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Abstract 
 

The dynamic response of a building structure to an earthquake excitation is the result of a 
complex interaction between the structural system and the underlying and surrounding geology. 
Since modeling the physics of the coupled soil-structure system is a complex undertaking, the 
state-of-practice has adopted simplified modeling procedures, such as the substructure method. 
Nevertheless, these procedures are often empirical and/or based on idealized assumptions, such 
as linear-elasticity. In this study, our objective is to develop a robust model inversion framework 
that can be utilized to extract information from the real-world building response measurements to 
back-calculate the model parameters that characterize the structural response and soil-structure 
interaction effects.  

Introduction 
 

The dynamic response of a building structures to an earthquake excitation is the result of 
a complex interaction between the structural system and the underlying and surrounding 
geology. The coupled soil-structure response is a function of seismic waves interacting with the 
building foundation, the nonlinear structural and geologic material response, and other energy 
dissipation mechanisms such as friction and viscous damping in the structure and soil. Therefore, 
the prediction accuracy of structural response quantities depends on the accuracy of the 
employed numerical model in characterizing these different sources of seismic energy 
dissipation and the dynamic soil-structure interaction. 

Since modeling the physics of the coupled soil-structure system in detail is a complex 
undertaking, especially for practical design or assessment purposes, the state-of-practice has 
adopted simplified modeling procedures (e.g., [1], [2]). Soil-structure interaction effects are 
usually modeled using a substructure approach, where the soil flexibility and energy dissipation 
are modeled using distributed springs and dashpots [3]. Numerous simplified solutions exist to 
determine the stiffness and damping coefficients of these elements; solutions that are nonetheless 
based on idealized and restrictive assumptions. Examples of these assumptions include linear-
elastic soil and structural behavior, uniform soil half space (or soil profiles with stiffness 
gradually varying with depth [4]), canonical foundation geometry, etc. These assumptions and 
the empirical nature of mechanical analogs such as soil springs and dashpots, could potentially 
lead to large error margins in predicting the seismic response of real-world building structures, 
even if the simplified models have demonstrated acceptable accuracy for ideal cases. The 
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applicability of these models becomes even more questionable for nonlinear response time 
history analyses. This is due to the fact that the concept of soil impedance functions and the 
resulting equivalent soil springs and dashpot is mainly based on the premise of linear-elastic 
response behavior. Nevertheless, the coupled soil-structure system is expected to experience 
nonlinearity during strong earthquakes – both material and geometrical (e.g., foundation-soil 
separation during rocking). Thus, the system may deviate substantially from the underlying 
assumptions that have led to substructure modeling techniques for soil-structure interaction 
analysis. 

On the other hand, modern seismic design and assessment codes are progressively 
stirring toward nonlinear finite element (FE) modeling and response simulations for predictions 
of structural and nonstructural seismic demands. In a modern seismic analysis approach, a well-
calibrated nonlinear model is required to precisely predict not only the peak values of response 
parameters, but also the time histories of structural responses. Despite all the advancements 
made in the field of mechanics-based nonlinear structural modeling, the state-of-practice for 
modeling structural damping and soil-structure interaction is still based on empirical 
assumptions. Clearly, there is an inconsistency between the mechanics-based modeling 
techniques available for structural systems and the underlying assumptions guiding the structural 
damping and soil-structure interaction modeling. This could result in an "inconsistent crudeness" 
in state-of-the-art seismic modeling of building structures that this proposal seeks to investigate. 

In this study, we do not seek to develop new models of soil springs and dashpots or 
structural damping. Instead, we seek developing a model inversion framework that can be 
utilized to extract information from the real-world building response measurements to back-
calculate the model parameters that characterize the structural response and soil-structure 
interaction effects. By repeating this effort for different building case studies and earthquake 
records in the long run, our objective is to compare the estimation results with the state-of-the-art 
recommendations, and to provide guidelines on how to improve the state-of-practice structural 
modeling capabilities.  

Model Inversion through Nonlinear FE Model Updating  
 

Suppose that the dynamic response of a building structure is recorded during an 
earthquake event. To simulate the dynamic response of this building structure, a mechanics-
based (linear or nonlinear) FE model is developed. The FE model depends on a set of unknown 
parameters including inertia properties, damping parameters, soil spring and dashpot parameters, 
and parameters characterizing the nonlinear material constitutive laws used in the FE model. 
These parameters are referred to as the model parameters henceforth. Using the recorded input 
ground acceleration time history and the response of the building, the objective is to identify the 
best set of unknown model parameters that minimize the discrepancy between FE predicted and 
measured structural responses. Another objective of is to utilize the measured structural 
responses to jointly estimate the model parameters and input excitation (i.e., foundation input 
motion) time history.  

