduct damage 
assessment.  
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