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Abstract 
 

  When the design response spectra for the two horizontal components of motion are of 
equal intensity the expectation of the peak seismic demand is given by the SRSS combination of 
the uni-directional responses. The variance of this response depends, however, on the probability 
densities of the cross-correlations and thus the upper bounds on the ratios of response to design 
level in elements that have important contributions from both loading directions are larger than 
in those dominated by uni-directional motion. This paper operates on the premise that it is 
desirable to equalize these bounds and attempts to do so by specifying the cross-correlations at a 
probability of exceedance that attains the objective. Derivation of the pdf of the cross correlation 
is required and is found that for closely spaced frequencies it is well approximated by the pdf of 
the unlagged coherency times the standard correlation coefficient. The pdf of the unlagged 
coherency, in turn, is shown to be well approximated by a shifted and scaled beta distribution 
with parameters 2.55   . It is shown that when the results obtained are translated into the 
100%+X% combinations rule the consistent value of X is sixty. 
 
 

Introduction 
 

Combination of modal responses to a uni-directional input is a classical subject in 
earthquake engineering. The SRSS rule, which applies to stationary uncorrelated responses, 
appeared first in the Ph.D thesis of E. Rosenblueth (1951) and subsequently in a paper by 
Goodman, Rosenblueth and Newmark (1953). The pioneering contribution on the rules to 
combine correlated responses is presented in Rosenblueth and Elorduy (1969) with formulas 
later developed by Der Kiureghian (1979) now widely adopted under the CQC designation. This 
paper is concerned with the combination of modal responses to orthogonal input components 
with attention limited to responses to excitations in the horizontal plane. The pioneering 
contribution here is from Rosenblueth and Contreras (1977) who proposed, based on analytical 
considerations and some simplifications, the now popular 30% rule.  

 
The combination of modal responses from multiple inputs involves cross-correlation 

coefficients that depend on the coherency between components and have symmetric pdfs when 
the motions are specified in so-called principal directions. A proposal that the major principal 
direction at a site is aligned with a line joining the epicenter with the site was made (based on the 
analysis of five records) by Penzien and Takizawa (1975) but this contention is not supported by 
results obtained here using 40 pairs of bi-directional records from the CSMIP database. What 
examination shows is that the directions for which the correlation between the records is zero 
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fluctuates notably when computed in a moving window (of 4 to 6 seconds size), suggesting that 
there is limited usefulness in the principal direction concept. We note that fluctuation in the 
computed principal directions is a byproduct of the fact that the seismic intensity in any two 
horizontal directions is not too dissimilar in most records, making the data “quasi-circular” and  
the principal orientations easily shift as a the computation window moves along. Whether 
justified on grounds that the spectra are equal, or in any other way, the bottom line is that seismic 
provisions are based on the premise that any two orthogonal directions in the horizontal plane 
can be treated as principal directions. From the perspective of elastic force demand computation 
the implication is that the cross-correlation coefficients that enter in the estimation of the 
expected value of the peak response are zero.  

 
When one looks at the variance of the peak response, however, the probability density of 

the cross-correlation enters the picture and the relevant observation, from a design perspective, is 
that response quantities that are notably affected by bi-directional input may have significantly 
larger variance than those primarily dependent on one input component. Bounds on the limit by 
which demands may exceed the design estimate, therefore, are larger in bi-directional sensitive 
quantities than in unidirectional controlled ones. We note, for clarity, that while any element can 
be considered as affected by both horizontal components (since axes can be rotated at will) the 
opposite is not true. Namely, there are elements whose forces are significantly affected by both 
direction of loading for any orientation of the analysis axes. In this regard note that the typical 
selection of building axes can be viewed as the one that maximizes the number of response 
quantities that depend on one input or the other. The purpose of this paper is to determine if the 
mentioned increase in variance is potentially relevant in design and, if it is, to suggest ways to 
account for it properly. 