In this study, the estimation problem is tackled by updating sequentially (i.e., for several 
batch of measurement data) the probability distribution function (PDF) of the unknown model 
parameters (and input excitation) using a Bayesian inference method (e.g., [5], [6]). FE model 
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updating using the measured input excitation and output response of the structure is referred to as 
the input-output model updating. Contrarily, in an output-only FE model updating, one or 
multiple time histories of the dynamic input excitation are also unknown. Therefore, the 
objective of the sequential Bayesian estimation is to estimate jointly the FE model parameters 
and the time unknown time history of the base excitation so that the discrepancies between the 
estimated and measured response quantities are minimized [7].  

Background 

The time-discretized equation of motion of a nonlinear FE model at time step i  (
ki  1 , where k denotes the total number of time steps) is expressed as 

            θfθθqrθqθCθqθM iiiii  ,  (1) 

where   DOFnDOFn θM  = mass matrix,   DOFnDOFn  θC  = damping matrix, 

   1,  DOFn
ii θθqr  = history-dependent (or path-dependent) internal resisting force vector, 

      1,,  DOFn
iii θqθqθq   = nodal displacement, velocity, and acceleration response vectors, 

respectively, 1 θθ n  = FE model parameter vector,   1 DOFn
i θf  = dynamic load vector, and

DOFn  = number of degrees-of-freedom. In the case of uniform (or rigid) seismic base excitation, 

    g
ii uLθMθf   where gnDOFn

uL 


  = base acceleration influence matrix, and 
1


gng

i
uu    

denotes the seismic input ground acceleration vector. Using a recursive numerical integration 
rule, such as the Newmark-beta method [8], Eq. (1) is reduced to a nonlinear vector-valued 
algebraic equation that can be solved recursively and iteratively in time to find the nodal 
response vector at each time step. In general, the response of a FE model at each time step is 
expressed as a function (linear or nonlinear) of the nodal displacement, velocity, and/or 
acceleration response vectors at that time step. Denoting the response quantity predicted by the 

FE model at time step i by 
1

ˆ


 yy
n

i  , it follows that  

 00:1 ,,,ˆ qquθhy  g
iii   (2) 

where  ...ih  is the nonlinear response function of the FE model at time step i. The measured 
response vector of the structure, iy , is related to the FE predicted response, iŷ , as 

   g
iii

g
ii :1:1 ,ˆ, uθyyuθv    (3) 

in which 
1

 yv
n

i   is the simulation error vector and accounts for the misfit between the 
measured and FE predicted response of the structure. This misfit stems from the output 
measurement noise, parameter uncertainty, and model uncertainties. The latter stands for the 
mathematical idealizations and imperfections underlying the FE model, which result in an 
inherent misfit between the FE model prediction and the measured structural response [9]. In the 
absence of model uncertainties, it is assumed here that the measurement noises are stationary, 
zero-mean, independent Gaussian white noise processes (i.e., statistically independent across 
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time and measurement channels) [10]. Therefore, the probability distribution function (PDF) of 
the simulation error in Eq. (3) is expressed as 

 
 

i
T
i

ni ep
vRv

y R
v

1
2

1

2/12/π2

1


  (4) 

in which R  denotes the determinant of the diagonal matrix yyR
nn  , which is the (time-

invariant) covariance matrix of the simulation error vector (i.e.,   iE T

ii  ,vvR ).  

 In an output-only FE model updating problem, the FE model parameter vector (θ) and the 

time history of the seismic input ground acceleration at each time step ( g
k:1u ) are unknown and 

modeled as random variables (the corresponding random variables are denoted by Θ and g
k:1U , 

respectively). Using Bayes’ rule, the posterior probability distribution of the unknowns can be 
expressed as 

   
 k

g
k

g
kk

k
g

k
p

pp
p

:1

:1:1:1
:1:1

,,
,

y

uθuθy
yuθ


 





  (5) 

where  g
kkp :1:1 ,uθy   =  kp :1v  = likelihood function,  g

kp :1,uθ   = joint prior distribution of the 

random variables Θ  and g
k:1U , and  kp :1y  = normalizing constant independent of Θ  and g

k:1U . 

The objective of the output-only FE model updating problem is to estimate jointly the unknown 
model parameters and the ground acceleration time history such that their joint posterior PDF 
given the measured response of the structure is maximized, i.e., 

  













k
g
k

g
k

g
k p :1:1

:1,
MAP:1 ,maxargˆ,ˆ yuθuθ

uθ





 
(6) 

in which  TT

k

TT

k yyyy ,,..., 21:1  = time history of the measured response of the structure, and 

MAP stands for the maximum posterior estimate. The estimation uncertainty is quantified by 
evaluating the parameter estimation covariance matrix at the MAP estimate. 

