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Abstract

This paper presents the results of a study on the identification of earthquake input
excitations for CSMIP-Instrumented buildings. The true earthquake input motions exciting
buildings may not be available for various reasons. For example, when there is Soil-Structure
Interaction (SSI) effects, the recorded signal at the foundation level, which is commonly used as
input excitation, is a part of the building’s response. Also, the waves scattered from a vibrating
building can alter the wave field around the building, so the so-called recorded Free-Field
Motions (FFMs), another input motion candidate, could be polluted with these reflecting waves.
Moreover, if there is significant Kinematic SSI, what actually a building experiences as input
excitation is different from FFM and foundation response. These unmeasured motions are called
Foundation Input Motions (FIMs) and have to be identified from recorded building’s responses.
In this paper, we propose various methods to carry out this task along with their verification,
validation and real-life applications.

Introduction

Consideration of input excitations is an important ingredient of seismic design and
assessment of building structures under earthquake hazards. Ground motions recorded on the
ground surface—i.e., Free-Field Motions (FFMs)—have often been used as input excitations in
seismic response analyses of structures. Such recordings are sometimes not true FFMs, in that
they are polluted by waves scattered from nearby structures (see, e.g., [1]). More
problematically, even the true FFMs are inherently different from what the subject structure
experiences due to spatial variability as well as kinematic interaction effects (see, e.g., [2]). The
other common option in dynamic analyses is to use the motion recorded at the foundation level
as the input excitation. However, if there is an inertial interaction between the structure and the
surrounding soil, the signal recorded at the foundation is part of the system’s response [3], [4].
Such Soil-Structure Interaction (SSI) effects generally prevent the direct measurement of true
input excitations. These true input excications are often referred to as Foundation input Motions
(FIMs) [5]. The FIMs cannot be physically recorded unless there is a massless foundation
without any building superstructure. Figure 1 summarizes the aforementioned issues regarding
the usage of various types recordings as earthquake input excitations. It is worth noting that even
in the absence of SSI, for many real-life cases, the foundation responses are either at low Signal-
to-Noise Ratio (SNR) levels or not recorded at all [6].
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Figure 1. Available recording during an earthquake.

The back-calculation of FIMs from real-life data is a key capability for capturing actual
earthquake input excitations and for validating new or existing procedures for considering SSI
effects. The California Strong Motion Instrumentation Program (CSMIP) was established by
California Geological Survey, in collaboration with various other agencies such as USGS and
Caltrans in 1972 following the destructive 1971 San Fernando earthquake to obtain vital
earthquake data for the engineering and scientific communities through a statewide network of
strong motion instruments [7]. Through CSMIP, more than 900 stations were installed, including
650 ground-response stations, 170 buildings, 20 dams, and 60 bridges. A recent survey (Table 1)
by the authors indicates that, at the present time, there are ~236 buildings with available
instrumentation layouts and at least one earthquake dataset in the Center for Engineering Strong
Motion Data (CESMD) [8]. The ~70% of the buildings are instrumented and maintained by the
California Geological Survey (CGS) (Figure 2a) and this building inventory features various
structural types as shown in Figure 2b.

i ces Mluscs Ml cecs Table 1. Available building data in CESMD.
Item Description Number

Number of total records 1643

Number of buildings 377

Number of earthquakes 254

Number of earthquake sets 1588

s Number of buildings with at least one earthquake 322

=:;::E‘e Number of buildings with at least one available earthquake 314

[ Jmasony Number of buildings with the available layout 272

[ isotates Number of buildings with the available layout and at least 243
Il urioown one recorded earthquake

Figure 2. Distribution of CSMIP- Number of buildings wit.h the available layout and at least 136
instrumented buildings one available earthquake
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Identification Methods

The response of a building structure to a base excitation can be written as a time
convolution as x(t) = FIM(t) * h(t) where FIM(t) and h(t) are FIM signal and building’s
Impulse Response Function (IRF), respectively, and * denotes time convolution. According to
this relationship, an obvious way to recover FIM is through the deconvolution provided that
building’s IRF is known, while this is not the case for real problems because buildings are
complex and unknown systems. Note that even having a building’s IRF, the deconvolution
process is a challenging task because the inverse of the IRF could (and mostly will) be an
unstable filter which will be discussed later (see, e.g., [9]).

In a real-world scenario, the building is itself unknown and must be identified first or
along with the FIMs. One way is to estimate the system (i.e., building’s IRF) via numerical
modeling. Despite the existing knowledge and tools for numerical modeling of structural
systems, there are various sources of uncertainties (SSI, damping, non-structural, connections,
etc.), which makes accurate modeling highly difficult even for very simple structures. Therefore,
the building has to be identified. The simplest approach to identify building structures is through
Operational Modal Analysis (OMA) for which large number of techniques have been developed
in last few decades [10]-[14]. Yet, it is well accepted that the behavior of a structure during an
earthquake would be different from its behavior under operational conditions. Also, the ambient
data might be unavailable because the measurement system usually needs higher resolution and
sensitivity. On the other hand, the identification of buildings using data recorded during strong
seismic events without direct measurments of input excitations is challenging. This particular
situation—namely, outout-only identification under strong excitations—has been a main focus of
the authors in last decade.

The authors have developed a series of Blind' Modal Identification (BMID) methods for
the aforementioned type of problems [15]-[21]. However, these methods nominally need dense
instrumentation. Also, the level of uncertainty is not quantified because they are deterministic
solutions. Another workaround is to use model-based solutions in which a numerical model with
unknown parameter is assumed for the building under study. This model can be a simple
Timoshenko beam as used by the authors [22]-[25] or a coupled beam used by Lignos and
Miranda [6]. The problem with such solution is the potentially high level of modeling
uncertainties that are not quantified in the mentioned studies. Recently, a series of output-only
Bayesian Finite Element (FE) model updating methods have been proposed (see, e.g., [26]). In
the present study, we used this method to estimate FIMs from real-life data recorded at the
Millikan Library building [27]. While the results are promising, the computational cost is huge.
to resolve this limiting fact, we developed a new series of solutions based on the Cross-Relation
(CR) idea [28], [29]. The major idea behind this solution is to use response of several adjacent
buildings that experience same excitation and extract input motion as common part. After
presenting results of the Bayesian estimation of the Millikan Library, details of the proposed CR
methods will be presented. A series of verification, validation, and application studies were

! Output-only
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conducted by using these new solutions which are presented in this paper. To see a summary of
the available FIM identification solutions discussed above Figure 3 is presented.

