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Abstract 

This paper presents the results of a study on the identification of earthquake input 
excitations for CSMIP-Instrumented buildings. The true earthquake input motions exciting 
buildings may not be available for various reasons. For example, when there is Soil-Structure 
Interaction (SSI) effects, the recorded signal at the foundation level, which is commonly used as 
input excitation, is a part of the building’s response. Also, the waves scattered from a vibrating 
building can alter the wave field around the building, so the so-called recorded Free-Field 
Motions (FFMs), another input motion candidate, could be polluted with these reflecting waves. 
Moreover, if there is significant Kinematic SSI, what actually a building experiences as input 
excitation is different from FFM and foundation response. These unmeasured motions are called 
Foundation Input Motions (FIMs) and have to be identified from recorded building’s responses. 
In this paper, we propose various methods to carry out this task along with their verification, 
validation and real-life applications.  

Introduction 

Consideration of input excitations is an important ingredient of seismic  design and 
assessment of building structures under earthquake hazards. Ground motions recorded on the 
ground surface—i.e., Free-Field Motions (FFMs)—have often been used as input excitations in 
seismic response analyses of structures. Such recordings are sometimes not true FFMs, in that 
they are polluted by  waves scattered from nearby structures (see, e.g., [1]). More 
problematically, even the true FFMs are inherently different from what the subject structure 
experiences due to spatial variability as well as kinematic interaction effects (see, e.g., [2]). The 
other common option in dynamic analyses is to use the motion recorded at the foundation level 
as the input excitation. However, if there is an inertial interaction between the structure and the 
surrounding soil, the signal recorded at the foundation is part of the system’s response [3], [4]. 
Such Soil-Structure Interaction (SSI) effects generally prevent the direct measurement of true 
input excitations. These true input excications are often referred to as Foundation input Motions 
(FIMs) [5]. The FIMs cannot be physically recorded unless there is a massless foundation 
without any building superstructure. Figure 1 summarizes the aforementioned issues regarding 
the usage of various types recordings as earthquake input excitations. It is worth noting that even 
in the absence of SSI, for many real-life cases, the foundation responses are either at low Signal-
to-Noise Ratio (SNR) levels or not recorded at all [6]. 
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Figure 1. Available recording during an earthquake. 

The back-calculation of FIMs from real-life data is a key capability for capturing actual 
earthquake input excitations and for validating new or existing procedures for considering SSI 
effects. The California Strong Motion Instrumentation Program (CSMIP) was established by 
California Geological Survey, in collaboration with various other agencies such as USGS and 
Caltrans in 1972 following the destructive 1971 San Fernando earthquake to obtain vital 
earthquake data for the engineering and scientific communities through a statewide network of 
strong motion instruments [7]. Through CSMIP, more than 900 stations were installed, including 
650 ground-response stations, 170 buildings, 20 dams, and 60 bridges. A recent survey (Table 1) 
by the authors indicates that, at the present time, there are ~236 buildings with available 
instrumentation layouts and at least one earthquake dataset in the Center for Engineering Strong 
Motion Data (CESMD) [8]. The ~70% of the buildings are instrumented and maintained by the 
California Geological Survey (CGS) (Figure 2a) and this building inventory features various 
structural types as shown in Figure 2b.  

Table 1. Available building data in CESMD. 
Item Description Number 

Number of total records 1643 
Number of buildings 377 

Number of earthquakes 254 
Number of earthquake sets 1588 

Number of buildings with at least one earthquake 322 
Number of buildings with at least one available earthquake 314 

Number of buildings with the available layout 272 
Number of buildings with the available layout and at least 

one recorded earthquake 243 

Number of buildings with the available layout and at least 
one available earthquake 236 

 

Figure 2. Distribution of CSMIP-
instrumented buildings 
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Identification Methods 

The response of a building structure to a base excitation can be written as a time 
convolution as 𝑥𝑥(𝑡𝑡) = 𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) ∗ ℎ(𝑡𝑡) where 𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡) and ℎ(𝑡𝑡) are FIM signal and building’s 
Impulse Response Function (IRF), respectively, and ∗ denotes time convolution. According to 
this relationship, an obvious way to recover FIM is through the deconvolution provided that 
building’s IRF is known, while this is not the case for real problems because buildings are 
complex and unknown systems. Note that even having a building’s IRF, the deconvolution 
process is a challenging task because the inverse of the IRF could (and mostly will) be an 
unstable filter which will be discussed later (see, e.g., [9]).  

In a real-world scenario, the building is itself unknown and must be identified first or 
along with the FIMs. One way is to estimate the system (i.e., building’s IRF) via numerical 
modeling. Despite the existing knowledge and tools for numerical modeling of structural 
systems, there are various sources of uncertainties (SSI, damping, non-structural, connections, 
etc.), which makes accurate modeling highly difficult even for very simple structures. Therefore, 
the building has to be identified. The simplest approach to identify building structures is through 
Operational Modal Analysis (OMA) for which large number of techniques have been developed 
in last few decades [10]–[14]. Yet, it is well accepted that the behavior of a structure during an 
earthquake would be different from its behavior under operational conditions. Also, the ambient 
data might be unavailable because the measurement system usually needs higher resolution and 
sensitivity. On the other hand, the identification of buildings using data recorded during strong 
seismic events without direct measurments of input excitations is challenging. This particular 
situation—namely, outout-only identification under strong excitations—has been a main focus of 
the authors in last decade.  

The authors have developed a series of Blind1 Modal Identification (BMID) methods for 
the aforementioned type of problems [15]–[21]. However, these methods nominally need dense 
instrumentation. Also, the level of uncertainty is not quantified because they are deterministic 
solutions. Another workaround is to use model-based solutions in which a numerical model with 
unknown parameter is assumed for the building under study. This model can be a simple 
Timoshenko beam as used by the authors [22]–[25] or a coupled beam used by Lignos and 
Miranda [6]. The problem with such solution is the potentially high level of modeling 
uncertainties that are not quantified in the mentioned studies. Recently, a series of output-only 
Bayesian Finite Element (FE) model updating methods have been proposed (see, e.g., [26]). In 
the present study, we used this method to estimate FIMs from real-life data recorded at the 
Millikan Library building [27]. While the results are promising, the computational cost is huge. 
to resolve this limiting fact, we developed a new series of solutions based on the Cross-Relation 
(CR) idea [28], [29]. The major idea behind this solution is to use response of several adjacent 
buildings that experience same excitation and extract input motion as common part. After 
presenting results of the Bayesian estimation of the Millikan Library, details of the proposed CR 
methods will be presented. A series of verification, validation, and application studies were 

                                                           
1 Output-only 
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conducted by using these new solutions which are presented in this paper. To see a summary of 
the available FIM identification solutions discussed above Figure 3 is presented. 

Figure 3. Available/developed solutions for FIM identification. 

Output-Only Bayesian Estimation 

The overall procedure of the output-only Bayesian estimation method is shown in Figure 
4 [30]. In this method, we assume a prior normal distribution for the unknown parameter vector 
𝛙𝛙 (collection of FE model’s uncertain parameters and inputs) and propagate this uncertainty 
through the FE model. Based on the Bayes’ rule, the posterior distribution is obtained by 
calculating the difference between the prediction and measurement (collected through sensors). 
This process sequentially continues in time. The details of the method are presented in Appendix 
A. 

Figure 4. The output-only Bayesian estimation. 
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The method is already verified in various publications [31]. Herein, the method is used to 
estimate parameters of the FE model of the Millikan Library (Figure 5left) as well as 
unmeasured FIMs using real-life response signals during the 2002 Yorba Linda earthquake [27]. 
Using the available structural drawings, a detailed FE model of the structural system is 
developed [21]. We used the graphic-user-interface of SAP2000 software [32] to develop the 
initial geometry of the model. The SAP2000 model was then transferred to OpenSees [33]. The 
model uses linear-elastic beam-column elements to model beams and columns, and quadrilateral 
shell elements with linear-elastic section to model shear walls and slabs. The kinematic 
interaction of precast claddings installed on the north and south faces of the building with the 
structural system is modeled using diagonal brace elements. The damping energy dissipation for 
the time history analysis is defined using mass- and stiffness-proportional Rayleigh damping. 
The Rayleigh damping parameters are treated as unknowns to be estimated. The 3D model of the 
superstructure is shown in Figure 5right. Different colors in this figure present different material 
properties.  

Figure 5. Developed the FE model of the Millikan Library structure. 

To include SSI effects, distributed linear soil springs and dashpots are added underneath 
the foundation slab of the FE model as shown in Figure 6. As seen, the building has a two-level 
foundation system consisting of a central pad and two north and south foundation strips. Six 
unknown stiffness parameters, namely 𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦1,𝑘𝑘𝑦𝑦2,𝑘𝑘𝑧𝑧1,𝑘𝑘𝑧𝑧2,𝑘𝑘𝑧𝑧3 are defined for different 
foundation regions. Likewise, six (unknown) parameters, namely 𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦1, 𝑐𝑐𝑦𝑦2, 𝑐𝑐𝑧𝑧1, 𝑐𝑐𝑧𝑧2, 𝑐𝑐𝑧𝑧3, are 
used to define the damping. 

The Bayesian estimation is carried out in two steps: In the first step, the foundation-level 
motions are used as uniform base input excitations to estimate the model parameters 
characterizing the structural model regardless of the soil subsystem. In this step, the torsional and 
rocking components of the foundation-level motion are also assumed as unknown input motions 
and estimated jointly with structural model parameters. In the second step, the identified 
structural model parameters are fixed at their mean estimates obtained from the first step, and the 
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three translational components of the FIM and parameters characterizing the soil-structure model 
and overall Rayleigh damping are estimated jointly. The second step comprises an output-only 
FE model updating.  

Figure 6. Foundation plan of the Millikan Library with six unknown subgrade stiffness (left) and damping (right) 
parameters. 