 
Worth noting from the outset is the fact that the pdf of correlations and cross correlations 

are affected differently by the eigenvalue gap. In particular, as two eigenvalues approach each 
other the correlation between the modal responses approaches unity and, as a consequence, the 
variance of the realizations approaches zero. The variance of the correlation between closely 
space modes is, therefore, small. In contrast, in the cross-correlation case the expected value of 
the distribution is near zero, independent of the frequency ratio, but the variance increases as 
modal separation decreases. In this paper we pursue consideration of the high variance issue by 
specifying the cross correlation coefficients at a probability of exceedance smaller than the mean.  

 
An outline of the paper is as follows: it is first shown that for zero eigenvalue gap the pdf 

of the cross correlation is well approximated by the pdf of the unlagged coherency and a model 
for this function is derived using results from a large ensemble of synthetic bi-directional records 
generated using the Rezaeian Der Kiureghian (2012) ground motion model. Reduction of the 
cross correlation with frequency separation is shown to be much slower than that of the 
correlation and it is argued that this results from the difference between the Power Spectral 
Density (PSD) , which is real and determines correlations, and the coherency, which is complex 
and determines cross correlations. An explicit formula for reduction of the cross-correlation with 
frequency gap, however, is not presented. The analytical part of the paper closes with an analysis 
that translates the results obtained into the 100 +X% rule and a brief concluding section closes 
the paper.   
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Principal Ground Motion Directions 
  
The subject of principal directions shows up when bi-directional excitation is considered 

because these directions specify the orientation for which the coherency between the orthogonal 
components is zero. Equivalently, the principal directions are also the directions for which the 

empirical covariance is diagonal. Namely, if 3xNX R  is a matrix that lists the ground motion at a 

point in any three orthogonal directions and
1 2( , ) 1 2(:,n : n )n nX X  where n1 and n2 are indices 

selected to clip and internal portion, the empirical covariance for the clipped segment is 

                                                       
1 2 1 2 1 2( , ) ( , ) ( , )

2 1

1

1
T

n n n n n nQ X X
n n

 
 

  (1) 

where N is the total number of time stations. Analysis shows that one of the principal directions 
is vertical (or nearly so) so the other two are in the horizontal plane. The first to indicate that 
principal directions could be defined for seismic records was A. Arias (1970), although reference 
to the matter is typically misplaced to a publication by Penzien and Watanabe (1975) who 
apparently were unware of Arias work at the time of writing. Arias did not pursue the principal 
directions topic but Penzien and Watanabe (1975) made the claim that these directions are 
reasonably stationary during the strong motion and are approximately aligned with a line 
connecting the epicenter with the site. Although several writers have used this model (Yeh and 
Wen 1990; Kubo and Penzien 1979; Heredia-Zavoni and Machicao-Barrionuevo 2004; Menun 
and Der Kiureghian 1998a, 1998b, 2000; Rezaeian and Der Kiureghian 2010, 2012) 
confirmation of these claims could not be found in the literature and an examination carried out 
here using 40 bi-directional records did not support either contention. As noted first in the 
introduction, the lack of stationarity is easily rationalized by recognizing that principal directions 
are the axes of an ellipse that essentially contains the data considered and since the dimensions of 
the ellipse principal axis are not too different, rotations are easily realized. Fig.1 plots data for a 4 
sec window during the strong motion at CSMIP station 14311 during the Whittier earthquake 
and shows the quasi-circular nature of the data while Fig.2 shows the rotation of the axes in two 
nearby windows. 

                                      
Fig.1. Accelerations, principal directions and inscribing ellipse for the first 4 sec window in 

the strong motion defined using the t0.9 Arias Intensity. 
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Fig.2. Accelerations, principal directions and inscribing ellipses a) window from 6-10 sec b) 

window from 12-16 sec (same records as Fig.1) 
 
 
Directivity 
A convenient parameter to characterize the shape of the “best fit” ellipse, which we define here 
as “directivity”, is   