Known system

x(t) = FIM(t) = h(t) FIM(t) = h(£)™* = x(t)

Unknown system

Estimation of System Identification of System
Amblent Data

HodetBased
“ Cross-Relation FE Model Simple Model

Modal-Based CR

Figure 3. Available/developed solutions for FIM identification.

Hybrid Solution

Output-Only Bayesian Estimation

The overall procedure of the output-only Bayesian estimation method is shown in Figure
4 [30]. In this method, we assume a prior normal distribution for the unknown parameter vector
P (collection of FE model’s uncertain parameters and inputs) and propagate this uncertainty
through the FE model. Based on the Bayes’ rule, the posterior distribution is obtained by
calculating the difference between the prediction and measurement (collected through sensors).
This process sequentially continues in time. The details of the method are presented in Appendix
A.

Measurement

Nonlinear FE Model

Prior Information

A2 p(¥) ) Simulation Error Model
Py Y -Y(¥)~N(0,R)

Bayesian Updating
y ¥
P ]y)- \ )p
(¥ |y

Figure 4. The output-only Bayesian estimation.
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The method is already verified in various publications [31]. Herein, the method is used to
estimate parameters of the FE model of the Millikan Library (Figure 5left) as well as
unmeasured FIMs using real-life response signals during the 2002 Yorba Linda earthquake [27].
Using the available structural drawings, a detailed FE model of the structural system is
developed [21]. We used the graphic-user-interface of SAP2000 software [32] to develop the
initial geometry of the model. The SAP2000 model was then transferred to OpenSees [33]. The
model uses linear-elastic beam-column elements to model beams and columns, and quadrilateral
shell elements with linear-elastic section to model shear walls and slabs. The kinematic
interaction of precast claddings installed on the north and south faces of the building with the
structural system is modeled using diagonal brace elements. The damping energy dissipation for
the time history analysis is defined using mass- and stiffness-proportional Rayleigh damping.
The Rayleigh damping parameters are treated as unknowns to be estimated. The 3D model of the
superstructure is shown in Figure Sright. Different colors in this figure present different material
properties.

Roof
Story 9
Story 8
Story 7

Story 6
Story § %:V
Story 4 A&A

- Floor 4
N\l S
Story 3
2 A A Floor 3

ﬁ -ﬁ Floor 2
i

Floor 6

Floor 5

Figure 5. Developed the FE model of the Millikan Library structure.

To include SSI effects, distributed linear soil springs and dashpots are added underneath
the foundation slab of the FE model as shown in Figure 6. As seen, the building has a two-level
foundation system consisting of a central pad and two north and south foundation strips. Six
unknown stiffness parameters, namely ky, ky1, ky;, k1, K52, k3 are defined for different
foundation regions. Likewise, six (unknown) parameters, namely Cy, Cyq, Cy2, Cz1, Cz2, Cz3, 1€
used to define the damping.

The Bayesian estimation is carried out in two steps: In the first step, the foundation-level
motions are used as uniform base input excitations to estimate the model parameters
characterizing the structural model regardless of the soil subsystem. In this step, the torsional and
rocking components of the foundation-level motion are also assumed as unknown input motions
and estimated jointly with structural model parameters. In the second step, the identified
structural model parameters are fixed at their mean estimates obtained from the first step, and the
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three translational components of the FIM and parameters characterizing the soil-structure model
and overall Rayleigh damping are estimated jointly. The second step comprises an output-only

FE model updating.

Figure 6. Foundation plan of the Millikan Library with six unknown subgrade stiffness (left) and damping (right)

parameters.

Table 2 shows the initial and final estimate of the six model parameters along with their
final estimated coefficient of variation (COV) at the end of the first step. The small values of the

COVs denote that the identified values are reliable.

Table 2. Initial and final estimates of the model parameters along with the estimated coefficient of variation (COV).

Parameter ID Description Initial Estimated Cov
1 Elastic modulus of brace elements (E¢;q4) 20 GPa 16.7 GPa 2.6%
) Effective Elastic modulus of column/wall concrete at 17.3 GPa 33.6 GPa 1.0%
basement and 1st story (Eygc1)
3 Effective Elastic modulus of column/wall concrete at 2nd 17.3 GPa 23.9 GPa 0.8%
story to Roof (Eygc2)
4 Mass-proportional Rayleigh damping coefficient (a) 0.4 0.36 4.1%
5 Stiffness-proportional Rayleigh damping coefficient (b) | 5.3 x 1073 1.4 x 1073 1.9%
6 Distributed floor mass on 1st to Roof floors (m) 250 kg/m? | 2785kg/m? | 2.0%

In the second step, we fix above mentioned six parameters in their identified values and

identify 12 soil subsystem’s parameters, the elastic modulus of the foundation (Eryynq), and

three translational FIMs. However, the identifiability study showed that not all 12 parameters are
identifiable by using available instrumentation layout and stiffness and damping parameters in x
and y directions must be reduced to one [27]. Also, a new set of Rayleigh damping parameters
are identified, as those parameters identified in the first step represent a fixed-base system. The

identified parameters of the soil subsystem are shown in Table 3. To evaluate how well the

updated model prediction matches the measurement records, Figure 7 compares the measured
acceleration response time histories at the selected measurement channels with those estimated

using the final estimates of the model parameters and FIMs. This figure shows a remarkable

match between the estimated and measured acceleration responses.