Table 2 shows the initial and final estimate of the six model parameters along with their 
final estimated coefficient of variation (COV) at the end of the first step. The small values of the 
COVs denote that the identified values are reliable.  

Table 2. Initial and final estimates of the model parameters along with the estimated coefficient of variation (COV). 

Parameter ID Description Initial  Estimated COV 

1 Elastic modulus of brace elements (𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 20 𝐺𝐺𝐺𝐺𝐺𝐺 16.7 𝐺𝐺𝐺𝐺𝐺𝐺 2.6% 

2 Effective Elastic modulus of column/wall concrete at 
basement and 1st story (𝐸𝐸𝑊𝑊&𝐶𝐶1) 17.3 𝐺𝐺𝐺𝐺𝐺𝐺 33.6 𝐺𝐺𝐺𝐺𝐺𝐺 1.0% 

3 Effective Elastic modulus of column/wall concrete at 2nd 
story to Roof (𝐸𝐸𝑊𝑊&𝐶𝐶2) 17.3 𝐺𝐺𝐺𝐺𝐺𝐺 23.9 𝐺𝐺𝐺𝐺𝐺𝐺 0.8% 

4 Mass-proportional Rayleigh damping coefficient (𝑎𝑎) 0.4 0.36 4.1% 
5 Stiffness-proportional Rayleigh damping coefficient (𝑏𝑏) 5.3 × 10−3 1.4 × 10−3 1.9% 
6 Distributed floor mass on 1st to Roof floors (𝑚𝑚) 250 𝑘𝑘𝑘𝑘/𝑚𝑚2 278.5 𝑘𝑘𝑘𝑘/𝑚𝑚2 2.0% 

In the second step, we fix above mentioned six parameters in their identified values and 
identify 12 soil subsystem’s parameters, the elastic modulus of the foundation (𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹), and 
three translational FIMs. However, the identifiability study showed that not all 12 parameters are 
identifiable by using available instrumentation layout and stiffness and damping parameters in x 
and y directions must be reduced to one [27]. Also, a new set of Rayleigh damping parameters 
are identified, as those parameters identified in the first step represent a fixed-base system. The 
identified parameters of the soil subsystem are shown in Table 3. To evaluate how well the 
updated model prediction matches the measurement records, Figure 7 compares the measured 
acceleration response time histories at the selected measurement channels with those estimated 
using the final estimates of the model parameters and FIMs. This figure shows a remarkable 
match between the estimated and measured acceleration responses. 

Finally, Figure 8 shows the time history of the posterior mean and standard deviation 
(SD) of the three components of the FIM. 
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Table 3. Initial and final estimates of the soil-structure parameters along with estimated COVs. Stiffness and 
damping parameters are in 𝐹𝐹𝑀𝑀/𝑚𝑚3 and 𝐾𝐾𝑀𝑀𝐾𝐾/𝑚𝑚3, respectively, and 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐶𝐶 is in 𝐺𝐺𝐺𝐺𝐺𝐺. 

 𝑘𝑘𝑥𝑥 𝑘𝑘𝑦𝑦1 𝑘𝑘𝑧𝑧1 𝑘𝑘𝑧𝑧2 𝑘𝑘𝑧𝑧3 𝑐𝑐𝑥𝑥 𝑐𝑐𝑦𝑦1 𝑐𝑐𝑧𝑧1 a b 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  
Initial  65 40 20 22.5 37.5 700 700 1000 0.36 1.4 × 10-3 7.5 

Estimated 158.7 73.4 139.0 93.5 111.9 685 1748 4126 0.01 1.0 × 10-3 32.5 
COV 5.4% 4.4% 1.0% 4.1% 2.9% 16.8% 3.3% 1.2% 55.4% 3.3% 3.6% 

Figure 7. Comparison of the measured predicted responses. The right-hand-side plots magnify the response time 
history between 1-7 sec. 

Figure 8. Estimated FIMs (left) and their standard deviation (right). 
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Cross-Relation Method 

The model-based method presented in the previous section works very well and provides 
us with promising results along with the estimation uncertainties. However, it needs an initial 
numerical model free from modeling uncertainty, which may not available. Also, the method 
needs relatively dense instrumentation, and more importantly it is computationally very 
demanding because each time sample of the input motions is treated as an uncertain parameter. 
The authors have recently proposed a data-driven solution ([28], [29]) for site effect 
identification which works based on the Cross-Relation (CR) idea [34]. The method can be 
adopted to solve the present output-only system identification and FIM estimation as follows. 

Assume that two adjacent buildings are excited under a similar input acceleration 𝒔𝒔. The 
response of Buildings 1 and 2 can be written as a linear convolution of this input motion and 
each building’s IRF as  

𝒙𝒙1 ≅ 𝒉𝒉1 ∗ 𝒔𝒔 (1) 
𝒙𝒙2 ≅ 𝒉𝒉2 ∗ 𝒔𝒔 (2) 

where 𝒉𝒉1 and 𝒉𝒉2 are buildings’ IRFs, respectively. Convolving both sides of Eqs. (1) and (2) by 
𝒉𝒉2 and 𝒉𝒉1, respectively, we have 

𝒙𝒙1 ∗ 𝒉𝒉2 − 𝒙𝒙2 ∗ 𝒉𝒉1 = 0 (3) 
As seen, the equation above is a system of 𝑁𝑁 equations (𝑁𝑁 is the total number of samples) 

with at most 2𝐿𝐿 unknown where 𝐿𝐿 is the length of the longer IRF. So, provided that 𝑁𝑁 ≥ 2𝐿𝐿, 
IRFs can be theoretically estimated. Once IRFs are estimated, unknown FIM can be 
backcalculated through the deconvolution.  

The CR solution is simple and practical for CSMIP instrumented buildings, as our survey 
shows that even by imposing limiting criteria like distance less than 1 km (see, e.g., [35]) and 
similarity of the soil types, there are 29 and 23 candidate sets in Southern and Northern 
California, respectively, as shown in Figure 9. 

Figure 9. Potential candidate sets for CR application in Southern (left) and Northern California (right). 
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While the CR method seems doable, there are some major challenges. The length of the 
IRFs for typical structures is not short which makes the estimation problem severely ill-
conditioned. Also, the length is not a priori known. The CR method work based on the 
assumption that systems (here buildings) are dissimilar. So, if there is any similarity between 
these two adjacent buildings cannot be identified. Specifically, systems are unidentifiable at 
common zeros. To show this, let’s assume that z-Transform [36] of IRFs can be factorized as 
𝐻𝐻1(𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧0)𝐻𝐻�1(𝑧𝑧) and 𝐻𝐻2(𝑧𝑧) = (𝑧𝑧 − 𝑧𝑧0)𝐻𝐻�2(𝑧𝑧). Then, Eq. (3) can be written as 

𝑋𝑋1(𝑧𝑧)(𝑧𝑧 − 𝑧𝑧0)𝐻𝐻�2(𝑧𝑧) − 𝑋𝑋2(𝑧𝑧) ∗ (𝑧𝑧 − 𝑧𝑧0)𝐻𝐻�1(𝑧𝑧) = 0 (4) 
Obviously, systems are not identifiable at the common zero 𝑧𝑧0. This issue is a critical 

issue when we notice that the length of IRFs is long and zeros of random polynomials cluster 
uniformly near the unit circles [37], which means lots of common zeros. In addition to these 
major problems, some minor issues like measurement noise, input excitation spatial variability, 
number of adjacent buildings, etc. must be addressed. In what follows, we propose various 
versions of the CR method whose applications depend on the complexity of the problem and the 
needed accuracy and reliability. 

CR Method using Rational Transfer functions  

Adding independent white Gaussian measurement noises 𝝂𝝂1 and 𝝂𝝂2 to Eqs. (1) and (2), 
Eq. (3) is rewritten as  

𝒙𝒙𝑖𝑖 ∗ 𝒉𝒉𝑗𝑗 − 𝒙𝒙𝑗𝑗 ∗ 𝒉𝒉𝑖𝑖 = 𝝂𝝂�𝑖𝑖𝑗𝑗  (5) 

where we used indices 𝑖𝑖 and 𝑗𝑗, respectively, instead of 1 and 2 to be able to extend the solution to 
many buildings as will be discussed later. Also, 𝝂𝝂�𝑖𝑖𝑖𝑖 = 𝒉𝒉𝑗𝑗 ∗ 𝝂𝝂𝑖𝑖 − 𝒉𝒉𝑖𝑖 ∗ 𝝂𝝂𝑗𝑗. Linear discrete-time 
convolution of Eq. (5) can be converted to multiplication by using the z-Transform as in 

𝑋𝑋𝑖𝑖(𝑧𝑧−1) 𝐻𝐻𝑗𝑗(𝑧𝑧−1) − 𝑋𝑋j(𝑧𝑧−1) 𝐻𝐻𝑖𝑖(𝑧𝑧−1) = 𝑉𝑉𝑖𝑖𝑗𝑗(𝑧𝑧−1) (6) 

In Eq. (6), 𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑗𝑗 are z-Transforms of IRFs and are referred to as Transfer Functions 
(TFs) or System Functions [38], while 𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗, and 𝑉𝑉𝑖𝑖𝑖𝑖 are the z-Transforms of 𝒙𝒙𝑖𝑖, 𝒙𝒙𝑗𝑗, and 𝝂𝝂�𝑖𝑖𝑖𝑖, 
respectively. Theoretically, the IRFs have infinite length, but they can be recast as Infinite 
Impulse Response (IIR) filters by representing their corresponding TFs in the format of the ratio 
of complex polynomials 