Since the model inversion problem is highly nonlinear, a sequential estimation approach, 
referred to as the sequential Bayesian estimation method, is used in this study to improve the 
computational efficiency and convergence rate. In this approach, the estimation time interval is 
divided into successive overlapping time windows, referred to as the estimation windows. The 
estimation problem is solved at each estimation window to estimate the posterior PDF of 
unknown parameters. The first two moment of distribution (i.e., mean vector and covariance 
matrix) of the parameters are then transferred to the next estimation window and used as prior 
information. The sequential Bayesian estimation method approach is schematically shown in 
Figure 1.  Two approaches are developed to find the posterior mean vector and covariance matrix 
of the unknown parameters and from the prior estimates: (i) a FE model linearization approach, 
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and (ii) an unscented transformation approach. These two methods are described in the next two 
sections, respectively. 

 
Figure 1: Schematic presentation of the sequential Bayesian FE model updating method. 

 

Sequential Bayesian Estimation using FE Model Linearization 

Following Eq. (5) and the sequential estimation logic described above, the natural 
logarithm of the posterior joint PDF of the FE model parameters and base acceleration time 
history at the mth estimation window, spanning from time step mt1  to time step mt 2 , can be derived 
as  




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in which 












 mtmt

pc
2:1

log y  is a constant. In this equation, the time history of the base 

acceleration from time step 1 to 11 mt , (i.e., g
mt 11:1 

u ), is assumed to be deterministic and equal to 

the mean estimates obtained from previous estimation sequences. For notational convenience, an 

extended parameter vector at the mth estimation window is defined as 
T

Tmg
mtmt

T
m 



 ,

2:1

,uθψ  , where 

1




 


gnltn

m
uθ

ψ  . Since the simulation error is modeled as an independent Gaussian white noise 
process, the likelihood function is given by 
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


k

i
i

g
kk pp

1
:1:1 , vuθy   (8) 
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By substitution of Eq. (8) into Eq. (7) and assuming a Gaussian distribution for the prior joint 
PDF, it follows that 
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where 0k  is a constant, and 
mψ̂  and 

ψP̂  are the prior mean vector and covariance matrix of the 

extended parameter vector at the mth estimation window.    yyR
nltnlt 

 
~  is a block diagonal 

matrix, in which the diagonals are the simulation error covariance matrix R . To find the MAP 
estimate of mψ , the posterior PDF in Eq. (9) is maximized, i.e., 
























0
ψ

yψ

m

mtmtmp
2:1

log

 

    0ˆˆˆ,
~

ˆ,
1

11:12:12:1

1
11:12:1 
















































mm
g

mtmmtmtmtmt

T

m

g
mtmmtmt

ψψPuψhyR
ψ

uψh

ψ



 

 
 
 
 

(10) 

Eq. (10), which is a nonlinear algebraic equation in mψ  can be solved using an iterative first 

order approximation of the FE response function 




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g
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The matrix 
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, 
 represents the FE response sensitivities with respect to the 

extended parameter vector, evaluated at the prior mean values of the extended parameter vector, 

mψ̂ . This matrix is denoted by C hereafter for notational convenience. Substituting Eq. (11) into 

Eq. (10) and neglecting the higher order terms results in the following (first order approximate) 
equation for the MAP estimate of mψ : 
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in which 
mψ̂  is the updated (or the posterior) mean estimate of mψ . It can be shown that the 

term   1
111 ~ˆ~~ 

 





  RCPCRCK ψ

TT  is similar to the Kalman gain matrix, as used for Kalman 

filtering [11].  

The updated 
mψ̂  from Eq. (12) is iteratively used as the new point for the linearization of 

the nonlinear FE model in Eq. (11) to find an improved estimation. This iterative prediction-
correction procedure at each estimation window is equivalent to an iterative EKF method for 
parameter-only estimation [11]. Following the EKF procedure, the prior covariance matrix of the 

extended parameter vector 
m,

ˆ
ψP  is updated to the posterior covariance matrix 

m,
ˆ

ψP  after each 

prediction-correction iteration. Moreover, it is assumed that both the prior and posterior joint 
PDF of the extended parameter vector are Gaussian. The updated estimation covariance matrix, 
can be derived as 

         TT

m

T

mmmmm E KRKKCIPKCIψΨψΨP ψψ

~ˆˆˆˆ
,,    (13) 

Furthermore, to improve the convergence of the iterative prediction-correction procedure, a 
constant disturbance matrix is added to the posterior covariance matrix at each iteration to provide 
the prior covariance matrix for the next iteration, i.e., 

QPP ψψ  
 ii ,1,

ˆˆ  (14) 

where Q  is a constant diagonal matrix with small positive diagonal entries (relative to the diagonal 

entries of matrix 
i,

ˆ
ψP ). The matrix Q  is referred to as process noise covariance matrix in the 

Kalman filtering world. The subscript i in Eq. (14) denotes the iteration number. 