Finally, Figure 8 shows the time history of the posterior mean and standard deviation

(SD) of the three components of the FIM.
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Table 3. Initial and final estimates of the soil-structure parameters along with estimated COVs. Stiffness and
damping parameters are in MN /m3 and KNs/m3, respectively, and Egyynq is in GPa.

kx kyl kzl kzz sz Cx Cy1 Cz1 a b EFound
Initial 65 40 20 225 375 700 700 1000 036 1.4x103 7.5
Estimated | 158.7 734 139.0 935 111.9 685 1748 4126  0.01 1.0 x 103 325
COV 54% 44% 1.0% 4.1% 29% 168% 33% 12% 55.4% 3.3% 3.6%
5 x10°° Ch #16 -4th Floor, West -E 5 x10°° Ch #16 -4th Floor, West -E
Measured
Estimated
s s UL Al AM!\ i I\M il
E £ Vvvwvv uvvvvvwv
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Time (sec) Time (sec)
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Figure 7. Comparison of the measured predicted responses. The right-hand-side plots magnify the response time
history between 1-7 sec.
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Figure 8. Estimated FIMs (left) and their standard deviation (right).
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Cross-Relation Method

The model-based method presented in the previous section works very well and provides
us with promising results along with the estimation uncertainties. However, it needs an initial
numerical model free from modeling uncertainty, which may not available. Also, the method
needs relatively dense instrumentation, and more importantly it is computationally very
demanding because each time sample of the input motions is treated as an uncertain parameter.
The authors have recently proposed a data-driven solution ([28], [29]) for site effect
identification which works based on the Cross-Relation (CR) idea [34]. The method can be
adopted to solve the present output-only system identification and FIM estimation as follows.

Assume that two adjacent buildings are excited under a similar input acceleration s. The
response of Buildings 1 and 2 can be written as a linear convolution of this input motion and
each building’s IRF as

x1=hy*s

(1)

(2)
where h; and h, are buildings’ IRFs, respectively. Convolving both sides of Egs. (1) and (2) by
h, and h, respectively, we have

Xy = h,*s

xl*hz_xz*h1=0 (3)

As seen, the equation above is a system of N equations (N is the total number of samples)
with at most 2L unknown where L is the length of the longer IRF. So, provided that N > 2L,
IRFs can be theoretically estimated. Once IRFs are estimated, unknown FIM can be
backcalculated through the deconvolution.

The CR solution is simple and practical for CSMIP instrumented buildings, as our survey
shows that even by imposing limiting criteria like distance less than 1 km (see, e.g., [35]) and
similarity of the soil types, there are 29 and 23 candidate sets in Southern and Northern
California, respectively, as shown in Figure 9.

Figure 9. Potential candidate sets for CR application in Southern (left) and Northern California (right).
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While the CR method seems doable, there are some major challenges. The length of the
IRFs for typical structures is not short which makes the estimation problem severely ill-
conditioned. Also, the length is not a priori known. The CR method work based on the
assumption that systems (here buildings) are dissimilar. So, if there is any similarity between
these two adjacent buildings cannot be identified. Specifically, systems are unidentifiable at
common zeros. To show this, let’s assume that z-Transform [36] of IRFs can be factorized as
H,(z) = (z — z9)H,(2) and H,(z) = (z — zy)H,(2). Then, Eq. (3) can be written as

X1(2)(z — 20)Hz(2) — X3(2) * (z — z)H1(2) = 0 &)

Obviously, systems are not identifiable at the common zero z,. This issue is a critical
issue when we notice that the length of IRFs is long and zeros of random polynomials cluster
uniformly near the unit circles [37], which means lots of common zeros. In addition to these
major problems, some minor issues like measurement noise, input excitation spatial variability,
number of adjacent buildings, etc. must be addressed. In what follows, we propose various
versions of the CR method whose applications depend on the complexity of the problem and the
needed accuracy and reliability.

CR Method using Rational Transfer functions

Adding independent white Gaussian measurement noises v, and v, to Egs. (1) and (2),
Eq. (3) is rewritten as

xi*hj—xj*hi=f/ij

)
where we used indices i and j, respectively, instead of 1 and 2 to be able to extend the solution to
many buildings as will be discussed later. Also, ¥;; = h; * v; — h; * v;. Linear discrete-time
convolution of Eq. (5) can be converted to multiplication by using the z-Transform as in
Xz ) Hi(z™h) — X(z™) Hi(z™) = Vi(z™) ©6)
In Eq. (6), H; and H; are z-Transforms of IRFs and are referred to as Transfer Functions
(TFs) or System Functions [38], while X;, X;, and V;; are the z-Transforms of x;, x;, and v},

respectively. Theoretically, the IRFs have infinite length, but they can be recast as Infinite
Impulse Response (IIR) filters by representing their corresponding TFs in the format of the ratio
of complex polynomials

bg + byz™' + -+ by, z7™
1+az7t+-+a,z " (7)

H(z ™) =

where the numerator N(z™1) = by + byz™t + --- + by, z™™ is an n;,-order polynomial with

ny + 1 parameters by, (k = 0, ..., n,) representing a Moving Average (MA) part, and the
denominator D(z™*) =1+ ayz 1 + -+ an,z~ " is an ng-order polynomial with n,
parameters a; (k = 1, ...,n,) representing an Autoregressive (AR) part. As seen, while the IRFs
in their original MA form are infinitely long, their IIR representations have a finite length in both
the numerator and the denominator. Using Eq. (7), the CR defined in Eq. (6) can be expressed as
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where we dropped (z71) for simplicity. Eq. (8) can be further restated in a simplified form as
Xi Gl] —X] G]l = El,] (9)

where G;; = N;D; and G;; = N;D; are two Finite Impulse Response (FIR) filters with orders

Np; + Ng, and Ng; + Ny, respectively, and E; ; is the noise residual, which must be perfectly zero

in an ideal scenario.