𝐻𝐻(𝑧𝑧−1) =
𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯+ 𝑏𝑏𝐹𝐹𝑏𝑏𝑧𝑧

−𝐹𝐹𝑏𝑏

1 + 𝐺𝐺1𝑧𝑧−1 + ⋯+ 𝐺𝐺𝐹𝐹𝑎𝑎𝑧𝑧−𝐹𝐹𝑎𝑎
 (7) 

where the numerator 𝑁𝑁(𝑧𝑧−1) = 𝑏𝑏0 + 𝑏𝑏1𝑧𝑧−1 + ⋯+ 𝑏𝑏𝑛𝑛𝑏𝑏𝑧𝑧
−𝑛𝑛𝑏𝑏 is an 𝑛𝑛𝑏𝑏-order polynomial with 

𝑛𝑛𝑏𝑏 + 1 parameters 𝑏𝑏𝑘𝑘 (𝑘𝑘 = 0, … ,𝑛𝑛𝑏𝑏) representing a Moving Average (MA) part, and the 
denominator 𝐷𝐷(𝑧𝑧−1) = 1 + 𝑎𝑎1𝑧𝑧−1 + ⋯+ 𝑎𝑎𝑛𝑛𝑎𝑎𝑧𝑧

−𝑛𝑛𝑎𝑎 is an 𝑛𝑛𝑎𝑎-order polynomial with 𝑛𝑛𝑎𝑎 
parameters 𝑎𝑎𝑘𝑘 (𝑘𝑘 = 1, … ,𝑛𝑛𝑎𝑎) representing an Autoregressive (AR) part. As seen, while the IRFs 
in their original MA form are infinitely long, their IIR representations have a finite length in both 
the numerator and the denominator. Using Eq. (7), the CR defined in Eq. (6) can be expressed as 
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𝑋𝑋𝑖𝑖  𝑀𝑀𝑗𝑗𝐷𝐷𝑖𝑖 − 𝑋𝑋𝑗𝑗  𝑀𝑀𝑖𝑖𝐷𝐷𝑗𝑗 = 𝑉𝑉𝑖𝑖𝑗𝑗 𝐷𝐷𝑖𝑖𝐷𝐷𝑗𝑗, (8) 

where we dropped (𝑧𝑧−1) for simplicity. Eq. (8) can be further restated in a simplified form as 

𝑋𝑋𝑖𝑖 𝐺𝐺𝑖𝑖𝑗𝑗 − 𝑋𝑋j 𝐺𝐺𝑗𝑗𝑖𝑖 = 𝐸𝐸𝑖𝑖,𝑗𝑗 (9) 

where 𝐺𝐺𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑗𝑗𝐷𝐷𝑖𝑖 and 𝐺𝐺𝑗𝑗𝑗𝑗 = 𝑁𝑁𝑖𝑖𝐷𝐷𝑗𝑗  are two Finite Impulse Response (FIR) filters with orders 
𝑛𝑛𝑏𝑏𝑗𝑗 + 𝑛𝑛𝑎𝑎𝑖𝑖 and 𝑛𝑛𝑎𝑎𝑗𝑗 + 𝑛𝑛𝑏𝑏𝑖𝑖, respectively, and 𝐸𝐸𝑖𝑖,𝑗𝑗 is the noise residual, which must be perfectly zero 
in an ideal scenario.  

If we now define 𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑏𝑏𝑗𝑗 + 𝑛𝑛𝑎𝑎𝑖𝑖 + 1 and 𝐿𝐿𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑎𝑎𝑗𝑗 + 𝑛𝑛𝑏𝑏𝑖𝑖 + 1, then it is trivial to show 
that 𝑋𝑋𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖, for example, would be an (𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑁𝑁 − 2)th-order polynomial in 𝑧𝑧−1. Using the z-
Transform definition, 𝑋𝑋𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 can be calculated as 

𝑋𝑋𝑖𝑖  𝐺𝐺𝑖𝑖𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥𝑖𝑖[0] 0 ⋯ 0

⋮ ⋯ ⋯ ⋮
𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗 − 2� 𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗 − 3� ⋯ 0
𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗 − 1� 𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗 − 2� ⋯ 𝑥𝑥𝑖𝑖[0]
𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗� 𝑥𝑥𝑖𝑖�𝐿𝐿𝑖𝑖𝑗𝑗 − 1� ⋯ 𝑥𝑥𝑖𝑖[1]
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑖𝑖[𝑀𝑀 − 1] 𝑥𝑥𝑖𝑖[𝑀𝑀 − 2] ⋯ 𝑥𝑥𝑖𝑖�𝑀𝑀 − 𝐿𝐿𝑖𝑖𝑗𝑗�
0 𝑥𝑥𝑖𝑖[𝑀𝑀 − 1] ⋯ 𝑥𝑥𝑖𝑖�𝑀𝑀 − 𝐿𝐿𝑖𝑖𝑗𝑗 + 1�
⋮ ⋯ ⋱ ⋮
0 ⋯ 0 𝑥𝑥𝑖𝑖[𝑀𝑀 − 1] ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎡

𝐺𝐺𝑖𝑖𝑗𝑗[0]
𝐺𝐺𝑖𝑖𝑗𝑗[1]
⋮

𝐺𝐺𝑖𝑖𝑗𝑗�𝐿𝐿𝑖𝑖𝑗𝑗 − 1�⎦
⎥
⎥
⎥
⎤
 (10) 

where 𝐺𝐺𝑖𝑖𝑖𝑖(𝑧𝑧−1) = 𝐺𝐺𝑖𝑖𝑖𝑖[0] + 𝐺𝐺𝑖𝑖𝑖𝑖[1]𝑧𝑧−1 + ⋯+ 𝐺𝐺𝑖𝑖𝑖𝑖�𝐿𝐿𝑖𝑖𝑖𝑖 − 1�𝑧𝑧−(𝐿𝐿𝑖𝑖𝑖𝑖−1). A similar matrix 
representation can be written for 𝑋𝑋𝑗𝑗  𝐺𝐺𝑗𝑗𝑗𝑗 as well. It is trivial to show that to satisfy Eq. (9), both 
𝑋𝑋𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑗𝑗 𝐺𝐺𝑗𝑗𝑗𝑗 must have the same length. So, we can discard a few terms at the beginning and 
the end of signals 𝑋𝑋𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑗𝑗  𝐺𝐺𝑗𝑗𝑗𝑗, and rewrite Eq. (9) as 

[𝐗𝐗𝑖𝑖𝑗𝑗 −𝐗𝐗𝑗𝑗𝑖𝑖] �
𝑮𝑮𝑖𝑖𝑗𝑗
𝑮𝑮𝑗𝑗𝑖𝑖

� = 𝑬𝑬𝑖𝑖,𝑗𝑗 (11) 

where 

𝐗𝐗𝑖𝑖𝑗𝑗  = �
𝑥𝑥𝑖𝑖�𝐹𝐹0

𝑖𝑖,𝑗𝑗� 𝑥𝑥𝑖𝑖�𝐹𝐹0
𝑖𝑖,𝑗𝑗 − 1� ⋯ 𝑥𝑥𝑖𝑖�𝐹𝐹0

𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑖𝑖𝑗𝑗 + 1�
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑖𝑖�𝐹𝐹0
𝑖𝑖,𝑗𝑗 + 𝑊𝑊𝑖𝑖,𝑗𝑗 − 1� 𝑥𝑥𝑖𝑖�𝐹𝐹0

𝑖𝑖,𝑗𝑗 + 𝑊𝑊𝑖𝑖,𝑗𝑗 − 2� ⋯ 𝑥𝑥𝑖𝑖�𝐹𝐹0
𝑖𝑖,𝑗𝑗 + 𝑊𝑊𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑖𝑖𝑗𝑗�

�

𝑊𝑊𝑖𝑖,𝑗𝑗×𝐿𝐿𝑖𝑖𝑗𝑗

 
(12) 

𝐗𝐗𝑗𝑗𝑖𝑖  = �
𝑥𝑥𝑗𝑗�𝐹𝐹0

𝑖𝑖,𝑗𝑗� 𝑥𝑥𝑗𝑗�𝐹𝐹0
𝑖𝑖,𝑗𝑗 − 1� ⋯ 𝑥𝑥𝑗𝑗�𝐹𝐹0

𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑗𝑗𝑖𝑖 + 1�
⋮ ⋮ ⋱ ⋮

𝑥𝑥𝑗𝑗�𝐹𝐹0
𝑖𝑖,𝑗𝑗 +𝑊𝑊𝑖𝑖,𝑗𝑗 − 1� 𝑥𝑥𝑗𝑗�𝐹𝐹0

𝑖𝑖,𝑗𝑗 + 𝑊𝑊𝑖𝑖,𝑗𝑗 − 2� ⋯ 𝑥𝑥𝑗𝑗�𝐹𝐹0
𝑖𝑖,𝑗𝑗 + 𝑊𝑊𝑖𝑖,𝑗𝑗 − 𝐿𝐿𝑗𝑗𝑖𝑖�

�

𝑊𝑊𝑖𝑖,𝑗𝑗×𝐿𝐿𝑗𝑗𝑖𝑖

 
(13)
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and 𝑮𝑮𝑖𝑖𝑖𝑖 = [𝐺𝐺𝑖𝑖𝑖𝑖[0] 𝐺𝐺𝑖𝑖𝑖𝑖[1] ⋯ 𝐺𝐺𝑖𝑖𝑖𝑖[𝐿𝐿𝑖𝑖𝑖𝑖 − 1]]𝑇𝑇 and 𝑮𝑮𝑗𝑗𝑗𝑗 = [𝐺𝐺𝑗𝑗𝑗𝑗[0] 𝐺𝐺𝑗𝑗𝑗𝑗[1] ⋯ 𝐺𝐺𝑗𝑗𝑗𝑗[𝐿𝐿𝑗𝑗𝑗𝑗 − 1]]𝑇𝑇. 
The term 𝑬𝑬𝑖𝑖,𝑗𝑗 is an (𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐿𝐿𝑗𝑗𝑗𝑗) × 1 vector containing noise errors. Start time (𝑛𝑛0

𝑖𝑖,𝑗𝑗) and time 
window (𝑊𝑊𝑖𝑖,𝑗𝑗) can be chosen any value greater than max (𝐿𝐿𝑖𝑖𝑖𝑖 , 𝐿𝐿𝑗𝑗𝑗𝑗) and less than 𝑊𝑊𝑖𝑖,𝑗𝑗 ≤ 𝑁𝑁 − 1 −
𝑛𝑛0
𝑖𝑖,𝑗𝑗, respectively. 