2

1

1
s

s
                                                                   (2) 

where s1, and s2 are the largest and the smallest singular values of the empirical covariance. For a 
circular shape  = 0 and for highly elongated shapes  approaches 1. The term directivity is also 
used as a qualitative term to indicate the focusing of wave energy along the fault in the direction 
of rupture but risk of confusion with the quantitative term in eq.2 does not appear significant. 
Directivities computed for 40 bidirectional ground motions taken from the CSMIP site proved to 
have a mean of about 0.3 (Gali, 2015), indicating (again) that the “principal directions” are 
unlikely to be stationary, some examples of the evolution of the mayor principal direction 
computed on a 4 second moving window are depicted in Fig.3. We close this section by noting 
that although the literature is replete with papers that use the concept of ground motion principal 
directions there is also wide spread recognition that it is reasonable to assume that the motion in 
any two orthogonal horizontal directions can be treated as uncorrelated, i.e., that any two 
orthogonal directions in the horizontal plane can be treated as principal.    
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Fig.3. Evolution of major principal direction for four CSMIP stations -distances are from the 

site to the epicenter and letter in parenthesis designates the earthquake. 
 
 

Cross-Correlation between Modal Responses 
 
 The cross-correlation coefficient between the responses of two modes, i and j to ground 
motion components k and  is the expected value of a distribution and writes (Der Kiureghian 
and Neuhoffer 1991) 
 

 , ,

1
( ) ( ) ( )

ki js s i j k
ski s j

h h g d    
 





     



  (3) 

with 
 

                                 
,

2
a,a( ) ( ) ( ) , ,

a bs b bh h g d with a k b i j    




                 (4) 

 
where hb () is the relative displacement transfer function  
 

                                                     
2 2

1
( )

( ) 2b
b b b

h
i


   


 

           (5) 

 
with ,b b   as the undamped natural frequency and modal damping ratio and , ( )kg   is the cross 

spectral density (CSD) between the k and the  excitation components. This last function is the 
Fourier transform of the cross correlation between the signals and thus 
 

 , ,( ) ( ) i
k kg g e d  






     (6) 

where 
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  , ( ) ( ) ( )k kg E u t u t    

    (7) 

 
The CSD is typically specified in terms of the coherency function, , ( )k   and the PSD functions 

as 
 
 , , , ,( ) ( ) ( ) g ( )k k k kg g            (8) 

 
 Assuming that the PSD functions for both components are equal and vary slowly with 
frequency one can treat them as a constant without incurring undue error and one can write 
 

            , ,( ) ( ) ( )
ki js s i j kh h d     





                 (9) 

 
where the transfer functions have been normalized such that 
  

                                                     
2

( ) 1 ,bh d for b i j 




           (10) 

 
Realizations 
Let a pair of bi-directional components be referred to by the index q and let the coherency 
function for a given pair be ( )qz  . The realized value of the cross correlation is then 

 

    ( ) ( ) ( )q i j qp h h z d   




              (11) 

  
and it follows that eq.3 is the mean of the realizations given by eq.11. If one performs a Monte 
Carlo study that generates values of pq the distribution of this random variable can be estimated 
and used to specify the cross correlation at whatever probability of being exceeded one selects. 
  
 
Zero Eigenvalue Gap  
In this case eq.11 reduces to  
  

                                                    
2

( ) ( )q i qp h z d  




                  (12) 

 
and if the damping is low, as is typically the case, and the real part of the function ( )qz  , known 

as the unlagged coherency, is reasonably flat in the vicinity of the natural frequency, then with 
good approximation one has 
 

             ( )q q bp z            (13) 
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Namely, the cross-correlation in this case is well approximated by the unlagged coherency 
evaluated at the undamped natural frequency of the mode.   
 
 
Finite Eigenvalue Gap 
The finite eigenvalue gap case is more difficult to evaluate because the product of the two 
transfer functions has real and imaginary parts and the real and the imaginary parts of the 
coherency enter the formulation. It appears, however, that for small eigenvalue gaps the cross 
correlation can be approximated as the value for zero gap times the CQC correlation. To 
illustrate assume the unlagged coherency is sufficiently flat in the region where the transfer 
function product has important values, one then has 
 

        ( ) ( ) ( )q q i jp z h h d    




     


         (14) 

where   is the contribution that comes from the integration of the product of the imaginary part 
of the coherency times the imaginary part of the product of the transfer functions. Noting that the 
integral in eq.14 is the CQC correlation coefficient (Der Kiureghian 1979) one has that for values 
of r near unity 
 

                   ( )q q CQCp z   
          (15) 

with 
 

 
   

2 1.5

22 2 2 2 2

8 (1 )

1 4 1 8
CQC

r r

r r r r


 

 


   
  (16) 

 
where r is the ratio of the modal frequencies. 
 