If we now define L;; = Np; + Mg, + land L; = Ng; + Np, + 1, then it is trivial to show
that X; G;;, for example, would be an (L;; + N — 2)th-order polynomial in z~ 1. Using the z-
Transform definition, X; G;; can be calculated as

x;[0] 0 0
xl[LU—Z] xl[LL]_g] 0
xi[Lij—1] x[Li;—2] - x;[0] G;[0]
GIN—-1 xIN-2] - x[N-Ly] [LGy[Ly—1]
0 xi[N—1] - x;[N—L;+1]
0 w0 xIN—1]

where G;;(z™1) = G;;[0] + Gi;[1]z7* + - + Gy;[Li; — 1]z~ ¢u™D. A similar matrix
representation can be written for X; Gj; as well. It is trivial to show that to satisfy Eq. (9), both

X; Gi; and X; Gj; must have the same length. So, we can discard a few terms at the beginning and
the end of signals X; G;; and X; Gj;, and rewrite Eq. (9) as

o _x.q[Gi]
[Xij  —Xiil [aﬁ] =E;; (11)
where
xi[ng’] xi[ng’ — 1] o xy[ngd =Ly +1] ]
X, = : ; :
Y ij ij _ ij ij _ ij ij _ (12)
[ xi[ng’ +W 1] xi[ng’ +W 2] - xngd +wW L] whixty

x[ng’] x[ng’ — 1] o xgngd =Ly +1] ]

iy + i 1] ol e Wi 2] el w - (4
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and G;; = [Gi;[0] Gij[1] -+ Gy[Li; — 1]]" and Gj; = [Gi[0]  G[1] - Gy[Ly — 1]]7.
The term E; j is an (L;; + Lj;) X 1 vector containing noise errors. Start time (ng’] ) and time
window (W) can be chosen any value greater than max(L; j»Lji) and less than WW<N-1-

J

i, :
n, , respectively.

Such CR expressions like Eq. (11) can be written between any pair of buildings. That is,
we have a total of n, = P(P — 1) /2 CRs that can be stated as

XG=E (14)
where
X12 _X21
X = X13 _X31 (15)
Xep-np Xppp-1)
G =[612", 621", G157, 631", o, Gpryp”, Grgp-r)T | (16)
E=[E," Eis" .. Ep_np'] (17)

In Eq. (14), matrix X is constructed by the building’s response signals available through
measurement, while vector G is composed of a; and by, coefficients of TFs of all buildings
which are unknown and are going to be identified. Vector E is a noise vector. For simplicity, we
select an equal time-window length W for all pairs, so matrix X is an (n, X W) X
(Zr, Zszl(Lij + Lj;)) and set the start time index equal to ny = max(L;;) fori,j = 1: P and
i #j.

To solve the Eq. (14) we exactly use the Bayesian estimation introduced in Appendix A

in which the Eq. (14) plays the role of the observation equation and @ contains all unknown a,
and b, coefficients of TFs of all buildings.

Deconvolution

Once the buildings are identified, it may look trivial to recover input excitations through
deconvolution. That is,

Xz ™)
S(z™H) = ey (18)
and then
— 1 -1 n-1
s[n] = V=1 S(z7H)z" 'dz (19)

where n = t/At is discrete-time index and varies from 0 to N — 1 with t and At denoting the
time and sampling time interval, respectively. However, this inversion problem is only possible
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if the system 1/H;(z~1) is stable?. To satisfy this condition, the system H;(z~1) must not have
any zeros outside of the unit circle, or in other words, it must be minimum phase [38], while it is
most probably non-minimum phase.

A conventional way to calculate the inverse of a non-minimum phase system is through
the Least-Squares Error (LSE). According to Eq. (1), we need to design an inverse FIR

filter, g ing x1° which satisfies
d=h;*g; (20)
where d(nhi +ng 1)>< 1= [T 0 - 0]". Convolving this filter with x;[n] results in recovering
input motion. The Eq. (20) can be expressed in a matrix form as
Higi=d (21)
with
h;[0]
hi[1] h;[0]
h;[1] -
by, 1)eny, = | il = 1] mlo] |, (22)
hi[nn; — 1] hi[1]
h; [nhi —1]]

As the number of the columns of the matrix H; is less than that of the rows, the

coefficients of the FIR filter are computed in an approximate LSE way as g; = H,"d where t is
the Moore-Penrose pseudo-inverse operator. Therefore, it is impossible to realize the exact
inverse of a linear FIR system using this method. Moreover, because g; is non-minimum phase
the error energy (d — H; g;,)7(d — H; g;) does not converge to zero [39].

Fortunately, as the input excitation is measured by at least another building, there is a
possibility to exactly recover it. For example, if we can identify inverse filters g; and g ;
satisfying the following equation

d=hi*gi+hj*gj (23)
we can recover common input excitation through
S=xi*gi+xj*gj (24)

To identify these inverse filters, let’s set ng, = ny, . — 1 and ny . = ny,, — 1. Then, we
i J j 4

have

2 Bounded-Input Bounded-Output (BIBO) condition.
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M H) [g] = )

in which matrix [H;  H;] is square and the exact solution can be recovered through matrix
inversion [39]. However, the solution is only available if these two buildings do not share
common zeros, which is not the case in our problem as discussed before. Herein, we propose a
modification to the deconvolution to reduce the chance of having common zeros [40].

Time convolution of the Eq. (1) can be expressed in the time-frequency domain using
Short-Time-Fourier-Transform (STFT) as follows [41]

Ny—10Q;—1
xlpkl= Y slp—p kK1 lp' kK] (26)
k'=0 p'=0
where underbar represents STFT representation, N,, is the number of frequencies, and Q; is the
length of IRF in STFT domain. The IRF in the STFT domain (h;[p’, k, k']) is called a cross-band
filter. Neglecting effects of the neighbor frequencies, we can approximate response at each

frequency using its band-to-band version (h;[p’, k]) which is Convolutive Transfer Function
(CTF) as

Qi—-1

xi[p, k] = 2 slp—p' k1 ki[p' k] (27)
p'=0

which is a convolution at each frequency index of k as

x;~hixs (28)

which is similar to the time convolution. So, we can follow the same approach described above
to recover s at each frequency and then transform the solution to the time domain through
inverse STFT. That is, we are looking for g;s filters which satisfy the following relationship

d=>Ei+g; (29)

where ng is the number of buildings. Now a similar solution introduced in Eq. (25) can be used
to estimate inverse CTFs and consequently recover input excitation. Contrary to the time domain
solution, the CTFs have very short length and the chance of having common zero among the
buildings significantly reduces.