Such CR expressions like Eq. (11) can be written between any pair of buildings. That is, 
we have a total of 𝑛𝑛𝑝𝑝 = 𝑃𝑃(𝑃𝑃 − 1)/2 CRs that can be stated as 

𝐗𝐗 𝑮𝑮 = 𝑬𝑬 (14) 
where 

𝐗𝐗 =

⎣
⎢
⎢
⎡𝐗𝐗12 −𝐗𝐗21

𝐗𝐗13 −𝐗𝐗31
⋱

𝐗𝐗(𝑃𝑃−1)𝑃𝑃 𝐗𝐗𝑃𝑃(𝑃𝑃−1)⎦
⎥
⎥
⎤
 (15) 

𝑮𝑮 = �𝑮𝑮12𝑇𝑇,𝑮𝑮21𝑇𝑇 ,𝑮𝑮13𝑇𝑇 ,𝑮𝑮31𝑇𝑇 , … ,𝑮𝑮(𝑃𝑃−1)𝑃𝑃
𝑇𝑇,𝑮𝑮𝑃𝑃(𝑃𝑃−1)

𝑇𝑇�
𝑇𝑇

 (16) 

𝑬𝑬 = �𝑬𝑬1,2
𝑇𝑇 𝑬𝑬1,3

𝑇𝑇 … 𝑬𝑬(𝑃𝑃−1),𝑃𝑃
𝑇𝑇�
𝑇𝑇 (17) 

In Eq. (14), matrix 𝐗𝐗 is constructed by the building’s response signals available through 
measurement, while vector 𝑮𝑮 is composed of 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 coefficients of TFs of all buildings 
which are unknown and are going to be identified. Vector 𝑬𝑬 is a noise vector. For simplicity, we 
select an equal time-window length 𝑊𝑊 for all pairs, so matrix 𝐗𝐗 is an (𝑛𝑛𝑝𝑝 × 𝑊𝑊) ×
�∑ ∑ �𝐿𝐿𝑖𝑖𝑖𝑖 + 𝐿𝐿𝑗𝑗𝑗𝑗�𝑃𝑃

𝑗𝑗=𝑖𝑖+1
𝑃𝑃
𝑖𝑖=1 � and set the start time index equal to 𝑛𝑛0 = max�𝐿𝐿𝑖𝑖𝑖𝑖� for 𝑖𝑖, 𝑗𝑗 = 1:𝑃𝑃 and 

𝑖𝑖 ≠ 𝑗𝑗. 

To solve the Eq. (14) we exactly use the Bayesian estimation introduced in Appendix A 
in which the Eq. (14) plays the role of the observation equation and 𝜽𝜽 contains all unknown 𝑎𝑎𝑘𝑘 
and 𝑏𝑏𝑘𝑘 coefficients of TFs of all buildings.  

Deconvolution 

Once the buildings are identified, it may look trivial to recover input excitations through 
deconvolution. That is,  

𝑆𝑆(𝑧𝑧−1) =
𝑋𝑋𝑖𝑖(𝑧𝑧−1)
𝐻𝐻𝑖𝑖(𝑧𝑧−1)  (18) 

and then 

𝑠𝑠



�𝑆𝑆(𝑧𝑧−1) 𝑧𝑧𝐹𝐹−1𝐹𝐹𝑧𝑧 (19) 

where 𝐹𝐹 = 𝑡𝑡/∆𝑡𝑡 is discrete-time index and varies from 0 to 𝑀𝑀 − 1 with 𝑡𝑡 and ∆𝑡𝑡 denoting the 
time and sampling time interval, respectively. However, this inversion problem is only possible
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if the system 1/𝐻𝐻𝑖𝑖(𝑧𝑧−1) is stable2. To satisfy this condition, the system 𝐻𝐻𝑖𝑖(𝑧𝑧−1) must not have 
any zeros outside of the unit circle, or in other words, it must be minimum phase [38], while it is 
most probably non-minimum phase.  

A conventional way to calculate the inverse of a non-minimum phase system is through 
the Least-Squares Error (LSE). According to Eq. (1), we need to design an inverse FIR 
filter, 𝒈𝒈𝑖𝑖𝑛𝑛𝑔𝑔𝑖𝑖×1

, which satisfies 

𝒅𝒅 = 𝒉𝒉𝑖𝑖 ∗ 𝒈𝒈𝑖𝑖 (20) 
where 𝒅𝒅�𝑛𝑛ℎ𝑖𝑖+𝑛𝑛𝑔𝑔𝑖𝑖−1�×1 = [1 0 ⋯ 0]𝑇𝑇. Convolving this filter with 𝑥𝑥𝑖𝑖[𝑛𝑛] results in recovering 

input motion. The Eq.  (20) can be expressed in a matrix form as 

𝐇𝐇𝑖𝑖 𝒈𝒈𝑖𝑖 = 𝒅𝒅 (21) 
with 

𝐇𝐇𝑖𝑖�𝐹𝐹ℎ𝑖𝑖+𝐹𝐹𝑔𝑔𝑖𝑖−1�×𝐹𝐹𝑔𝑔𝑖𝑖
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ℎ𝑖𝑖[0]

ℎ𝑖𝑖[1] ℎ𝑖𝑖[0]
ℎ𝑖𝑖[1] ⋱

ℎ𝑖𝑖�𝐹𝐹ℎ𝑖𝑖 − 1� ℎ𝑖𝑖[0]
ℎ𝑖𝑖�𝐹𝐹ℎ𝑖𝑖 − 1� ℎ𝑖𝑖[1]

⋱
ℎ𝑖𝑖�𝐹𝐹ℎ𝑖𝑖 − 1�⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , (22) 

As the number of the columns of the matrix 𝐇𝐇𝑖𝑖 is less than that of the rows, the 
coefficients of the FIR filter are computed in an approximate LSE way as 𝒈𝒈𝑖𝑖 = 𝐇𝐇𝑖𝑖

†𝒅𝒅 where † is 
the Moore-Penrose pseudo-inverse operator. Therefore, it is impossible to realize the exact 
inverse of a linear FIR system using this method. Moreover, because 𝒈𝒈𝑖𝑖 is non-minimum phase 
the error energy (𝒅𝒅 − 𝐇𝐇𝑖𝑖 𝒈𝒈𝑖𝑖)𝑇𝑇(𝒅𝒅 − 𝐇𝐇𝑖𝑖 𝒈𝒈𝑖𝑖) does not converge to zero [39].  

Fortunately, as the input excitation is measured by at least another building, there is a 
possibility to exactly recover it. For example, if we can identify inverse filters 𝒈𝒈𝑖𝑖 and 𝒈𝒈𝑗𝑗 
satisfying the following equation 

𝒅𝒅 = 𝒉𝒉𝑖𝑖 ∗ 𝒈𝒈𝑖𝑖 + 𝒉𝒉𝑗𝑗 ∗ 𝒈𝒈𝑗𝑗 (23) 

we can recover common input excitation through 

𝒔𝒔 = 𝒙𝒙𝑖𝑖 ∗ 𝒈𝒈𝑖𝑖 + 𝒙𝒙𝑗𝑗 ∗ 𝒈𝒈𝑗𝑗 (24) 

To identify these inverse filters, let’s set 𝑛𝑛𝑔𝑔𝑖𝑖 = 𝑛𝑛ℎ𝑗𝑗 − 1 and 𝑛𝑛𝑔𝑔𝑗𝑗 = 𝑛𝑛ℎ𝑖𝑖 − 1. Then, we 
have 

                                                           
2 Bounded-Input Bounded-Output (BIBO) condition. 
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[𝐇𝐇𝑖𝑖 𝐇𝐇𝑗𝑗] �
𝒈𝒈𝑖𝑖
𝒈𝒈𝑗𝑗� = 𝒅𝒅 (25) 

in which matrix [𝐇𝐇𝑖𝑖 𝐇𝐇𝑗𝑗] is square and the exact solution can be recovered through matrix 
inversion [39]. However, the solution is only available if these two buildings do not share 
common zeros, which is not the case in our problem as discussed before. Herein, we propose a 
modification to the deconvolution to reduce the chance of having common zeros [40]. 

Time convolution of the Eq. (1) can be expressed in the time-frequency domain using 
Short-Time-Fourier-Transform (STFT) as follows [41] 

𝑥𝑥𝑖𝑖[𝑝𝑝,𝑘𝑘] = � � 𝐾𝐾[𝑝𝑝 − 𝑝𝑝′,𝑘𝑘′]
𝑄𝑄𝑖𝑖−1

𝑝𝑝′=0

𝑁𝑁𝑤𝑤−1

𝑘𝑘′=0

ℎ𝑖𝑖[𝑝𝑝′,𝑘𝑘,𝑘𝑘′] (26) 

where underbar represents STFT representation, 𝑁𝑁𝑤𝑤 is the number of frequencies, and 𝑄𝑄𝑖𝑖 is the 
length of IRF in STFT domain. The IRF in the STFT domain (ℎ𝑖𝑖[𝑝𝑝′,𝑘𝑘,𝑘𝑘′]) is called a cross-band 
filter. Neglecting effects of the neighbor frequencies, we can approximate response at each 
frequency using its band-to-band version (ℎ�𝑖𝑖[𝑝𝑝′,𝑘𝑘]) which is Convolutive Transfer Function 
(CTF) as 

𝑥𝑥𝑖𝑖[𝑝𝑝,𝑘𝑘] ≈ � 𝐾𝐾[𝑝𝑝 − 𝑝𝑝′,𝑘𝑘]
𝑄𝑄𝑖𝑖−1

𝑝𝑝′=0

ℎ�𝑖𝑖[𝑝𝑝′,𝑘𝑘] (27) 

which is a convolution at each frequency index of 𝑘𝑘 as 

𝒙𝒙𝑖𝑖 ≈ 𝒉𝒉�𝑖𝑖 ∗ 𝒔𝒔 (28) 

which is similar to the time convolution. So, we can follow the same approach described above 
to recover 𝒔𝒔 at each frequency and then transform the solution to the time domain through 
inverse STFT. That is, we are looking for 𝒈𝒈𝑖𝑖s filters which satisfy the following relationship 

𝒅𝒅 = �𝒉𝒉�𝑖𝑖 ∗ 𝒈𝒈𝑖𝑖

𝐹𝐹𝐵𝐵

1

 (29) 

where 𝑛𝑛𝐵𝐵 is the number of buildings. Now a similar solution introduced in Eq. (25) can be used 
to estimate inverse CTFs and consequently recover input excitation. Contrary to the time domain 
solution, the CTFs have very short length and the chance of having common zero among the 
buildings significantly reduces.  