Sequential Bayesian Estimation using the Unscented Transformation 

While the terms ψyP̂  = cross-covariance matrix of Ψ  and Y , and yyP̂  = covariance 

matrix of Y  in are derived by linearizing the nonlinear FE model in the previous section, an 
unscented transformation (UT) method (e.g., [12], [13]) can also be used to derive the ψyP̂  and 

yyP̂ . UT is a deterministic sampling approach to propagate the uncertainty in Ψ  through the 

nonlinear FE model; thus, circumventing the linearization of the FE model. Therefore, it results 
in a more accurate estimation of the ψyP̂  and yyP̂ , especially for highly nonlinear models. 

Indeed, using the UT method is at the cost of evaluating the FE model at multiple samples of the 
vector Ψ ; nevertheless, the additional FE computations can be performed in parallel ( [14], [15]).  

In this approach, the nonlinear FE model is evaluated separately at a set of 
deterministically selected realizations of the extended parameter vector Ψ , referred to as the 
sigma points (SPs) denoted by j , which are selected around the prior mean estimate Ψ̂ . In 
this study, a scaled UT based on  12  Ψn  sigma points (i.e.,  12,,2,1  Ψnj  ) is used, 
where Ψn  denotes the size of the extended parameter vector. The mean and covariance matrix of 
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the FE predicted structural response Y , and the cross-covariance matrix of Ψ  and Y  are 
respectively computed using a weighted sampling method as  

 





12

1
ˆ

Ψ
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n
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jj
mW   (15)
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



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eW    (16)

    
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

 
12

1
ˆˆˆ Ψ

Ψy yyΨP
n

j

Tjjj
eW    (17)

where j
mW  and j

eW  denote the mean and covariance weighting coefficients, respectively [13]. 
With this approach, the Kalman gain matrix can be computed and the sequential parameter 
estimation can be pursued following Eqs. (12) and (13). 

FE Model Updating of the Millikan Library Building 

The Millikan Library 

The Millikan Library is a reinforced concrete shear wall building with a basement level 
and nine stories above the ground. It is located on the California Institute of Technology 
(Caltech) campus in Pasadena, and was constructed from 1966 to 1967. Millikan library has been 
the subject of several studies, especially in the fields of system identification and structural 
health monitoring. The building is a unique case for soil-structure interaction studies, due to its 
unique structural and soil properties (Figure 2). 

The Millikan Library structure is 43.9 m tall above ground including the roof level. It has 
a 4.3 m deep basement below the ground level. Except for the first and the roof levels, which are 
4.9 m high, all floors are 4.3 m high. The basement is encased by surrounding retaining shear 
walls. A surrounding precast concrete wall enlaces the roof story to protect the installed 
mechanical equipment. The lateral force resisting system comprises of shear walls in the NS 
direction on the east and west sides of the building, and shear walls around the elevator shaft in 
the north-south and east-west directions. The floor system consist of lightweight reinforced 
concrete slabs supported by reinforced concrete beams. The foundation system consist of a 1.2 m 
deep central pad 6 meters below the ground level, and two foundation beams in the north and 
south sides of the building 5 meters below the ground level. Four stepped beams connect the 
foundation pad to the north and south foundation beams. This special foundation system acts 
somehow similar to a rocking chair [16]. 

FE Model Development 

Using the available structural drawings, a detailed FE model of the structural system is 
developed. We used the graphic-user-interface of SAP2000 software [17] to develop the initial 
geometry of the model. The SAP2000 model was then transformed to OpenSees [18] using a 
series of custom-developed Matlab interfaces based on the SAP2000 Application Programming 
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Interface (API). The developed FE model in OpenSees is nonlinear, with an option to switch to a 
linear model. The model is based on fiber-section force-based beam-column elements to model 
beams and columns. Kent-Scott-Park uniaxial material model with linear tension softening is 
used to model concrete and Giuffré-Menegotto-Pinto material is utilized to model reinforcing 
steel. A multi-layered nonlinear shell element with damage-plasticity concrete material model 
[19] is used to model shear walls and slabs. The kinematic interaction of precast claddings on the 
north and south faces of the building with the structural system are modeled using diagonal brace 
elements, with an elastic-perfectly plastic material model. The brace elements are assumed to 
have a rectangular cross section of 0.1 x 0.1 m. By adjusting the elastic modulus and yield 
strength of their material model, the stiffness and force contribution of the precast panels to the 
dynamic response of the structure are modeled.   

Figure 3 shows the geometry of the model. Different colors in this figure present different 
section properties used to define the shell (shear wall and slab) and beam-column elements. The 
model is meshed manually to adjust the size and shape of elements. It consists of 1,885 frame 
elements, 4,043 shell elements, and 27,526 digress of freedom.  

  
Figure 2: Millikan Library building. Figure 3: Developed FE model of the 

Millikan Library structure. 
 