 

Unlagged Coherency 
 

 Several models for the expectation of the coherency as a function of distance and 
frequency have been proposed and a good review can be found in Zerva and Zervas (2002). 
What is needed for the present application, however, is the probability distribution of the 
unlagged coherency for orthogonal motions at a point in the horizontal plane. For this 
distribution no models could be identified so it became necessary to develop one. One possibility 
was to work with an ensemble of real bi-directional records but we opted for synthetic motions to 
allow a more convenient examination of the effect of the key motion parameters.  

 
 The bi-directional ground motion model selected is the one developed in Rezaeian and 
Der Kiureghian (2010, 2012). This model generates synthetic earthquake-like signals by filtering 
white noise through a time dependent impulse response function that is modulated to incorporate 
the evolution of the ground motion intensity. The model has six parameters for each direction of 
motion, the Arias intensity, Ia, the Arias effective duration taken as the 5-95 interval of the 
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evolutionary intensity, D5-95, the central value, and rate of change of the evolutionary frequency, 

mid  and  , the critical damping ratio of the filter,  , and the time at which the central 
frequency of the impulse is realized, tmid. These six parameters have probability distributions 
derived from data that are conditional on four parameters: the type of faulting, F, equal to zero 
for strike-slip and one for reverse faulting, the magnitude, M  6,  the epicentral distance R, 

10 100R   (in Km) and the shear wave velocity in the top 30m VS30, with 30 60 secs
mV  . The 

model considers the correlation between the parameters in the two horizontal directions by 
prescribing a correlation matrix derived from real data.       
 
 While derivation of a pdf for the unlagged coherency that is a function of all the 
parameters of the ground motion model is possible the level of complexity would not be useful 
for the purposes of specifying the cross correlation. The approach we select here is to examine 
how the unlagged coherency depend on each of the motion parameters individually and then, in 
light of the results obtained select a set of parameters for which to derive a single pdf. 
 
 
Type of Faulting 
The standard deviation of the unlagged coherency vs frequency at 40Km for Vs30 = 500 m/sec 
and M = 7.5 based on 50 simulations is depicted for the two types of faulting in Fig.4. As can be 
seen, there is no clear indication that the unlagged coherency is larger for either type of faulting 
so we select the strike-slip model for specificity. 

               
Fig.4. Standard deviation of the unlagged coherency vs frequency, M = 7.5, R = 40Km, 

VS30=500 m/sec. 
 
Distance to Epicenter 
Plots of the standard deviation of the unlagged coherency for three different distances to the 
epicenter are depicted in Fig.5. The results suggest that the function decreases with distance at 
the higher frequencies but that in the in the most important range, i.e. up to 10Hz or so there is 
not much difference or a clear pattern so we take, for the Monte Carlo study, R = 40 Km. 
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Fig.5. Standard deviation of the unlagged coherency vs frequency, M = 7.5, Strike-Slip, 

VS30=500 m/sec. 
 
 
Magnitude 
Results illustrating the effect of magnitude are depicted in Fig.6. As can be seen, the curves are 
not ordered by magnitude in any particular pattern and for the lower frequencies the difference 
between the results is particularly small. In the Monte Carlo study we operate with M = 7.0.  

                      
Fig.6. Standard deviation of the unlagged coherency vs frequency, R = 40 Km, Strike-Slip, 

VS30=500 m/sec. 
 
 
Shear Wave Velocity 
Results plotted in Fig.7 for three values of the shear velocity, which correspond to very soft soil, 
dense soils and rock, show that the unlagged coherency is larger in the two stiffer soils than in 
the very soft one, although the difference between the dense soil and the rock situation is not 
systematic or significant. In the Monte Carlo study we operate with VS30 = 750 m/sec 
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Fig.7. Standard deviation of the unlagged coherency vs frequency, R = 40 Km, Strike-Slip,      

M = 7. 
 