Verification 

To verify the method, the response of four shear buildings with a various number of 
stories from 3 to 7 are generated under Elcentro ground acceleration. Figure 10 shows the 
recorded time histories and the exact Transfer Functions (green curves). We carried out the 
proposed TF-based CR method by starting at those red initial TFs. The final results are shown in 
blue and black. The blue curves show the TFs constructed by mean values of the coefficients, 
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while the black curves are the means of the TFs. As seen, the estimated TFs (black and blues 
curves) are perfectly matched to the exact TFs except very high-frequency region. Note that the 
response signals are polluted with random noises with Root-Mean-Squares (RMS) equal to 5% 
of the RMS of the noise-free signals. As the solution is obtained through a stochastic filtering 
approach, the variance of the estimated results is also shown in Figure 10 through mean ±1 
standard deviation. As seen, the estimated results are highly reliable. We then employed the 
proposed STFT deconvolution solution to recover common input motion. A comparison between 
the recovered one and the exact one is shown in Figure 11. As seen, the input motion is almost 
identical to the exact time history.  

Figure 10. Results of the verification study. 
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Figure 11. Comparison between exact and recovered input motion. 

Validation 

To validate the method, data recorded on two neighboring buildings in downtown San 
Francisco (CSMIP stations #58411 and #58412 are used (see Figure 12). Data recorded in the 
East-West direction during the recent 2014 South Napa earthquake is studied here. Figure 13 
displays a comparison between the recorded signals at the foundation levels of these two 
buildings, both of which are assumed here to be input motions. As seen, these two signals are 
quite similar and have a correlation coefficient [42] >76%, and as such, they satisfy the major 
assumption of the proposed method.  

Figure 12. Chosen buildings for the validation study. 

Figure 13. 76% similarity between recorded signals at the foundations of two buildings. 
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To carry out the identification process, we use signals recorded at the roof level—i.e., 
channel #29 for CSMIP58411, and the average of channels #11 and #12 for CSMIP58412, which 
are located at the two opposing ends of roof floor. We only use 50 seconds of the intense portion 
of the signals, because the level of vibration is too low during other times. Figure 14 shows 
again the exact TFs in green which are empirically calculated using input and output signals, the 
initial TFs in red, and the identified TFs in black and blue. As seen, the final results are quite 
matched to the exact ones with a negligible variation.  

Finally, we extracted common input excitation which is compared to the measured 
foundation responses (assumed here as exact input motions) in Figure 15. It is quite interesting 
to note that there is almost a 76% similarity between the recovered input motion and each of 
these foundation responses, showing the method works very well. 

Figure 14. Results of the validation study. 

Figure 15. Comparison between recovered input motion and recorded foundation responses. 
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Modal-Based CR Method 

The initial guess in the proposed CR method is sometimes important because the problem 
is not convex and could have various local solutions. To make the method more robust we 
replaced the Transfer Function formula with an IRF constructed using superposition of analytical 
modal IRFs as shown in the following equation 

ℎ[𝑘𝑘∆𝑡𝑡] = ∆𝑡𝑡 �
𝛽𝛽𝑚𝑚𝜑𝜑𝑟𝑟,𝑚𝑚

𝜔𝜔𝐶𝐶𝑚𝑚
𝑒𝑒−𝜉𝜉𝑚𝑚𝜔𝜔𝑛𝑛𝑚𝑚𝑘𝑘∆𝑡𝑡

𝐹𝐹𝑚𝑚

𝑚𝑚=1

��𝜔𝜔𝐶𝐶𝑚𝑚
2 − 𝜉𝜉𝑚𝑚

2𝜔𝜔𝐹𝐹𝑚𝑚
2� sin (𝜔𝜔𝐶𝐶𝑚𝑚𝑘𝑘∆𝑡𝑡)

+ 2𝜉𝜉𝑚𝑚𝜔𝜔𝐹𝐹𝑚𝑚cos (𝜔𝜔𝐶𝐶𝑚𝑚𝑘𝑘∆𝑡𝑡)� 
(30) 

where 𝜔𝜔𝑛𝑛𝑚𝑚, 𝜉𝜉𝑚𝑚, 𝛽𝛽𝑚𝑚, and 𝜑𝜑𝑟𝑟,𝑚𝑚 are m-th mode natural frequency, damping ratio, contribution 

factor, and modal deformation, respectively, and 𝜔𝜔𝑑𝑑𝑚𝑚 = 𝜔𝜔𝑛𝑛𝑚𝑚�1 − 𝜉𝜉𝑚𝑚
2. By using this closed-

form solution, we now have parameters with physical meaning. So, we can set initial point more 
accurately. More importantly, we can put constraints on the parameters. For example, we know 
that natural frequencies and damping ratios are positive. Or natural frequencies must be 
increasing values. Also, we can limit the frequency of interest according to the frequency content 
of the recorded responses. 

 Verification 

To verify the modal-based version of the CR method, we simulated the response of a 5-
story and a 3-story shear buildings whose modal properties are reported in Table 4. The 
responses ate the roof were polluted with random noises to have signals with Signal-to-Noise 
Ratio (SNR) of 40. Before carrying out the identification, signals were filtered by a low-pass 
filter with cut-off frequency of 15 Hz, as there is no energy above this frequency in the 3-story 
response.  

Table 4. Analytical modal properties. 

5-Story Building 3-Story Building 
Modes 1 2 3 4 5 1 2 3 
𝑓𝑓𝑛𝑛(𝐻𝐻𝐻𝐻) 2.22 5.12 8.09 11.33 16.27 3.17 8.88 12.83 
𝜉𝜉𝑛𝑛(%) 5.00 4.18 5.00 6.26 8.42 5.00 4.21 5.00 
𝜑𝜑𝑟𝑟𝑟𝑟𝛽𝛽𝑛𝑛 1.41 -0.54 0.15 -0.02 0.0006 1.22 -0.28 0.06 

 

To see the accuracy of the identified modal properties or actually systems, simulated 
responses are compared with the responses predicted by using exact input motion and identified 
modal properties in Figure 16. As seen, both buildings are identified perfectly. The recovered 
input motion is compared with the exact one in Figure 17 in the frequency domain. As observed, 
the recovered input motion is highly accurate. 
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Figure 16. Comparison between simulated responses with 
predicted responses using identified modal properties and 
exact input motion. 

Figure 17. Comparison between exact and 
recovered input motion in the frequency domain. 

Validation 

To validate the method, we used a new set of buildings not to be limited to a specific 
case. Figure 18 shows these two buildings with less than 500 meters distance. They are oriented 
in the same direction, so we can use our 2D modal-based CR approach. There are two nearby 
free-field stations, but one of them is no longer working. We use data recorded in the NS 
directions of these buildings at the roof level during July 5th 2019 Ridgecrest earthquake. In the 
first step, we need to specify the frequency range of interest and the probable number of modes. 
Figure 19 shows the Fourier spectra of the two signals. As seen, we may be able to recover input 
motion up to 6 Hz. In this frequency range, the CSMIP24517 building seems to have 2 modes 
while the other building could have up to 3 modes. Using two response signals, we carried out 
the estimation and Figure 20 shows a comparison between the recovered FIM in time and 
frequency domains with the recorded FFM. As seen, these two signals are very similar, which 
validates the performance of the proposed method. 

Figure 18. Buildings used for validation of the modal-based CR method. 
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Figure 19. Fourier spectra of the response of two 
buildings. 

Figure 20. Comparison between identified input motion and 
recorded FFM in (top) time and (bottom) frequency domain. 

Application 

As another example, Figure 21 shows two buildings with almost 500 meters distance. 
We use their roof response in NS direction recorded in Alumrock 2007 earthquake. Based on the 
Fourier spectra (not shown here), we consider frequencies below 10 Hz to make sure both signals 
have enough energy. Five and four modes are considered for CSMIP57355 and CSMIP57356 
buildings, respectively.  

Figure 21. Buildings used for application study of the modal-based CR method. 
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As no FFM is recorded, a comparison between identified input motion and recorded 
foundation responses is shown in Figure 22 in time and frequency domains. The correlation 
analysis shows that there is almost 80% similarity between foundation responses and this 
identified input motion. 

Figure 22. Comparison between recorded foundation responses (blue) and the identified input motion. Building 1 is 
CSMIP57355 and Building 2 is CSMIP57356. 

Model-Based CR Method 

In real-life, there is no guarantee to have adjacent buildings aligned in the same direction. 
So, the CR method should be extended to a more general 3D problem. While it is theoretically 
possible to use the TF-based or modal-based CR solutions to the 3D cases, the number of 
parameters to be estimated will be huge. In this section, a hybrid solution is proposed in which 
model-based Bayesian estimation is combined with the original CR solution to take advantage of 
benefits of each one [43]. 