Verification

To verify the method, the response of four shear buildings with a various number of
stories from 3 to 7 are generated under Elcentro ground acceleration. Figure 10 shows the
recorded time histories and the exact Transfer Functions (green curves). We carried out the
proposed TF-based CR method by starting at those red initial TFs. The final results are shown in
blue and black. The blue curves show the TFs constructed by mean values of the coefficients,
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while the black curves are the means of the TFs. As seen, the estimated TFs (black and blues
curves) are perfectly matched to the exact TFs except very high-frequency region. Note that the
response signals are polluted with random noises with Root-Mean-Squares (RMS) equal to 5%
of the RMS of the noise-free signals. As the solution is obtained through a stochastic filtering
approach, the variance of the estimated results is also shown in Figure 10 through mean +1
standard deviation. As seen, the estimated results are highly reliable. We then employed the
proposed STFT deconvolution solution to recover common input motion. A comparison between
the recovered one and the exact one is shown in Figure 11. As seen, the input motion is almost
identical to the exact time history.

—Exact =—Identified = Initial =——Identified-UT — — +StDev — — -StDev
Time (Sec.) Time (Sec.)
0 10 20 30 40 0 10 20 30 40
1 T T T 1 T T T
s | = ' | ‘l "
gor WMM U g0 Mm wa#. JWMMM (et
-1 L L 1
1571
&b
[=% [=%
E1 E 1
< <
N
0 2 4 6 8 10 ] 2 4 [ ] 10
Freq. (Hz) Freq. (Hz)
Time (Sec.) Time (Sec.)
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L

Armp.

Freq. (Hz) Freq. (Hz)

Figure 10. Results of the verification study.
64



SMIP19 Seminar Proceedings

04 T T T T
—Exact
— Identified
0.2 b
C)
g 0 - 4
[&]
<
0.2 il
_04 L L 1 1 1 L L L
0 5 10 15 20 25 30 35 40 45

Time (Sec.)
Figure 11. Comparison between exact and recovered input motion.

Validation

To validate the method, data recorded on two neighboring buildings in downtown San
Francisco (CSMIP stations #58411 and #58412 are used (see Figure 12). Data recorded in the
East-West direction during the recent 2014 South Napa earthquake is studied here. Figure 13
displays a comparison between the recorded signals at the foundation levels of these two
buildings, both of which are assumed here to be input motions. As seen, these two signals are
quite similar and have a correlation coefficient [42] >76%, and as such, they satisfy the major
assumption of the proposed method.
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Figure 12. Chosen buildings for the validation study.
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Figure 13. 76% similarity between recorded signals at the foundations of two buildings.
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To carry out the identification process, we use signals recorded at the roof level—i.e.,
channel #29 for CSMIP58411, and the average of channels #11 and #12 for CSMIP58412, which
are located at the two opposing ends of roof floor. We only use 50 seconds of the intense portion
of the signals, because the level of vibration is too low during other times. Figure 14 shows
again the exact TFs in green which are empirically calculated using input and output signals, the
initial TFs in red, and the identified TFs in black and blue. As seen, the final results are quite
matched to the exact ones with a negligible variation.

Finally, we extracted common input excitation which is compared to the measured
foundation responses (assumed here as exact input motions) in Figure 15. It is quite interesting
to note that there is almost a 76% similarity between the recovered input motion and each of
these foundation responses, showing the method works very well.
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Modal-Based CR Method

The initial guess in the proposed CR method is sometimes important because the problem
is not convex and could have various local solutions. To make the method more robust we
replaced the Transfer Function formula with an IRF constructed using superposition of analytical
modal IRFs as shown in the following equation

Nm
Bm®rm _ :
hlkAt] = At Z %e monmkAt [(y 2 — &, 2w, ?) sin(wg, kAD)
m=1

" (30)
+ 2€ma)nmcos(wdmkAt)]

where wy, ., $ms Bm, and @y, are m-th mode natural frequency, damping ratio, contribution

factor, and modal deformation, respectively, and wg,, = Wy, ’1 - fmz. By using this closed-

form solution, we now have parameters with physical meaning. So, we can set initial point more
accurately. More importantly, we can put constraints on the parameters. For example, we know
that natural frequencies and damping ratios are positive. Or natural frequencies must be
increasing values. Also, we can limit the frequency of interest according to the frequency content
of the recorded responses.

Verification

To verify the modal-based version of the CR method, we simulated the response of a 5-
story and a 3-story shear buildings whose modal properties are reported in Table 4. The
responses ate the roof were polluted with random noises to have signals with Signal-to-Noise
Ratio (SNR) of 40. Before carrying out the identification, signals were filtered by a low-pass
filter with cut-off frequency of 15 Hz, as there is no energy above this frequency in the 3-story
response.

Table 4. Analytical modal properties.

5-Story Building 3-Story Building
Modes 1 2 3 4 5 1 2 3
fn(H2) 2.22 5.12 8.09 1133 16.27 | 3.17 8.88  12.83
& (%) 500 4.18 500 6.26 8.42 500 4.21 5.00
Ornbn 141 -054 015 -0.02 0.0006 | 1.22 -0.28 0.06

To see the accuracy of the identified modal properties or actually systems, simulated
responses are compared with the responses predicted by using exact input motion and identified
modal properties in Figure 16. As seen, both buildings are identified perfectly. The recovered
input motion is compared with the exact one in Figure 17 in the frequency domain. As observed,
the recovered input motion is highly accurate.
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Figure 17. Comparison between exact and
recovered input motion in the frequency domain.

To validate the method, we used a new set of buildings not to be limited to a specific
case. Figure 18 shows these two buildings with less than 500 meters distance. They are oriented
in the same direction, so we can use our 2D modal-based CR approach. There are two nearby
free-field stations, but one of them is no longer working. We use data recorded in the NS
directions of these buildings at the roof level during July 5™ 2019 Ridgecrest earthquake. In the
first step, we need to specify the frequency range of interest and the probable number of modes.
Figure 19 shows the Fourier spectra of the two signals. As seen, we may be able to recover input
motion up to 6 Hz. In this frequency range, the CSMIP24517 building seems to have 2 modes
while the other building could have up to 3 modes. Using two response signals, we carried out
the estimation and Figure 20 shows a comparison between the recovered FIM in time and
frequency domains with the recorded FFM. As seen, these two signals are very similar, which
validates the performance of the proposed method.

iS CSMIP-24609
il aster - 5-story Hospital

e = =t o g

2 GEMIP24661 -+

CGS CSMIP-24517
Lancaster - 3-story Office Bldg.