Probability Density Estimation 
On light of the results of the previous examinations we estimate the density of the unlagged 
coherency based on 500 simulations using the parameters {F=0, M = 7, R = 40 km, VS30 = 
750m/sec) and plot the results in the same format used previously in Fig.8. As can be seen, the 
variation of the standard deviation with frequency is small.  

                   
Fig.8. Standard deviation of the unlagged coherency vs frequency based on 500 simulated bi-

directional records obtained for the parameters described in the text. 
 
 The normalized histograms of the unlagged coherency at three different frequencies are 
depicted in Fig.9 and a plot of the values at three different probability of exceedance for the full 
frequency range considered is depicted in Fig.10. 
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Fig.9. Unlagged coherency vs frequency based on 500 simulated bi-directional records 

obtained for the parameters described in the text. 
 

       
Fig.10. Unlagged coherency vs frequency at 3 different probability of exceedance. 

 
 We postulate a shifted scaled symmetric beta function for the pdf of the unlagged 
coherency. Since we have three constraints from the cdf in Fig.10 and there is only one free 
parameter (as  = ) we select the distribution parameter in a least square sense. Given that the 
changes in the values in Fig.10 are small for small frequencies and that simplicity is of the 
essence we opt for a frequency independent pdf. Taking the unlagged coherence critical values at 
{0.72, 0.60 and 0.52} for probabilities of exceedance of 5, 15 and 25% respectively one finds 
that  =  = 2.55 provides a good fit, with the theoretical values being {0.75, 0.6 and 0.5}. In the 
treatment that follows we select the unlagged coherency from the distribution at the 15% 
probability of exceedance and thus take it equal to 0.6. While we could have selected this value 
without fitting the analytic pdf to the data the pdf allows easy selection of the unlagged 
coherency in case a different probability of exceedance is of interest in some future work. 
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Response Spectrum Estimation of Maximum Response 
 

 For structures on a rigid base subjected to bi-directional excitation the expected value of 
the maximum response can be written as (Der Kiureghian and Neunhofer 1991) 
 

 

1
2 2 2

,
1 1 1 1

[max ( ) ] ( , ) ( , )
n n

ki j ski s j k i i j j
k i j

E z t b b D D    
   

 
  
 
   



  (17) 

 

where ( , )k p pD    is the relative displacement spectrum for the k motion, kib  is the contribution of 

the ith mode to the quantity being evaluated due to the earthquake in the k direction for a unit 
value of the displacement spectrum and ,ski s j   is the correlation between the responses of modes 

i and j for input directions k and  . The result in eq.17 can be written in convenient matrix form 
as 

              
1

2[max ( ) ] T T
t t x yE z t m m m m              (18) 

where t x ym m m   with 1, nx
x ym m R are the vectors that contain the modal contributions for the 

input in the x-x and y-y directions,   is the matrix of correlation coefficients and   is the matrix 
of cross correlations. In the present seismic guidelines the second term in eq.18 is taken as zero 
and thus the response is taken as 
 

 
1

2[max ( ) ] T T
x x y yE z t m m m m              (19) 

 

which is the SRSS of the correlated responses to one directional input. The estimation of the 
peak response based on the work presented previously (neglecting reductions in the correlation 
with eigenvalue gap) is 

                
1

2max ( ) 1.2T T
t t x yz t m m m m              (20) 

 
where the expectation symbol has been removed because eq.22 is no longer (strictly) and 
expectation estimate. 
 