Assume that two buildings are excited under similar bidirectional ground accelerations 
 𝒙̈𝒙𝑔𝑔 and  𝒚̈𝒚𝑔𝑔. Assume that the buildings remain linear-elastic, do not exhibit lateral-torsional 
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coupling, and are instrumented in their local principal directions 𝑥𝑥 and 𝑦𝑦 as shown in Figure 23. 
The recorded absolute acceleration responses of Building 1 can be written as a linear discrete 
convolution of the input motions and the building’s IRF as  

(31) 

(32) 

where 𝒉𝒉1𝑥𝑥 and 𝒉𝒉1
𝑦𝑦 are the building’s IRFs in local 𝑥𝑥 and 𝑦𝑦 directions, respectively; and 𝝂𝝂1 and 𝒘𝒘1

represent the corresponding measurement noises, which are assumed to be zero-mean, spatially 
uncorrelated Gaussian white signals.  

Figure 23. Two adjacent instrumented buildings under a bidirectional seismic excitation. 

It is straightforward to combine Eqs. (1) and (2) to come up with equations that contain 
only a unidirectional earthquake excitation as follows 

(33) 

(34) 

where 

𝒉𝒉1 = 𝒉𝒉1𝑥𝑥 ∗ 𝒉𝒉1
𝑦𝑦, (35) 

and 𝝂𝝂�1 = 𝝂𝝂1 ∗ 𝒉𝒉1
𝑦𝑦 sin𝛼𝛼, 𝒘𝒘�1 = 𝒘𝒘1 ∗ 𝒉𝒉1𝑥𝑥 cos𝛼𝛼, 𝒗𝒗�1 = 𝝂𝝂1 ∗ 𝒉𝒉1

𝑦𝑦 cos𝛼𝛼 and 𝒘𝒘�1 = −𝒘𝒘1 ∗ 𝒉𝒉1𝑥𝑥sin𝛼𝛼 are
colored noises. Similar equations can be written for the other building by replacing the subscript 
“1” with “2”  and the orientation angle 𝛼𝛼 with 𝛽𝛽  as 

(36)
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(37) 

where 𝒉𝒉2 = 𝒉𝒉2𝑥𝑥 ∗ 𝒉𝒉2
𝑦𝑦, 𝝂𝝂�2 = 𝝂𝝂2 ∗ 𝒉𝒉2

𝑦𝑦sin𝛽𝛽, 𝒘𝒘�2 = 𝒘𝒘2 ∗ 𝒉𝒉2𝑥𝑥cos𝛽𝛽, 𝒗𝒗�2 = 𝝂𝝂2 ∗ 𝒉𝒉2
𝑦𝑦cos𝛽𝛽, and 𝒘𝒘�2 =

−𝒘𝒘2 ∗ 𝒉𝒉2𝑥𝑥sin𝛽𝛽. Following the CR method, we convolve both sides of Eqs. (33)/(34) and
(36)/(37), respectively, by 𝒉𝒉2 and 𝒉𝒉1, to get

�𝒙𝒙1 ∗ 𝒉𝒉1
𝑦𝑦sin𝛼𝛼 + 𝒚𝒚1 ∗ 𝒉𝒉1𝑥𝑥 cos𝛼𝛼� ∗ 𝒉𝒉2 − �𝒙𝒙2 ∗ 𝒉𝒉2

𝑦𝑦sin𝛽𝛽 + 𝒚𝒚2 ∗ 𝒉𝒉2𝑥𝑥cos𝛽𝛽� ∗ 𝒉𝒉1 = 𝒓𝒓� ̈ ̈ ̈ ̈ (38) 

(39) 

where 

𝒓𝒓� = 𝒉𝒉2 ∗ (𝝂𝝂�1 + 𝒘𝒘�1) − 𝒉𝒉1 ∗ (𝝂𝝂�2 + 𝒘𝒘�2) (40) 
𝒓𝒓� = 𝒉𝒉2 ∗ (𝒗𝒗�1 + 𝒘𝒘�1)− 𝒉𝒉1 ∗ (𝒗𝒗�2 + 𝒘𝒘�2). (41) 

In Eqs. (40) and (41), 𝒓𝒓� and 𝒓𝒓� are the remainders that represent the difference between 
the ideal case of noiseless measurements and the realistic case of noisy measurements. We 
assume that initial numerical models of the two buildings are available, and our objective is to 
identify/update their corresponding model parameters. Based on this assumption, Eqs. (3) and 
(39) can be rewritten as

{𝒚𝒚1〈𝒙𝒙1 sin𝛼𝛼 〉 + 𝒙𝒙1〈𝒚𝒚1 cos𝛼𝛼〉} ∗ 𝒉𝒉2 − {𝒚𝒚2〈𝒙𝒙2 sin𝛽𝛽〉 + 𝒙𝒙2〈𝒚𝒚2cos𝛽𝛽〉} ∗ 𝒉𝒉1 = 𝒓𝒓�̈ ̈ ̈ ̈ (42) 
{𝒚𝒚1〈𝒙𝒙1cos𝛼𝛼 〉 + 𝒙𝒙1〈−𝒚𝒚1sin𝛼𝛼〉} ∗ 𝒉𝒉2 − {𝒚𝒚2〈𝒙𝒙2 cos𝛽𝛽〉+ 𝒙𝒙2〈𝒚𝒚2 sin𝛽𝛽〉} ∗ 𝒉𝒉1 = 𝒓𝒓� ,̈ ̈ ̈ ̈ (43) 

where, for example, 𝒚𝒚1〈𝒙̈𝒙1 sin𝛼𝛼 〉 stands for the response of Building 1 in its 𝑦𝑦 direction under 
the input excitation 𝒙̈𝒙1 sin𝛼𝛼 . The components of Eqs. (42) and (13) can be derived easily. For 
example, the first part of Eq. (42)—i.e., {𝒚𝒚1〈𝒙̈𝒙1 sin𝛼𝛼 〉 + 𝒙𝒙1〈𝒚̈𝒚1 cos𝛼𝛼〉} ∗ 𝒉𝒉2—can be calculated 
as follows: First, 𝒚𝒚1〈𝒙̈𝒙1 sin𝛼𝛼 〉 and 𝒙𝒙1〈𝒚̈𝒚1 cos𝛼𝛼〉 are estimated. Then, they are used as input 
excitation in the 𝑥𝑥-direction of Building 2. The resulting response time history is then used as 
input excitation for Building 2 in the y-direction, since 𝒉𝒉2 = 𝒉𝒉2𝑥𝑥 ∗ 𝒉𝒉2

𝑦𝑦. The resulting response
time history of Building 2 in the y-direction represents the first part of the Eq. (42).  

Eqs. (42) and (13) are used as the observation equation within the Bayesian estimation 
framework where FE models are used to carry out all the predictions and the vector 𝜽𝜽 parameters 
of the structural models. Through this hybrid solution, we avoid adding unknown input motions 
to the updating parameters which substantially reduces computational cost. Also, the Fe models 
provide the opportunity to reduce number of structural parameters to be estimated. 

Deconvolution 

Since the two buildings have been fully identified, the common ground motions,  𝒙̈𝒙𝑔𝑔 and 
 𝒚̈𝒚𝑔𝑔, can be recovered from the buildings’ responses via deconvolution. Herein, we suggest 
another deconvolution approach because we have two input motions. Let us assume a noise-free 
version of the discrete-time convolution in Eq. (31) in the matrix form as 
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𝐀𝐀𝑁𝑁×𝑁𝑁  𝒙𝒙𝑁𝑁×1 = 𝒃𝒃𝑁𝑁×1 (44) 
with 

𝒃𝒃 = [𝑥𝑥1[0] ⋯ 𝑥𝑥1[𝑀𝑀 − 1]]𝑇𝑇 ̈ ̈ (45) 
𝒙𝒙 = [𝑥𝑥𝑔𝑔[0] 𝑐𝑐𝐹𝐹𝐾𝐾 𝛼𝛼 + 𝑦𝑦𝑔𝑔[0] 𝐾𝐾𝑖𝑖𝐹𝐹 𝛼𝛼 ⋯ 𝑥𝑥𝑔𝑔[𝑀𝑀 − 1] 𝑐𝑐𝐹𝐹𝐾𝐾 𝛼𝛼 + 𝑦𝑦𝑔𝑔[𝑀𝑀 − 1] 𝐾𝐾𝑖𝑖𝐹𝐹 𝛼𝛼]𝑇𝑇 ̈ ̈ ̈ ̈ (46) 

𝐀𝐀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ℎ1𝑥𝑥[0]

ℎ1𝑥𝑥[1] ℎ1𝑥𝑥[0]
⋮ ⋱

ℎ1𝑥𝑥[𝐿𝐿1𝑥𝑥 − 1] ℎ1𝑥𝑥[𝐿𝐿1𝑥𝑥 − 2] ⋯ ℎ1𝑥𝑥[0]
0 ℎ1𝑥𝑥[𝐿𝐿1𝑥𝑥 − 1] ⋱ ⋯ ℎ1𝑥𝑥[0]
⋮ ⋱
0 ⋯ 0 ℎ1𝑥𝑥[𝐿𝐿1𝑥𝑥 − 1] ℎ1𝑥𝑥[𝐿𝐿1𝑥𝑥 − 2] ℎ1𝑥𝑥[0]⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , (47) 

wherein 𝐿𝐿1𝑥𝑥 is the effective length of the first building’s IRF in its local 𝑥𝑥-direction. The matrix 𝐀𝐀 
can be ill-conditioned, which means that the vector 𝒙𝒙 cannot be recovered by a matrix inversion 
[44]. To resolve the ill-conditioning problem of matrix 𝐀𝐀, we have to replace this matrix with its 
closest well-conditioned approximation.  