Several earthquake records are available for the Millikan Library. Details about sensor 
arrangements [20] and recorded earthquake data [16] are available in the literature and are not 
repeated here for brevity. For the purpose of this study, we used only the 2002 Yorba Linda 
earthquake record, which is a low-amplitude earthquake (PGA ~ 0.8% g). Although the level of 
considered earthquake in this study is low and therefore, may not activate the material 
nonlinearity, the developed model updating process is general and can be used with linear and or 
nonlinear models regardless of the earthquake intensity.  

FE Model Updating using Foundation-Level Input Motions 

At this stage, we use the measured acceleration response at the foundation level (i.e., 
foundation-level input motion) and the measured output response of the structure for the FE 
model updating. The objective of this input-output model updating is to estimate the unknown 
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model parameters of the superstructure, regardless of the soil subsystem. For this purpose, we 
start with an identifiability analysis to determine the most identifiable parameter sets. After 
selecting the parameter sets, we verify the estimation algorithms using simulated data. Finally, 
we use the real measurement data to estimate the model parameters.  

Model Identifiability and Parameter Selection 

Identifiability analysis is an approach to investigate if the unknown parameters can be 
uniquely estimated from data. To assess the parameter identifiability we used an information-
theoretic approach [21] to measure the amount of information contained in measurement data 
about an unknown model parameter. The entropy gain is used to quantify the amount of 
information each unknown parameter receives from the measurement data. Comparing the 
entropy gain between different parameters is used to assess the relative identifiability of 
parameters. Moreover, the mutual entropy gain between parameter pairs is used to investigate the 
relative correlation between the parameters. This entropy gain and mutual entropy gain are used 
to guide the selection of the estimation parameters.  

To assess the identifiability of model parameters, first we start with a nonlinear FE 
model. Twenty different parameters that characterize the material and inertia properties of model 
are selected, as shown in Table 1. Since the amplitude of the 2002 Yorba Linda earthquake is 
low, material yielding is not expected and therefore, only the elastic-related material parameters 
for reinforcing steel are included in the identifiability analysis. On the contrary, since the precast 
cladding are expected to yield under small inter-story drift ratios, the yield strength of brace 
elements is included in the analysis. 

For a given input motion, the entropy gain for each parameter is a function of the initial 
(prior) value of the parameter, which is unknown in advance. The incorrect selection of the prior 
model parameter values can result in an incorrect identifiability assessment. Therefore, without 
the knowledge of correct parameter values, the identifiability assessment results would not be 
accurate anyways; but we still expect to have an approximate assessment of the identifiability.  
Initial material parameter values for steel and concrete are selected based on the material 
properties reported in the as-built drawings. The distributed floor mass (aside from self-mass of 
the structural materials) are estimated based on the approximate mass contribution of 
nonstructural components and live loads, and are in agreement with the building mass reported in 
[22]. The mass of each precast cladding panel is approximated as 5,000 kg based on Kuroiwa 
[22]. The stiffness, of the brace elements (used to model the kinematic interaction effects of the 
claddings) are approximated based on the modal analysis results before and after their 
installation ( [23], [24]). The yield strength of the brace elements is approximated based on the 
experimental literature on the precast cladding panels (e.g., [25]). It should be noted that the 
stiffness and strength contribution of precast panels depends highly on the connection and 
construction details. In the absence of any detailed information about the precast panels in the 
Millikan Library, we postulated its properties based on engineering judgement. The model 
parameter values used for identifiability assessment are listed in Table 1.  
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Table 1: Twenty model parameters used for the first-step identifiability assessment.  
Parameter ID Description Value 

1 Elastic modulus (Es) of steel rebar in beams 180 GPa 

2 Compressive strength (f'c) of concrete in beams 27.6 MPa 

3 Tensile strength (f't) of concrete in beams  1.73 MPa 

4 Elastic modulus (Ec) of slab concrete in 1st floor 21 GPa 

5 Elastic modulus (Ec) of slab concrete in 2nd floor 21 GPa 

6 Elastic modulus (Ec) of slab concrete in 3rd to 5th floors 21 GPa 

7 Elastic modulus (Ec) of slab concrete in 6th to roof floors 21 GPa 

8 Compressive strength (f'c) of concrete in columns 34.5 MPa 

9 Tensile strength (f't) of concrete in columns 1.94 MPa 

10 Elastic modulus (Ec) of shear wall concrete in basement 21 GPa 

11 Elastic modulus (Ec) of shear wall concrete in 1st story 21 GPa 

12 Elastic modulus (Ec) of shear wall concrete in 3rd to 5th stories 21 GPa 

13 Elastic modulus (Ec) of shear wall concrete in 6th to roof stories 21 GPa 

14 
Elastic modulus (E) of brace elements representing the precast 

claddings 
25 GPa 

15 Distributed floor mass (m) on 1st to 9th floors 400 kg/m2 

16 Distributed floor mass (m) on basement floor 200 kg/m2 

17 Distributed floor mass (m) on roof 300 kg/m2 

18 Yield strength (fy) of brace elements representing the precast claddings 140 MPa 

19 Mass-proportional Rayleigh damping coefficient 0.1508 

20 Stiffness-proportional Rayleigh damping coefficient 0.0038 
 

 