.f\bandoned 1
. 1
E |

SR T T

Figure 18. Buildings used for validation of the modal-based CR method.
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Application

As another example, Figure 21 shows two buildings with almost 500 meters distance.
We use their roof response in NS direction recorded in Alumrock 2007 earthquake. Based on the
Fourier spectra (not shown here), we consider frequencies below 10 Hz to make sure both signals
have enough energy. Five and four modes are considered for CSMIP57355 and CSMIP57356

buildings, respectively.
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Figure 21. Buildings used for application study of the modal-based CR method.
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As no FFM is recorded, a comparison between identified input motion and recorded
foundation responses is shown in Figure 22 in time and frequency domains. The correlation
analysis shows that there is almost 80% similarity between foundation responses and this

identified input motion.
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Figure 22. Comparison between recorded foundation responses (blue) and the identified input motion. Building 1 is
CSMIP57355 and Building 2 is CSMIP57356.

Model-Based CR Method

In real-life, there is no guarantee to have adjacent buildings aligned in the same direction.
So, the CR method should be extended to a more general 3D problem. While it is theoretically
possible to use the TF-based or modal-based CR solutions to the 3D cases, the number of
parameters to be estimated will be huge. In this section, a hybrid solution is proposed in which
model-based Bayesian estimation is combined with the original CR solution to take advantage of

benefits of each one [43].

Assume that two buildings are excited under similar bidirectional ground accelerations
X4 and y,. Assume that the buildings remain linear-elastic, do not exhibit lateral-torsional
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coupling, and are instrumented in their local principal directions x and y as shown in Figure 23.
The recorded absolute acceleration responses of Building 1 can be written as a linear discrete
convolution of the input motions and the building’s IRF as

X1 zhf*[ig cosa—l—j'fgsina]—l—vL 31

y1 =hy = [-%,sina + y, cosa] +wy, (32)

where h} and hi’ are the building’s IRFs in local x and y directions, respectively; and v; and w,
represent the corresponding measurement noises, which are assumed to be zero-mean, spatially
uncorrelated Gaussian white signals.

Figure 23. Two adjacent instrumented buildings under a bidirectional seismic excitation.

It is straightforward to combine Egs. (1) and (2) to come up with equations that contain
only a unidirectional earthquake excitation as follows

il*hfsina-i-j'zl*hg’fcosa:hl*j'fg-i-fl +w, (33)
X, h-fcos a—y, *hysina = hy * X, + U; + Wy, (34)
where
h, = h¥ <12, 35)
and ¥; = v, x h) sina, w; = wy * h{ cos @, ¥; = v * h] cosa and W, = —w, * hisina are

colored noises. Similar equations can be written for the other building by replacing the subscript
“1” with “2” and the orientation angle a with § as

%, * hYsinf + ¥, » hicosf = h, VgtV + W, (36)
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¥, +hjcosf — ¥, * hisinf = hy + X, + ¥, + W5, 37)
where h, = h} * h), ¥, = v, * h)sin §, W, = w, = hcos 8, ¥, = v, * h}cos 8, and W, =
—w, * hsin . Following the CR method, we convolve both sides of Egs. (33)/(34) and
(36)/(37), respectively, by h, and hy, to get

{kl*hi'sina+j'11 *hi‘cosa}*hz —{5\%2 *h%’sinﬁ + ¥y, *h%‘cosﬂ}*hl =7

(38)

{& » hjcosa — ¥y » hisina} = hy — {¥; » hjcos § — ¥, » hisinf} = hy =T, (39)
where

r=hy* (Vi +w)—hy*(V, +W,) (40)

T =h; x (U + W) — hy * (U, +Wy). (41)

In Egs. (40) and (41), ¥ and ¥ are the remainders that represent the difference between
the ideal case of noiseless measurements and the realistic case of noisy measurements. We
assume that initial numerical models of the two buildings are available, and our objective is to
identify/update their corresponding model parameters. Based on this assumption, Egs. (3) and
(39) can be rewritten as

{y1(¥1sina ) + x,(y; cos a)} * hy — {y,(X; sinB) + x;(y,cos B)} xhy =T (42)
{y1(Xicosa) + x; (=Y sina)} * hy — {y,(X; cos f) + x,(y,sinf)} x hy =7, (43)

where, for example, y,(X; sin a ) stands for the response of Building 1 in its y direction under
the input excitation X; sin @ . The components of Egs. (42) and (13) can be derived easily. For
example, the first part of Eq. (42)—i.e., {y1(¥; sina ) + x;(¥; cos a)} * h,—can be calculated
as follows: First, y;(X; sin a ) and x,(y, cos a) are estimated. Then, they are used as input
excitation in the x-direction of Building 2. The resulting response time history is then used as
input excitation for Building 2 in the y-direction, since h, = hj * h%’ . The resulting response
time history of Building 2 in the y-direction represents the first part of the Eq. (42).

Eqgs. (42) and (13) are used as the observation equation within the Bayesian estimation
framework where FE models are used to carry out all the predictions and the vector @ parameters
of the structural models. Through this hybrid solution, we avoid adding unknown input motions
to the updating parameters which substantially reduces computational cost. Also, the Fe models
provide the opportunity to reduce number of structural parameters to be estimated.

Deconvolution

Since the two buildings have been fully identified, the common ground motions, X, and
¥4, can be recovered from the buildings’ responses via deconvolution. Herein, we suggest

another deconvolution approach because we have two input motions. Let us assume a noise-free
version of the discrete-time convolution in Eq. (31) in the matrix form as
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Anxn Xnx1 = byxa (44)
with
b = [%.[0] -+ %[N — 1]]T (45)
x = [Xg[0] cos a + J4[0] sina -+ X4[N —1]cosa + j,[N — 1] sina]” (46)
h1[0]

hi“.[l] h1[0]

A=|RIE-1] B[E-2 - K , @
0 hi[lf =1] h1[0]
o 0 RILF—1] h¥[X—2]  R¥[0]]

wherein LY is the effective length of the first building’s IRF in its local x-direction. The matrix A
can be ill-conditioned, which means that the vector x cannot be recovered by a matrix inversion
[44]. To resolve the ill-conditioning problem of matrix A, we have to replace this matrix with its
closest well-conditioned approximation.