Matrix 𝐀𝐀 has a Toeplitz structure; that is, it has equal elements across the main diagonal 
and the sub-diagonals parallel to the main diagonal (our systems are causal, so their matrices are 
lower triangular). It has been shown [45] that for each Toeplitz matrix, a well-conditioned 
circulant matrix can be found that is asymptotically equivalent to the Toeplitz matrix. To recover 
the ground motions from each building’s response, we invert the asymptotically equivalent 
circulant matrix corresponding to 𝐀𝐀. By constructing another similar matrix representation—as 
Eq. (44) corresponds to Eq. (2)—, we can backcalculate the ground motion vectors 𝒙̈𝒙𝑔𝑔 and 𝒚̈𝒚𝑔𝑔 in 
the global coordinate system as follows 

(48) 

where 𝐂𝐂1,𝑥𝑥 and 𝐂𝐂1,𝑦𝑦 are the circulant matrices constructed using matrix 𝐀𝐀 for the local 𝑥𝑥 and 𝑦𝑦 
directions [45], respectively. Indeed, the ground motions can also be recovered from responses of 
the second building, which must be identical in ideal conditions (noise-free and perfect 
identification results). 

Verification 

To verify the proposed identification method, we created two three-dimensional building 
models using SAP2000 [32] as shown in Figure 24. The details of these models can be found in 
[43]. To simulate the seismic responses of the two buildings, we applied the East-West (EW) and 
the North-South (NS) ground motions recorded at the El Centro station during the 1940 Imperial 
Valley earthquake in the global X and Y directions, respectively. The roof absolute acceleration 
response time histories in local 𝑥𝑥 and 𝑦𝑦 directions of the two buildings are used for the 
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identification. Independent random noises with 0.005 𝑚𝑚2/𝑠𝑠𝑠𝑠𝑠𝑠4 variance (corresponding to 
signals with 0.7%g root mean square amplitude) is added to the simulated time histories to 
mimic in noisy measurements.  

The proposed system identification is utilized to estimate the unknown parameters, which 
consist of parameters characterizing the soil-foundation impedance functions and 
superstructure’s parameters as 

𝜽𝜽 = �𝐾𝐾𝑥𝑥1,𝐾𝐾𝑦𝑦1,𝐾𝐾𝑥𝑥𝑥𝑥1 ,𝐾𝐾𝑦𝑦𝑦𝑦1 ,𝐶𝐶𝑥𝑥1,𝐶𝐶𝑦𝑦1,𝑊𝑊𝑤𝑤
1,𝛼𝛼1,𝛽𝛽1,𝐾𝐾𝑥𝑥2,𝐾𝐾𝑦𝑦2,𝐾𝐾𝑥𝑥𝑥𝑥2 ,𝐾𝐾𝑦𝑦𝑦𝑦2 ,𝐶𝐶𝑥𝑥2,𝐶𝐶𝑦𝑦2,𝑊𝑊𝑤𝑤

2,𝛼𝛼2,𝛽𝛽2�
𝑇𝑇 (49) 

where 𝐾𝐾 and 𝐶𝐶 represent soil spring stiffness and soil dashpot viscosity, and superscripts and 
subscripts denote the building number and the direction, respectively.  𝑊𝑊𝑤𝑤

1 and 𝑊𝑊𝑤𝑤
2 are the 

equivalent widths of the infill walls in Buildings 1 and 2, respectively. Also, parameters 𝛼𝛼1, 𝛽𝛽1, 
and 𝛼𝛼2, 𝛽𝛽2 are mass- and stiffness-proportional Rayleigh damping coefficients of Buildings 1 
and 2, respectively. The “true” values of these parameters are provided in Table 5. 

Table 5. Exact values of the updating parameter candidates. 

Building No. 1 2 3 4 5 6 7 8 9 

1 
𝐾𝐾𝑥𝑥 

(GN/m) 
𝐾𝐾𝑦𝑦 

(GN/m) 
𝐾𝐾𝑥𝑥𝑥𝑥 

(GNm) 
𝐾𝐾𝑦𝑦𝑦𝑦 

(GNm) 
𝐶𝐶𝑥𝑥 

(MNs/m) 
𝐶𝐶𝑦𝑦 

(MNs/m) 
𝑊𝑊𝑤𝑤 
(m) 

𝛼𝛼 
(1/s) 

𝛽𝛽 
(1000s) 

3.33 3.44 156 283 89 89 0.5 0.90 0.27 
Building No. 10 11 12 13 14 15 16 17 18 

2 
𝐾𝐾𝑥𝑥 

(GN/m) 
𝐾𝐾𝑦𝑦 

(GN/m) 
𝐾𝐾𝑥𝑥𝑥𝑥 

(GNm) 
𝐾𝐾𝑦𝑦𝑦𝑦 

(GNm) 
𝐶𝐶𝑥𝑥 

(MNs/m) 
𝐶𝐶𝑦𝑦 

(MNs/m) 
𝑊𝑊𝑤𝑤 
(m) 

𝛼𝛼 
(1/s) 

𝛽𝛽 
(1000s) 

1.93 2.05 25 69 30 30 0.5 0.83 0.26 

Figure 24. Two adjacent buildings used for verification study.  

After carrying out an extensive identifiability study, which is another specific benefit of 
the proposed method and can be found in the original reference [43], the list of updating 
parameters was reduced to 𝜽𝜽 = [𝐾𝐾𝑥𝑥1,𝐾𝐾𝑥𝑥𝑥𝑥1 ,𝑊𝑊𝑤𝑤

1,𝛼𝛼1,𝐾𝐾𝑥𝑥2,𝐾𝐾𝑥𝑥𝑥𝑥2 ,𝑊𝑊𝑤𝑤
2,𝛼𝛼2]𝑇𝑇 and other parameters fixed at
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their true values. Table 6 shows the results of the identification along with the estimation 
Coefficient of Variation (COV). As seen, all unknown parameters, except 𝐾𝐾𝑥𝑥2 , are identified 
with small final errors and near-zero COVs. 𝐾𝐾𝑥𝑥2 is the parameter that we added to our updating 
parameters list despite the fact that it had a relatively strong dependence on 𝑊𝑊𝑤𝑤

2. As seen in 
Table 6, this dependency results in an inaccurate estimation of 𝑊𝑊𝑤𝑤

2 as well. The estimated COVs 
can be used to assess the estimation uncertainties, the higher the COV, the less reliable the 
estimation is. Table 6 shows that the COV of 𝐾𝐾𝑥𝑥2 is approximately 3 times larger than other 
parameters, which means that the identified parameter value for 𝐾𝐾𝑥𝑥2 is relatively less reliable than 
other parameters.  

Table 6. Identified mean errors and COVs through. 

ID No. 1 3 7 8 10 12 16 17 
Parameters 𝐾𝐾𝑥𝑥1 𝐾𝐾𝑥𝑥𝑥𝑥1  𝑊𝑊𝑤𝑤

1 𝛼𝛼1 𝐾𝐾𝑥𝑥2 𝐾𝐾𝑥𝑥𝑥𝑥2  𝑊𝑊𝑤𝑤
2 𝛼𝛼2 

Final Error (%) 0.96 −0.57 −0.15 3.08 23.29 −2.07 −5.25 1.49 
Final COV (%) 0.96 0.55 0.51 1.04 3.90 0.57 0.99 0.92 

To evaluate the accuracy of the identification results and the effects of estimation errors, 
the response of buildings are generated using the identified parameters and using exact ground 
motions. The responses are compared with the noise-free measured (simulated using exact 
parameter values) responses in Figure 25. As can be seen, the predicted responses match the 
exact responses. This means that the combined effects of 23% error in 𝐾𝐾𝑥𝑥2 and 5% error in 𝑊𝑊𝑤𝑤

2 do 
not significantly affect the response of Building 2 in its 𝑥𝑥-direction.  

Finally, having identified the FE models of the buildings, we recover the input ground 
motions in global directions using the deconvolution approach. The input motions backcalculated 
using each building’s recoded responses are shown in Figure 26. As seen, the recovered ground 
motions from both buildings’ responses match the exact input motions.  
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Figure 25. Comparison of the predicted and exact 
building responses. 

Figure 26. Comparison of the recovered and exact 
input motions. 

Conclusions 

Earthquake input excitation to the building structures may be unavailable in various 
conditions. Soil-Structure Interaction (SSI) effects may prevent measuring true input excitation 
through both inertial and kinematic effects. Also, input excitation may be lost due to sensor 
malfunctioning or recorded with low resolution. The present study proposed various methods to 
be able to extract input excitation from responses recorded by instrumented buildings like 
CSMIP buildings. The proposed methods range from sophisticated and computationally 
demanding model-based output-only Bayesian estimation to simple but practical data-driven 
Cross-Relation (CR) method in which needed additional information is taken from response of 
the adjacent buildings. We successfully verified and validated all these methods using simulated 
and real-life data, respectively. A hybrid method was also proposed by a combination of these 
two mentioned methods to take advantage of benefits of either method to solve more complex 
3D problems. We also developed two deconvolution techniques to fix the stability problems 
commonly observed in recovering input motions. 
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Appendix A: Output-Only Bayesian Estimation 

The response of the Finite Element (FE) model of a building at each time step to a multi-
directional earthquake excitation can be expressed as a (nonlinear) function of the model 
parameter vector, 𝜽𝜽, and the time history of the base input motions, 𝒖̈𝒖1:𝑖𝑖

𝑔𝑔 , i.e.,   

𝒚𝒚�𝑖𝑖 = ℎ𝑖𝑖�𝜽𝜽,𝒖𝒖1:𝑖𝑖
𝑔𝑔 �, ̈ (A1) 

where ℎ𝑖𝑖(. ) is the nonlinear response function of the FE model at time step 𝑖𝑖, encapsulating all 
the dynamics of the model from time step  1 to 𝑖𝑖. The measured response vector of the structure, 
𝒚𝒚𝑖𝑖, is related to the FE predicted response, 𝒚𝒚�𝑖𝑖, as 