Figure 4 shows the entropy gain of these twenty parameters. The entropy gain (measured 
in Nats) is the amount of information that the measurement data (i.e., the model responses 
herein) carries about each model parameters. It can be seen that the entropy gain of parameters 
#16 (distributed floor mass on basement floor), and #18 (yield strength of brace elements) is 
zero, which means that the structural response (for this specific base excitation) is not sensitive 
to these parameters. Those parameters that have the higher entropy gain are more likely to be 
identifiable.  

Figure 5 shows the mutual entropy gain between the parameter pairs. This figure is used 
to investigate the dependence between parameters, which is presented with dark colors: darker 
colors means stronger relative dependence. For example, Figure 5 that there are strong mutual 
dependence between parameters #9 (Tensile strength of concrete in columns), #10 (Elastic 
modulus of shear wall concrete in basement), #11 (Elastic modulus of shear wall concrete in 1st 
story), and #12 (Elastic modulus of shear wall concrete in 3rd to 5th stories). Moreover, there are 
some competing effects between these parameters and parameters #1 (elastic modulus of steel 
rebar in beams), #15 (distributed floor mass on 1st to 9th floors), and #17 (distributed floor mass 
on roof). This plot along with the plot presented in Figure 4 can be used to choose the estimation 
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parameters. The parameters that gain relatively small amount of information from the 
measurement dataset, or have strong dependencies on the other estimation parameters can be put 
aside (i.e., fixed) during the estimation process to enhance the estimation performance. 

Figure 4: Entropy gain (in Nats) of the twenty 
model parameters. 

Figure 5: Relative mutual entropy gain 
between the parameter pairs. 

 

Investigation of these two figures and the FE predicted response of the structure at the 
component-level reveals that the structure does not experience severe nonlinearity during this 
earthquake motion. Tensile cracking of concrete is expected in the columns (see parameter #9 in 
Figure 4), but no yielding is expected. Therefore, we decided to reduce the FE model to a linear 
elastic model for this earthquake excitation. Based on the presented results, we selected six final 
parameters to be estimated, as listed in Table 2. The initial (effective) elastic modulus values for 
concrete in this table are selected to account for tensile cracking under gravity loading. 

 

Table 2: Final selected model parameters for linear-elastic model.  
Parameter 

ID 
Description Value 

1 Elastic modulus of brace elements representing the precast claddings (EClad) 25 GPa 

2 Elastic modulus of beams and slabs (all floors) (Efloor) 15.8 GPa 

3 Elastic modulus of shear wall and column concrete at 1st and 2nd stories (EW&C1) 22.1 GPa 

4 Elastic modulus of shear wall and column concrete at 3rd to roof stories (EW&C2) 22.1 GPa 

5 Stiffness-proportional Rayleigh damping coefficient (b) 0.0038 

6 Distributed floor mass on 1st to 9th floors (m)  400 kg/m2 
 

 

Model Inversion using Recorded Yorba Linda Earthquake Data 
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After successful verification of the estimation algorithm, we utilize the real data recorded 
at the Millikan library building during the 2002 Yorba Linda earthquake for the model updating. 
The six unknown model parameters as introduced before are estimated. The initial and final 
estimate of parameters along with the final estimated coefficient of variation (COV) are listed in 
Table 3. Figure 6 shows the time history of the posterior mean and coefficient of variation 
(COV) of the model parameters, which presents the estimation uncertainties. To evaluate how 
well the updated model prediction matches the measurement records, Figure 7 compares the 
measured acceleration response time histories with those estimated using the initial and final 
estimates of the model parameters. Furthermore, Figure 8 compares the relative root mean square 
error (RRMSE) of the predicted FE model responses using the initial and final parameter 
estimates. This figure clearly shows that the model updating process has reduced the RRMSE 
substantially. Nevertheless, the time history plots in Figure 7 shows non-negligible differences 
between the estimated and measured response time histories, especially at the middle stories of 
the building and for the north-south acceleration responses. These differences are most likely due 
to the incorrect base rocking motions applied on the model. The rocking components of the base 
motion are calculated using the vertical accelerations recorded at different locations on the 
foundation level, and the (approximate) horizontal distance between the sensor locations. 
However, the vertical acceleration data are noisy and moreover, any approximation in 
determining the sensors’ location may result in erroneous estimation of the rocking components 
of base acceleration. The effects of model uncertainty is another source of error that can 
contribute to the discrepancies between the estimated and measured structural responses in 
Figure 7.  