Matrix A has a Toeplitz structure; that is, it has equal elements across the main diagonal
and the sub-diagonals parallel to the main diagonal (our systems are causal, so their matrices are
lower triangular). It has been shown [45] that for each Toeplitz matrix, a well-conditioned
circulant matrix can be found that is asymptotically equivalent to the Toeplitz matrix. To recover
the ground motions from each building’s response, we invert the asymptotically equivalent
circulant matrix corresponding to A. By constructing another similar matrix representation—as
Eq. (44) corresponds to Eq. (2)—, we can backcalculate the ground motion vectors X, and y 4 in
the global coordinate system as follows

(cit %) :

(¢ 1) (45)

[xg] _ [ cosa  sin tr]_l
—sina cosa

where C; , and C,, are the circulant matrices constructed using matrix A for the local x and y
directions [45], respectively. Indeed, the ground motions can also be recovered from responses of
the second building, which must be identical in ideal conditions (noise-free and perfect
identification results).

Verification

To verify the proposed identification method, we created two three-dimensional building
models using SAP2000 [32] as shown in Figure 24. The details of these models can be found in
[43]. To simulate the seismic responses of the two buildings, we applied the East-West (EW) and
the North-South (NS) ground motions recorded at the El Centro station during the 1940 Imperial
Valley earthquake in the global X and Y directions, respectively. The roof absolute acceleration
response time histories in local x and y directions of the two buildings are used for the
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identification. Independent random noises with 0.005 m? /sec* variance (corresponding to
signals with 0.7%g root mean square amplitude) is added to the simulated time histories to
mimic in noisy measurements.

The proposed system identification is utilized to estimate the unknown parameters, which
consist of parameters characterizing the soil-foundation impedance functions and
superstructure’s parameters as

T
0 == [K_%, K;, K_%x, K;y; C_%, C;, WM:}I al; Bll K)?) K)%l KD?XI K)%y; CJ?' C;' WM?' aZ' BZ] (49)

where K and C represent soil spring stiffness and soil dashpot viscosity, and superscripts and
subscripts denote the building number and the direction, respectively. W, and W,? are the
equivalent widths of the infill walls in Buildings 1 and 2, respectively. Also, parameters @, 1,
and a,, 3, are mass- and stiffness-proportional Rayleigh damping coefficients of Buildings 1
and 2, respectively. The “true” values of these parameters are provided in Table 5.

Table 5. Exact values of the updating parameter candidates.

Building No. 1 2 3 4 5 6 7 8 9
K, K, K, K, C, C, W, «a B
1 (GN/m) (GN/m) (GNm) (GNm) (MNs/m) (MNs/m) (m) (1/s) (1000s)
3.33 3.44 156 283 89 89 0.5 0.90 0.27
Building No. 10 11 12 13 14 15 16 17 18
Ky K, Kix Kyy Cx Gy Wy a B
2 (GN/m) (GN/m) (GNm) (GNm) (MNs/m) (MNs/m) (m) (1/s) (1000s)
1.93 2.05 25 69 30 30 0.5 0.83 0.26

Building 1

Building 2

Figure 24. Two adjacent buildings used for verification study.

After carrying out an extensive identifiability study, which is another specific benefit of
the proposed method and can be found in the original reference [43], the list of updating
parameters was reduced to 8 = [K}, KL A W}, a, K2 K2, W2, a,]T and other parameters fixed at
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their true values. Table 6 shows the results of the identification along with the estimation
Coefficient of Variation (COV). As seen, all unknown parameters, except K2 , are identified
with small final errors and near-zero COVs. K2 is the parameter that we added to our updating
parameters list despite the fact that it had a relatively strong dependence on W,2. As seen in
Table 6, this dependency results in an inaccurate estimation of W2 as well. The estimated COVs
can be used to assess the estimation uncertainties, the higher the COV, the less reliable the
estimation is. Table 6 shows that the COV of K2 is approximately 3 times larger than other
parameters, which means that the identified parameter value for K2 is relatively less reliable than
other parameters.

Table 6. Identified mean errors and COV's through.

ID No. 1 3 7 8 10 12 16 17
Parameters K KL W o« K? Kz, W2  a
Final Error (%) 096 -0.57 -0.15 3.08 2329 -2.07 -525 149
Final COV (%) 0.96 0.55 051 1.04 390 057 099 092

To evaluate the accuracy of the identification results and the effects of estimation errors,
the response of buildings are generated using the identified parameters and using exact ground
motions. The responses are compared with the noise-free measured (simulated using exact
parameter values) responses in Figure 25. As can be seen, the predicted responses match the
exact responses. This means that the combined effects of 23% error in K2 and 5% error in W,2 do
not significantly affect the response of Building 2 in its x-direction.