𝒗𝒗𝑖𝑖�𝜽𝜽,𝒖𝒖1:𝑖𝑖
𝑔𝑔 � = 𝒚𝒚𝑖𝑖 − 𝒚𝒚�𝑖𝑖�𝜽𝜽,𝒖𝒖1:𝑖𝑖

𝑔𝑔 �, ̈ ̈ (A2) 

in which 𝒗𝒗𝑖𝑖 ∈ R𝑛𝑛𝒚𝒚×1  is the simulation error vector and accounts for the misfit between the 
measured and FE predicted response of the structure. The simulation error is ideally modeled as 
a zero-mean Gaussian white noise vector (i.e., 𝒗𝒗𝑖𝑖~𝑁𝑁(𝟎𝟎,𝐑𝐑)) by neglecting the effects of 
modeling error [46]. The objective of the estimation problem is to find the estimates of the 

unknown parameter vector, i.e., 𝝍𝝍𝑖𝑖 = �𝜽𝜽𝑇𝑇 , 𝒖̈𝒖1:𝑖𝑖
𝑔𝑔 𝑇𝑇�

𝑇𝑇
, for which the discrepancies between the 

measured and FE predicted responses are minimized in a probabilistic sense. Since the 
estimation problem is highly nonlinear, a sequential estimation approach is used in this study to 
improve estimation efficiency. In this approach, the time domain is divided into successive 
overlapping time windows, referred to as the estimation windows. The estimation problem is 
solved at each estimation window to estimate the unknown parameter vector. Assume that the 
𝑚𝑚-th estimation window spans from time step 𝑡𝑡1𝑚𝑚 to time step 𝑡𝑡2𝑚𝑚. Therefore, the unknown 

parameter vector at this estimation window is defined as 𝝍𝝍𝑚𝑚 = �𝜽𝜽𝑇𝑇 , 𝒖̈𝒖𝑡𝑡1𝑚𝑚:𝑡𝑡2𝑚𝑚
𝑔𝑔,𝑚𝑚 𝑇𝑇�

𝑇𝑇
, where 𝝍𝝍𝑚𝑚 ∈

R�𝑛𝑛𝜽𝜽+𝑡𝑡𝑙𝑙×𝑛𝑛𝒖̈𝒖𝑔𝑔�×1 , in which 𝑡𝑡𝑙𝑙 = 𝑡𝑡2𝑚𝑚 − 𝑡𝑡1𝑚𝑚 is the estimation window length, and 𝑛𝑛𝒖̈𝒖𝑔𝑔  is the number 
of unknown components of the base input motions. The unknown parameter vector, 𝝍𝝍𝑚𝑚,  is 
estimated using a parameter-only Kalman filtering method. To this end, the unknown parameter 
vector is modeled as a random vector, the evolution of which is characterized by a Gaussian 
Markov process – also known as a random walk. Then, a state-space model is set up, in which 
the state equation governs the evolution of the random parameter vector and the measurement 
equation corresponds to the discrepancies between the measured and FE predicted structural 
responses [47], i.e., 

𝝍𝝍𝑚𝑚,𝑘𝑘+1 = 𝝍𝝍𝑚𝑚,𝑘𝑘 + 𝜸𝜸𝑚𝑚,𝑘𝑘 , (A3) 

𝒚𝒚𝑡𝑡1𝑚𝑚:𝑡𝑡2𝑚𝑚 = 𝒚𝒚�𝑡𝑡1𝑚𝑚:𝑡𝑡2𝑚𝑚,𝑘𝑘+1�𝝍𝝍𝑚𝑚,𝑘𝑘+1� + 𝒗𝒗𝑡𝑡1𝑚𝑚:𝑡𝑡2𝑚𝑚,𝑘𝑘+1, (A4) 

in which 𝜸𝜸𝑚𝑚,𝑘𝑘~𝑁𝑁(𝟎𝟎,𝐐𝐐), 𝒗𝒗𝑡𝑡1𝑚𝑚:𝑡𝑡2𝑚𝑚,𝑘𝑘+1~𝑁𝑁(𝟎𝟎,𝐑𝐑�), where 𝐑𝐑� ∈ R�𝑡𝑡𝑙𝑙×𝑛𝑛𝒚𝒚�×�𝑡𝑡𝑙𝑙×𝑛𝑛𝒚𝒚� is a block diagonal 
matrix, whose block diagonals are the simulation error covariance matrix 𝐑𝐑. In Eqs. (A3) and 
(A4), 𝑘𝑘 denotes the iteration number. As can be observed, the estimation process at each 
estimation window is iterative, i.e., the mean vector and covariance matrix of the unknown 
parameter vector is iteratively updated based on the discrepancies between the time histories of 
the measured and estimated responses.  
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An Unscented Kalman Filtering (UKF) method is used to update the unknown parameter 
vector at each iteration. In this method, the nonlinear FE model is evaluated separately at a set of 
deterministically selected realizations of the unknown parameter vector, which are referred to as 
the sigma points (SPs) denoted by 𝝑𝝑𝑗𝑗. The sigma points are selected around the prior mean 
estimate 𝝍𝝍�−. In this study, a scaled Unscented Transformation (UT) based on 2𝑛𝑛𝝍𝝍 + 1 sigma 
points (i.e., 𝑗𝑗 = 1,2, … ,2𝑛𝑛𝝍𝝍 + 1) is used, where 𝑛𝑛𝝍𝝍 denotes the size of the extended parameter 
vector. The mean and covariance matrix of the FE predicted structural responses, and the cross-
covariance matrix of 𝝍𝝍 and 𝒚𝒚 are respectively computed using a weighted sampling method as  

𝒚𝒚� = � 𝑊𝑊𝑚𝑚
𝑗𝑗

2𝐹𝐹𝝍𝝍+1

𝑗𝑗=1

𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗�, (A5) 

𝐏𝐏�𝒚𝒚𝒚𝒚 = � 𝑊𝑊𝑒𝑒
𝑗𝑗

2𝐹𝐹𝝍𝝍+1

𝑗𝑗=1

�𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗� − 𝒚𝒚���𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗� − 𝒚𝒚��𝑇𝑇 + 𝐑𝐑, (A6) 

𝐏𝐏�𝝍𝝍𝒚𝒚 = � 𝑊𝑊𝑒𝑒
𝑗𝑗

2𝐹𝐹𝝍𝝍+1

𝑗𝑗=1

�𝝑𝝑𝑗𝑗 − 𝝍𝝍�−��𝒚𝒚�𝑖𝑖�𝝑𝝑𝑗𝑗� − 𝒚𝒚��𝑇𝑇 , (A7) 

where 𝑊𝑊𝑚𝑚
𝑗𝑗  and 𝑊𝑊𝑒𝑒

𝑗𝑗 denote weighting coefficients [48]. Now, the UKF prediction-correction 
procedure can be employed to estimate the posterior parameter mean vector 𝝍𝝍�+𝑚𝑚,𝑘𝑘+1 and 
covariance matrix 𝐏𝐏�𝝍𝝍,𝑚𝑚,𝑘𝑘+1

+  at each iteration. The identification algorithm is summarized in
Table A1. 

Table A1. Identification algorithm for joint estimation of the model parameters and the FIM time history. 
1. Set the estimation window length 𝑡𝑡𝐶𝐶, and the start and end points of each estimation window.
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as

3. Define the process noise covariance matrix 𝐐𝐐 and the simulation error covariance matrix 𝐑𝐑. Set up matrix 𝐑𝐑�.
4. For the 𝑚𝑚-th estimation window:

4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown 
parameter vector from the last estimation window (i.e., 𝝍𝝍�+𝑚𝑚−1, and 𝐏𝐏𝝍𝝍,𝑚𝑚−1

+ ). Set up 𝝍𝝍�+𝑚𝑚,0 and 𝐏𝐏𝝍𝝍,𝑚𝑚,0
+  

based on +
−1ˆ mψ  and 𝐏𝐏𝝍𝝍,𝑚𝑚−1

+ . 
4.2. Iterate (𝑘𝑘 = 1, 2, …): 

a. Set 𝝍𝝍�−𝑚𝑚,k+1 = 𝝍𝝍�+𝑚𝑚,k, 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘+1
− = 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘

+ + 𝐐𝐐. 
b. Generate sigma points. Run the FE model for (2𝐹𝐹𝝍𝝍 + 1) sigma points. Derive  𝒚𝒚�, 𝐏𝐏�𝒚𝒚𝒚𝒚, and 𝐏𝐏�𝝍𝝍𝒚𝒚 
using Eqs. (A5)-(A7).
c. Compute the Kalman gain matrix: 𝐊𝐊 = 𝐏𝐏�𝝍𝝍𝒚𝒚�𝐏𝐏�𝒚𝒚𝒚𝒚�

−1
.

d. Find the corrected estimates of the mean vector and covariance matrix of the unknown parameter
vector:

𝝍𝝍�+𝑚𝑚,k+1 = 𝝍𝝍�−𝑚𝑚,k+1 + 𝐊𝐊 �𝒚𝒚𝑡𝑡1𝑚𝑚:𝑡𝑡2
𝑚𝑚 − 𝒚𝒚��, 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘+1

+ = 𝐏𝐏𝝍𝝍,𝑚𝑚,𝑘𝑘+1
− − 𝐊𝐊�𝐏𝐏�𝒚𝒚𝒚𝒚 + 𝐑𝐑��𝐊𝐊𝑇𝑇.

e. Check for convergence:   if �𝝍𝝍�+𝑚𝑚,𝑘𝑘+1 − 𝝍𝝍�+𝑚𝑚,𝑘𝑘� < 0.02 × 𝝍𝝍�+𝑚𝑚,𝑘𝑘−1 or 𝑘𝑘 + 1 > 10, then move to
the next estimation window (𝑚𝑚 =  𝑚𝑚 +  1, go to step 4); otherwise, iterate again at the current 
estimation window (𝑘𝑘 =  𝑘𝑘 +  1, go to step 4.2).