 

Table 3: Initial and final estimate of model parameters using Yorba Linda earthquake data. 
Parameter ID Parameter Initial Estimate Final Estimate Estimated COV (%) 

1 EClad 20 GPa 7.81 GPa 1.60 

2 Efloor 21 GPa 4.13 GPa 0.81 

3 EW&C1 26.7 GPa 16.58 GPa 0.45 

4 EW&C2 26.7 GPa 32.06 GPa 0.84 

5 b 0.0038 0.0035 1.13 

6 m 250 (kg/m2) 153.84 (kg/m2) 0.61 

 

 

 

 

 



SMIP17 Seminar Proceedings 
 

54 

 
Figure 6: Time histories of the posterior mean (left) and coefficient of variation (COV) (right) 

of the model parameters estimated from the Yorba Linda earthquake records. 
 

 

Output-Only Model Inversion 

At this stage, we use the updated model of the superstructure, obtained from previous 
step, and the measured responses of the structure for an output-only FE model updating. The 
objective is to estimate the foundation input motions (FIMs) and the stiffness and viscosity of the 
soil springs and dashpots used to model the inertial soil-structure interaction effects. For this 
purpose, and similar to the previous step, we start with an identifiability analysis to evaluate the 
sensitivity of the structural response with respect to the soil stiffness and viscosity parameters. 
Then, we use the real measurement data to estimate the soil parameters.  
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Figure 7: Comparison of the measured structural responses with the structural responses 

predicted using the initial and final estimate of model parameters.  
 

 
Figure 8: Relative root mean square error (RRMSE) of the FE predicted structural responses 

using the initial and final estimate of model parameters. 
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Model Identifiability and Parameter Selection 

Distributed linear soil springs and dashpots are included underneath the foundation slab 
of the updated FE model, obtained from the previous step. Three linear springs and three linear 
viscous dashpots are modeled independently in x-, y-, and z-direction at each nodal point of the 
foundation slab. The stiffness of soil springs and viscosity of dashpots are computed using the 
subgrade modulus (i.e., soil stiffness per unit area), and viscosity modulus (i.e., viscosity of the 
soil per unit area), respectively, in x-, y-, and z-direction. The spring stiffness is calculated by 
multiplying the tributary area of the nodal point by the corresponding subgrade modulus. 
Similarly, the dashpot viscosity is calculated by multiplying the tributary area of the nodal point 
by the corresponding viscosity modulus. 

Six different (unknown) subgrade modulus, namely kx, ky1, ky2, kz1, kz2, kz3, are defined 
for different foundation regions. These regions and the corresponding subgrade modules are 
shown Figure 9. Similarly, six (unknown) parameters are used to define the viscosity modulus of 
soil. The viscosity modulus parameters (cx, cy1, cy2, cz1, cz2, cz3) characterize the viscosity of the 
soil per unit area, and are specified in Figure 9.  

 

  

(a) (b) 
Figure 9: (a) six unknown subgrade modulus parameters, and (b) six unknown viscosity 

modulus parameters defined for different foundation regions. The figure shows the foundation 
plan of the Millikan library including the central pad (at -6 m elevation), and the two 

foundation beams on the north and south sides (at -5 m elevation). 
 

To assess the identifiability of these twelve soil parameters, we pursue the same 
identifiability analysis approach presented before. Initial estimate of soil model parameters are 
assigned following the results presented in [16], and the NIST standard recommendations [3], 
and are listed in Table 4.  
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Table 4: Twelve soil model parameters used for the first-step identifiability assessment. 

Parameter ID Description 
Initial 

Estimate 
Parameter ID Description 

Initial 
Estimate 

1 kx 65 MN/m3 7 cx 700 kN.s/m3 

2 ky1 40 MN/m3 8 cy1 700 kN.s/m3 

3 ky2 60 MN/m3 9 cy2 700 kN.s/m3 

4 kz1 25 MN/m3 10 cz1 1000 kN.s/m3 

5 kz2 22.5 MN/m3 11 cz2 1000 kN.s/m3 

6 kz3 37.5 MN/m3 12 cz3 1000 kN.s/m3 
 

 

Figure 10 shows the entropy gain of the soil parameters. These plots presents the 
cumulative sensitivity of the FE model response (measured at 34 output channels) to the twelve 
soil parameters. The small entropy gain of some parameters such as ky1, cy1, cz2, and cz3 makes 
them weakly identifiable, and therefore these parameters are removed from the estimation 
process. Moreover, Figure 11, which shows the mutual entropy gain between the parameter 
pairs, indicates a strong dependence between kz1, kz2, and kz3. This is not unexpected because the 
structural response does not include the vertical components of the acceleration (except on the 
foundation level). Therefore, although the rocking stiffness of the foundation system might be 
identifiable, its vertical stiffness remains weakly identifiable. By investigating these results, we 
decide to limit the number of estimation parameters to eight including:  kx, ky, kz1, kz2, kz3, cx, cy, 
and cz. The three vertical stiffness are kept for the estimation despite their dependency.  