Finally, having identified the FE models of the buildings, we recover the input ground
motions in global directions using the deconvolution approach. The input motions backcalculated
using each building’s recoded responses are shown in Figure 26. As seen, the recovered ground
motions from both buildings’ responses match the exact input motions.
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Figure 25. Comparison of the predicted and exact Figure 26. Comparison of the recovered and exact
building responses. input motions.
Conclusions

Earthquake input excitation to the building structures may be unavailable in various
conditions. Soil-Structure Interaction (SSI) effects may prevent measuring true input excitation
through both inertial and kinematic effects. Also, input excitation may be lost due to sensor
malfunctioning or recorded with low resolution. The present study proposed various methods to
be able to extract input excitation from responses recorded by instrumented buildings like
CSMIP buildings. The proposed methods range from sophisticated and computationally
demanding model-based output-only Bayesian estimation to simple but practical data-driven
Cross-Relation (CR) method in which needed additional information is taken from response of
the adjacent buildings. We successfully verified and validated all these methods using simulated
and real-life data, respectively. A hybrid method was also proposed by a combination of these
two mentioned methods to take advantage of benefits of either method to solve more complex
3D problems. We also developed two deconvolution techniques to fix the stability problems
commonly observed in recovering input motions.
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Appendix A: Output-Only Bayesian Estimation

The response of the Finite Element (FE) model of a building at each time step to a multi-
directional earthquake excitation can be expressed as a (nonlinear) function of the model
parameter vector, @, and the time history of the base input motions, il‘lq: i 1€,

yi = hi(e' ﬁf:i)' (Al)

where h;(.) is the nonlinear response function of the FE model at time step i, encapsulating all
the dynamics of the model from time step 1 to i. The measured response vector of the structure,
y;, is related to the FE predicted response, ¥;, as

”i(ef ﬁf:i) =YVi— yi(e' ﬁf:i)' (A2)

in which v; € R™*! is the simulation error vector and accounts for the misfit between the
measured and FE predicted response of the structure. The simulation error is ideally modeled as
a zero-mean Gaussian white noise vector (i.e., v;~N (0, R)) by neglecting the effects of
modeling error [46]. The objective of the estimation problem is to find the estimates of the

. .g T1T . . )
unknown parameter vector, i.e., P; = [BT, u‘lq:i ] , for which the discrepancies between the

measured and FE predicted responses are minimized in a probabilistic sense. Since the
estimation problem is highly nonlinear, a sequential estimation approach is used in this study to
improve estimation efficiency. In this approach, the time domain is divided into successive
overlapping time windows, referred to as the estimation windows. The estimation problem is
solved at each estimation window to estimate the unknown parameter vector. Assume that the
m-th estimation window spans from time step ti" to time step t7*. Therefore, the unknown

T
parameter vector at this estimation window is defined as ¥,,, = [BT, uf,;T m ] , Where ¢,,, €
1 -2

R(me+txn9)x1 in which ¢, = ¢t — t™ is the estimation window length, and nygs is the number
of unknown components of the base input motions. The unknown parameter vector, ¥,,, is
estimated using a parameter-only Kalman filtering method. To this end, the unknown parameter
vector is modeled as a random vector, the evolution of which is characterized by a Gaussian
Markov process — also known as a random walk. Then, a state-space model is set up, in which
the state equation governs the evolution of the random parameter vector and the measurement
equation corresponds to the discrepancies between the measured and FE predicted structural
responses [47], i.e.,

]I)m,k+1 = 1I}m,k + VYmk (A3)
Yemamr = yt{":t;",k+1(¢m,k+1) + Vmem gy (A4)

in which ¥, ~N (0, Q), Vg 141 ~N (0, R), where R € R(Em)X(0m) i 2 block diagonal
matrix, whose block diagonals are the simulation error covariance matrix R. In Egs. (A3) and
(A4), k denotes the iteration number. As can be observed, the estimation process at each
estimation window is iterative, i.e., the mean vector and covariance matrix of the unknown
parameter vector is iteratively updated based on the discrepancies between the time histories of
the measured and estimated responses.
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An Unscented Kalman Filtering (UKF) method is used to update the unknown parameter
vector at each iteration. In this method, the nonlinear FE model is evaluated separately at a set of
deterministically selected realizations of the unknown parameter vector, which are referred to as
the sigma points (SPs) denoted by ¥9/. The sigma points are selected around the prior mean
estimate ™. In this study, a scaled Unscented Transformation (UT) based on 2ny, + 1 sigma
points (i.e., j = 1,2, ...,2ny + 1) is used, where n,, denotes the size of the extended parameter
vector. The mean and covariance matrix of the FE predicted structural responses, and the cross-
covariance matrix of Y and y are respectively computed using a weighted sampling method as

2n¢+1
y= ) Win(9), (A3)
=1
2n¢,+1
=~ i [~ . TN . _1T
Py= ) W [3(8") - 3[5:(9)-5] +R, (A6)
=1
2n,,,+1
—~ Pr e e ar : AT
Py = . W[99 I3u(8) - 31" (A7
=1
where W) and W, denote weighting coefficients [48]. Now, the UKF prediction-correction
procedure can be employed to estimate the posterior parameter mean vector 17J+m +q and

covariance matrix ﬁ;j‘m‘kﬂ at each iteration. The identification algorithm is summarized in
Table Al.

Table Al. Identification algorithm for joint estimation of the model parameters and the FIM time history.
1. Set the estimation window length ¢;, and the start and end points of each estimation window.
2. Set the initial mean vector and covariance matrix of the unknown parameter vector as

[ijﬁﬂ,ﬂ 0

-

0 Pyeo
3. Define the process noise covariance matrix Q and the simulation error covariance matrix R. Set up matrix R.
4. For the m-th estimation window:
4.1. Retrieve the posterior estimates of the mean vector and covariance matrix of the unknown
parameter vector from the last estimation window (i.e., P* and Plz,m_l). Set up 17’+m,o and P,;j‘m‘o

A S i i
+ — i29,0 ey e
o= [0 fyy | and P, =

m-1°
based ony, | and P, ;.
4.2 Tterate (k=1,2,...):
aSetd™ =P Py = Py + Q.
b. Generate sigma points. Run the FE model for (2ny, + 1) sigma points. Derive ¥, ﬁyy, and ijzpy
using Egs. (A5)-(A7).
c. Compute the Kalman gain matrix: K = ﬁwy(ﬁyy)_l.

d. Find the corrected estimates of the mean vector and covariance matrix of the unknown parameter
vector:

17)+m'k+1 = 17)_m_k+1 + K (yt{n:t'gn - y)a Pl-[}'—,m,k+1 = Pl[j,m,k+1 - K(ﬁyy + ﬁ)I(T
e. Check for convergence: if |17)+mk+1 - 17)+mk| < 0.02 x 17)+mk_1 or k + 1 > 10, then move to

the next estimation window (m = m + 1, go to step 4); otherwise, iterate again at the current
estimation window (k = k + 1, go to step 4.2).
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