 

On the 100% +X% Rule 
 

 Consider a quantity y(t) whose contribution from excitation in the 1-1 direction is y1(t) 
and from the 2-2 direction y2(t). If the two time histories are uncorrelated in the particular 
realization considered then  
 
 2 2 2

1 2[max( )] max( ) max( )y y y    (21) 
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We take 2 2 2
2 1max( ) max( )y y  and, without loss of generality assume that y1 is the response with 

the largest absolute value so 1   and get 
 

 2
1max

1y y     (22) 

 
In the 100+ X% combinations rule the estimated maximum response is taken as 
 
      1 1max

y y X y             (23) 

 
and it thus follows, equating eqs.22 and 23 and taking X = 0.3 than 0.659  . In other words, 
the SRSS rule and the 30% combination coincide if the smaller of the two responses is around 
2/3 of the largest. Assume know that the value of the cross-correlation realized in the response is
 . Following the same analysis as before one concludes that the maximum response is now 
 

            2
1max

1 2y y                (24) 

 
and equating this with eq.23 gives 
  

           21 2 1 X                 (25) 

 
or 

          
21 1 2

X
 


   
            (26) 

 
The value of X from eq.26 plotted vs.   for 0.659  is depicted in Fig.11. 
 

                      
Fig.11. Value of X in the 100+X% rule for which the maximum response is “correctly” 

estimated vs the cross correlation between bi-direction responses. 
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 If the responses in both directions were governed by modes with identical periods and 
one accepts the 15% probability of exceedance of the previous section for the cross-correlation 
one would select to “read” X from Fig.10 using 0.6 for the cross correlation. In most instances, 
however, the orthogonal responses will be governed by different modes and this selection is 
perhaps too conservative. Here we (heuristically) select a 50% reduction on the cross-correlation 
and thus read X at a cross-correlation of 0.4 obtaining the value of 0.6.  
 
 

Numerical Validation 
 

 The previous section suggests a 60% rule. In this section we test this rule using two 
versions of a 10-story 3-D shear building having the irregular plan distribution shown in Fig.12. 
The building versions differ only on the rotational inertia of the floor plan and the amount of 
modal damping; in the case with the higher damping there are some modestly closed periods. 
The structure is excited with 100 simulated biaxial records and attention is focused on the 
maximum shear in the inclined wall element at the second floor. The following results are 
obtained for the two structures:  
 

1) Exact maxima for each of the 100 bi-directional records. 

2) Exact maxima for the y-y components of each of the records (single input response) 

3) Response spectral solutions for each of the directions of analysis.  

 
 For the response spectrum solutions we use the exact spectral ordinates for each motion 
to ensure that all discrepancy with exact responses derives only from the modal combination. 
Inspection of numerical results shows that the differences between the CQC and SRSS prediction 
in the one-directional analyses are trivial.   
 
 Since a 60% rule is necessarily more conservative than the 30% one a comparison based 
on the degree of conservatism is not meaningful. A reasonable gauge, however, is a comparison 
between the most severe under-predictions when using any of the rules and those that occur in a 
one directional analysis. A reasonable way to inspect the results is to look at the mean of the 
largest “n” underestimated responses and compare them with the unidirectional result. The 
results are depicted in Figs.13 and 14 and show, as expected, that the 30% rule is un-
conservative. The suggested 60% rule is slightly conservative in the 2% damped building and 
less so in the 5% damping case.    
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Fig.12. Plan view and periods of the 10 story shear buildings used in the validation study, 
damping is 2% in all the modes. 

 
 
 

 

Fig.13. Mean of ordered maxima of the ratio of exact to estimated response based on 100 
simulations for building of Fig.12with 2% damping. 
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Fig.14. Mean of ordered maxima of the ratio of exact to estimated response based on 100 
simulations for building of Fig.12 with 5% damping. 

 
 

Concluding Comments 
 
 Response estimation is presently carried out at the level of expectation. Implicit in this 
approach is the assumption that variance related under-predictions are adequately accommodated 
by the design. Since the overwhelming majority of the accumulated numerical experience comes 
from studies with uni-directional excitation a question that arises is whether the larger variance 
in elements that are strongly affected by multiple components merits adjustments. On the 
premise that it is desirable to have the same level of protection against the largest possible 
underestimations in force demand one can state that the SRSS and the 30% combination rules are 
unconservative. On this matter the paper shows that similar performance is realized if the cross-
correlation coefficient for zero eigenvalue gaps is taken as 0.60 and that, in the case of provisions 
based on the 100+X% rule, if X is taken around 60.  
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