Figure 10: Entropy gain (in Nats) of the twelve 
soil parameters. 

Figure 11: Relative mutual entropy gain 
between the soil parameter pairs. 

 
Model Inversion using Recorded Yorba Linda Earthquake Data 

The real data recorded at the Millikan library building during the 2002 Yorba Linda 
earthquake are now utilized for an output-only FE model updating to estimate the eight soil 
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parameters and the three components of the foundation input motion (FIM), namely in EW, NS, 
and Up directions. The initial and final estimate of parameters along with the estimated 
coefficient of variation (COV) are listed in Table 5. Figure 12 shows the time history of the three 
components of the estimated FIM. The estimation uncertainties are quantified through the 
standard deviation plots presented in this figure. Figure 13 shows the time history of the posterior 
mean and coefficient of variation (COV) of the soil parameters, which quantifies the estimation 
uncertainties. The large estimation uncertainties indicate the potential inaccuracy in the final 
parameter estimates. To evaluate how well the updated model prediction matches the 
measurement records, Figure 14 compares the measured acceleration response time histories 
with those estimated using the final estimates of the model parameters. This figure shows a 
remarkable match between the estimated and measured acceleration responses.  

 

  
(a) (b) 

Figure 12: Estimated foundation input motion (FIM) time history (left) and standard deviation 
(S.D.) of the estimated FIM time history (right). 

 

Table 5: Initial and final estimates of soil parameters. 
Parameter ID Parameter Initial Estimate Final Estimate Estimated COV (%) 

1 kx 65 MN/m3 192.1 MN/m3 19.4 

2 ky 50 MN/m3 13.0 MN/m3 40.3 

3 kz1 20 MN/m3 106.6 MN/m3 5.4 

4 kz2 22.5 MN/m3 279.3 MN/m3 14.4 

5 kz3 37.5 MN/m3 408.8 MN/m3 9.7 

6 cx 700 kN.s/m3 2.4 MN.s/m3 24.1 

7 cy 700 kN.s/m3 1.8 MN.s/m3 7.9 

8 cz 1000 kN.s/m3 5.9 MN.s/m3 4.9 
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Figure 13: Time histories of the posterior mean (left) and coefficient of variation (COV) (right) 
of the model parameters estimated from the Yorba Linda earthquake records. 

 

 

Summary and Conclusions 
 

In this study, we developed a nonlinear FE model updating framework using a sequential 
Bayesian estimation approach based on the unscented transformation method. The FE model 
updating algorithm can estimate the unknown model parameters and/or the time history of 
dynamic input excitation using the measured structural responses. The algorithm can be used for 
input-output structural model updating (i.e., estimating the unknown model parameters using the 
foundation level input motion and the output response of the structure), and for output-only 
model updating (i.e., estimating jointly the unknown model parameters and the time history of 
input excitation). This capability has been used in this study to estimate the structural model 
parameters, the stiffness and viscosity of soil subsystem, and the foundation input motions (FIM) 
for the Millikan library. 
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Figure 14: Comparison of the measured structural responses with the structural responses 
predicted using the final estimate of soil parameters and FIM.  

 

We first developed a detailed FE model of the Millikan library structure. Through an 
identifiability analysis, we determined the sensitivity of the structural response to various model 
parameters, and selected a set of parameters that were likely to be identifiable. Since, we used 
the 2002 Yorba Linda earthquake data, which is a low-amplitude earthquake, we used a linear-
elastic FE model of the building structure. At the first step, we performed an input-output model 
updating to estimate the model parameters related to the structural system. For this purpose, we 
utilized the foundation motion, measured on the foundation level, and the output response of the 
structure to estimate six structural model parameters. At the second step, we performed and 
output-only model updating to estimate the foundation input motions (FIM) and the parameters 
characterizing the stiffness and viscosity of the soil spring and dashpots. For this purpose, the 
structural model parameters were fixed at the parameter estimates obtained from the input-output 
model updating step. Eight soil-related parameters and three components of the FIM were 
estimated using the recorded response of the structure during the Yorba Linda earthquake.  

The objective of this study was to develop, verify, and validate a FE model updating 
capability that can be used with real-world data. The FE model updating is a tool to integrate 
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mechanics-based models with measurement data obtained from real world, to reduce the 
uncertainties in the model and thus, provide more accurate information about the system 
properties, behavior, and its parameters. The long-term goal of this research initiative is to use 
this approach for investigating the soil model parameters that are used to model the inertial soil-
structure interaction effects.  
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